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SEMINAR ON CONTINUITY IN SEMILATTICES (SCS) 

NAME: Karl H. Hofmann Date M D Y NAME: Karl H. Hofmann Date 
11 24 81 

TOPIC: • The category CD of completely distributiv 

and their free objects 

e lattices 

REFERENCES: The usual scriptures, and 

Nino,J., Dissertation Tulane 1981; Hoffmann, R.-E.,SCS 9-10-81; 

Hofmann,K.H. SCS-Memo 11-27-79. 

This is roughly the content of a lecture given at the Tulane 

miniworkshop on 11-21-81. Much of it was discussed in the Tulane 

continuous lattice seminar in the fall of 81 with Mike Mislove and 

Eric Partridge. 

Section 1. The category CD. 

1 must begin with a definition of the category of completely distribu

tive lattices, and 1 want to use this occasion for proselytizing 

for them and to propagandize the demand for a complete exposition of 

everything known about completely distributive lattices and their 

natural maps. The writing of a monograph would now be timely, inte

resting and rewarding. (1 might even do it myself, but not alone. 

1 guess 1 am looking for takers.) 

1.1. DEFINITION. The objects of the category ̂  of completely 

distributive lattices are complete lattices in which the identity 

(cd) inf.^_ sup.* _ a.. = sup^_^T inf.^,. a. 
iC 1 j6J ij 1^1 i,f(i) 

holds for all families (a..).^ ̂  ^ • The morphisms of CD 
ij i6 l,je J ^ — 

are the maps preserving all infs and all sups. O 

REMARKS. The identity (cd) is called complete distributivity.lt 
always holds simultaneously with its opposite identity. Completely 

distributive lattices therefore share with many other classical objects of 

lattice theory the feature of being preserved under the passage 

L—>1.°^ to the opposite lattice which is so strikingly absent in 

the more general continuous lattices. 

The choice of morphisms is dictated by (cd): The operations 

(infinitary, to be sure) entering into the defining equation must 

be preserved. This choice of morphisms makes the category CT, in 

the words of the Old Testament, a full subcategory of INFpSUP. 
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The category ̂  is obviously a variety which is closed under forma

tion of arbitrary products, subalgebras and quotients. Cartesian products are 

the categorical products; equalizers are formed as in the category of sets. 

The category is also cocomplete, but one must fight off the temptation to 

believe that the coproduct of,say, two CD-objects is the cartesian 

product with any of the obvious injections as coprojections. It looks 

suspiciously as though this was the case, but a closer inspection reveals 

that neither of these injections will preserve both 0 and 1 while every 

CD morphism must respect them. Coproducts are more complicated. Mc?e about 

that later. 

That free objects exist is perhaps not obvious^considering, 

as J.D.Lawson pointed out, that the category of complete lattices has 

no free objects. But they do exist and we will analyze their structure. 

Let us record a few quick throughts concerning the definition. 

1.2. PROPOSITION. :0 Let f: L be a monotone map between CD -objects. 

Ip Then the following statements are equivalent 

(1) f is a ̂  -morphism. 

(2) f has an upper adjoint g: M >L and a lower adjoint d:M >L. 

ii) If (1) and (2) are satisfied, then the following 

statements hold: 

(a) 

(b) 

(3) 

(4) 

g preserves Spec, and gjSpec M: ( Spec M, ̂  ) > (Spec L, ̂  ) 

preserves directed sups (i.e. is Scott continuous) 

d preserves Cospec, and djcospec M: Cospec M Cospec L 

preserves directed sups (i.e. is Scott continuous), where 

Cospec carries the induced order. 

iii) The following two conditions are equivalent: 

f preserves Spec. 

d preserves finite infs, i.e. d is a cHa-map., 
Under these circumstances, fjspec L:(SpecL,^)—>(^ecM,^) is i:pper (!) adjoint of ̂ SpecM, 

iv) The following two conditions are equivalent: 

(5) f preserves Cospec. 

(6) g preserves finite sups. O 

Since the insights of Lawson and Hoffmann we appreciate the fact 

that on the object level there is a bijection between CD-objects and 

continuous posets. What sort of maps one should consider on the 

continuous poset level has begun to crystallize only recently, for 
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instance in Jaime Nino's dissertation. We saw in 1.2.a (and b) that the 

adjoints of CD-maps produce Scott continuous maps on the spectra (and 

cospectra). But not every Scott continuous map between continuous posets 

arises in this fashion. Indeed let g;T >S be a Scott continuous map 

between continuous posets. If we let L= CTCS) and T = ^''(T) be the 

respective Scott topologies, then L and M are CD-objects and the 
_1 map f:L given by f(U) = g (U) is at any rate a cHa-map.By 

1.2.i, this f is a CD-morphism iff it has a lower adjoint. 

Let us pause for a moment and consider the situation more generally 

on the level of general topology. If g:Y 5»X is a continuous map between 
_1 topological spaces, we generate a cHa-map f:0(X) >0(Y) via f(U) = g (U). 

The map f has a lower,adjoint d:0(Y) >0(X) iff every open set V of Y 

determines an open set d(V) in X so that d(V) c U for an open set U of X 

iff V a f(U) = g~^(U) iff g(V) C U. Thus d(V) =P|{U€0(X): g(V) C u} 
= sat g(V) where the saturation sat A of a subset A of X is the intersection 

of the filter of (open) neighborhoods of A. We have in fact shown the 

following 

1.3. LEMMA. The cHa-map 0(g):0(X) ^(Y) induced by a continuous function 
-1 g:Y—sX via 0(g)(U) = g (U) has a lower adjoint if and only if the 

saturation sat g(V) is open'in X for each open set V in Y. O 

REMARK. If X is T^ this occurs precisely when g is open. 

(Indeed sat A=A for all sets A in a T^ space.) 

For easy reference we choose the following nomenclature: 

1.4. DEFINITION . A function g:Y—>-X between topological spaces is called 
quasi-open iff sat g(V) is open in X for each open set V in Y. C7 

Since the Scott continuous and quasi-open maps between continuous i-posets 

are precisely those arising from CD-morphisms by restri'^cting adjoints to 

spectra we declare: 

1.5. DEFINITION. A map between up-complete posets g:T >S is called a 

comorphism iff it is Scott continuous and Scott quasi-open,i.e. iff it 
preserves directed sups and tc(V) is Scott open in S for each Scott open 

set V in T. D 

We then have the following remark: 

1.6.PROPOSITION. The category lOT of completely distributive lattices is dually 

equivalent to the category of continuous posets and comorphisms between them. Q 

We recall an ancient knowledge of the striptures of the old covenant: 

If F: S •T is an upper adjoint of c:T t-S, then F is Scott continuous 

iff F V is Scott open for each Scott open set V; but F V = tc(V), and so 

F is Scott continuous iff c is Scott quasi-open. 
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In particular, if F is an INF-map between complete lattices^then it is in 

fact an INF^ -map iff its upper adjoint is a comorphism. This leads us to the 

following definition: 

1.7.DEFINITION. A map F:S •-T between up-complete posets is called a morphism 

iff it has.a lower adjoint c:T which is a comorphism.iff it has a lower ad
joint and IS Scott continuous, Q 

From the old testament we know that a map F:S >T between continuous 

lattices is a morphism in the sense of 1.7 iff it is a -morphism,i.e., 
t . 

an. INF - morphism. We may think of a morphism between up-complete posets 

as the pair (F,c) of adjoint maps. The category of continuous posets and 

morphisms between them contains as a full subcategory and is a bit 

smaller than the dual category of the category of continuous posets and 

comorphisms between them. To be a bit more precise: 

1.8. PROPOSITION. The subcategory CD^ of CD with the same objects as 

CD and all CD -morphisms between them which preserve spectra is equivalent 

to the category of all continuous posets and all morphisms between them. 

The functor which implements the equivalence simply associates with 

a CD-object its spectrum and with a Spec-preserving morphism its restriction 

to the spectra. Recall that a CD-morphism f:L—is a CD^^^^-morphism 

iff the lower adjoint d of. f is a cHa-map (see 1.2.iii.) 

1 point to these relations between completely distributive lattices 

and continuous posets in order to advocate the feasibility of a systematic 

collection of information on completely distributive lattices, accepting 

as given the current interest in continuous semilattices and posets and 

their applications. The case for completely distributive lattices does 

not rest on their rich..structure and symmetry alone but in their hierarchical 

position within a whole chain of classes of posets that have caught our 

attention. It is not untypical for conditions in lattice theory that the 

chain is closed. This is illustrated in the following Erne -diagram 

CONTINUOUS POSETS 

1 CONTINUOUS SEMILATTICES 

CONTINUOUS/ •LATTICES 
\ 

COMPLETELY DISTRIBUTIVE 
LATTICES 
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Section 2. Freedom. 

We recall from the old testament that we denote with 6(L) the Scott 

topology of a poset L. It will be convenient for us to relize the 

opposite lattice concretely: 

2.1. NOTATION. For a poset let be the complete lattice of all 

Scott closed subsets of L. O 

Thus Afcl^CL) iff |A = A and sup D ̂  A for every directed set D & A 

with a sup. (We will consider up-complete posets anyway.) Clearly, ̂ (L)= C(L)°^ 

2.2. DEFINITION. If L is a poset and M a complete lattice, then for 

any function g:L we define g*: >M by g*(A) = sup g(A).T3 

2.3. PROPOSITION. Let g:L—be a Scott continuous map between 

posets such that M is a ' complete lattice . Then 

g*: jJ-(L) —, g*(A) = sup g(A), 
has an upper adjoint 

u : M » u(m) = g ^ (im) . 

Proof. Since g is Scott continuous, the function u is well-defined. Now let 

A6J-(L) and m ̂  M. Then g*(A) ̂  m iff sup g(A) ̂  m iff (V^afi A) g(a)^m 

iff (Va € A) a € g ^ (4' m) iff A Q g^(im)=u (m) . Q 

2.4. COROLLARY. Under the circumstances of 2.3, the function g* is in SUP . O 

REMARK. If L is just a set, and 2^ the lattice of all subsets of L, then 

for any function g:L —>M into a complete lattice, the. functions g*:2^—>M 

and u: M—>2^ are well defined by the formulae given in 2.3^and g* is a lower 

adjoint of u by the same proof. In particular, the extention g* still 

preserves arbitrary sups. 

2.5 .PROPOSITION. Let g:L > M be a map between posets with a lower 

adjoint and suppose that M is completely distributive. Then g*: ^ 

in . 

REMARK. The claim persists for the extension g*: \ (L) to the lattice 

j\(L) of all lower sets A = 4,A of L. 

Proof. Let {A.:j£jJ be a family in A(L). Since g* is monotone, the 

relation 

(i) g*(Ojg.jAj) inf^.§*(A^) = inf^g ̂  sup g(A^) 

is automatic, and we must prove the reverse inequality. 

By complete distributivity of M we have (see 1.1.(pd)) 

(ii) sup g(A.) = j e J • 
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Now let d:M be a lower adjoint of g. Then, setting m = inf. ̂  , g(a.). 
J • 

we note m ^ j ̂  this is equivalent to d(m) ̂  a. for 

all j e J. Since A. = J, A. for all j, we derive d(m) € A. for all j e J,i.e. 
J J ' J 

d(m) ^ A.. In particular m<gd(m)£ g( n .^ A.) , whence 
jfcJj ^ 

sup gcOje jAj) = 8*(nj£jAj) 

for all jeTTjg jAj. Hence suP( ) jg j8(Sj8*(Dj ̂ , 
iC iC ̂  J 

which, in view of (ii) is the required reverse inequality to (i). Q 

As a spin-off we recover (?) the following characterisation of completely 

distributive lattices: 

2.6. COROLLARY. Let M be a complete lattice. Then the following conditions 

are equivalent: 

(1) M is completely distributive. 

(2) For any family A^ of lower sets in M we have 

sup I I . _ ^ A. = inf._ , sup A.. 

(3) The function id* : X(M) —, id*(A) = sup A, preserves all 

inf s. 

(3') The function id* : A(M) —>M is in INF SUP. 

(4) The function id* : "XCM) has a lower adjoint. 

(5) For each m € M we have m = sup ̂  m (where x <?c< y iff for any 

subset P of M the relation y^ sup P implies p for some pC P) . 

Proof. (1) (2) : Apply 2.4 to id:M >M. 

(2) (1) : Exercise from 1.1. 

(2) (3) : By definition.of id*. 

(3) ̂  (3*): Due to the fact that the function id* is always in SUP 
(see Remark following 2.4). 

(3) ̂  (4) : Recall the - theory' of the Wunderwaffe'adjoint*. 

(4) ̂  (5) : Sketch: The lower adjoint of id*,if it exists, must 

be the function s:M ^ ̂(M) given by s(m) =0{A6 X(M) : m^ sup A} . 

This function can, of course, be always defined; it is the desired adjoint 

iff m = id*(s(m)) = sup s(m) for all m. Take it from here.D 

Our principal aim was information on the operation *. We collect the 

essence from 2.3 and 2.5: 

2.7. THEOREM. Let g:L vM be a map between posets with a lower adjoint 

and assume that M is a completely distributive lattice. Then 

g*: A(L) >M , g*(A) = sup g(A), is in SUP H INF. 

If g is Scott continuous, then g*: w(L) >M is in SUP A INF . U 
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2.8.COROLLARY . Let g: L be a morphism of up-complete posets in the . 

sense of Definition 1.7. If M is a completely distributive lattice, them 

g*: J-(L) J-M 
is a morphism from INFn SUP . • 

2.9. LEMMA. Let S be an up-complete poset. Then the function 

Is' ^^ 
is Scott continuous, and the following statements are equivalent: 

(1) is a morphism of up-complete posets a la 1.7 

(i.e. 1^ g has a lower adjoint). 

(2) S is a complete lattice. 

Proof. Since S is up-complete, ^ preserves directed sups, hence is 

Scott continuous. Condition (1) says precisely that for each A€ ^(S) 

there is a smallest element a £ S such that A9 J a,i.e. that each 

AS J['(S) has a sup. An arbitrary subset of S, however, has a sup iff its 

Scott closure has a sup and the two agree. Hence (1) and (2) are 

equivalent.D 

2.10. LEMMA . Let f:S >T be a morphism of up-complete posets in the 

sense of 1.7. Define J|^(f): f(S)——> j^(T) by y(f) (A) = (if(A)) . 

Then ) has the upper adjoint B f ^(B):^(T) > f(S) , whence it 
is in SUP. Furthermore, we have ^(f) = (^^f)* and ="^Xf~>>^g, and these 

conclusions hold: 

(i) If T is a complete lattice, then ̂ (f)€ SUP ̂ INF. 

(ii) If S is a complete lattice, then for every SUP INF -morphism 

F: ̂ (S) > ^ ^^ ̂(T) is a morphism of up-

complete posets such that g* = F. 

?S 
Diagram: S ^ > ̂ (S) 

/(f) 

T—^>-^(T). 

Proof. We have A c f for A^ ̂ S) and Be^T) iff f (A) ̂  B iff 

(J f(A)) ^ B , since B is Scott continuous. This proves the first claim. 

Furthermore we have ^(f)(A) = (4ff(A)) = (UUfCa): aeA} )" = 

sup {(#^^f)(a): ae A} = sup (i^^f)(A) = (^^f)*(A). Also^ /^^^fCs) 

= |,f(s) = 4 f (>^s), since f is monotone, and this set is closed as principal 

ideal. Thus it agrees with (^f(4s)) - = jr(f^s). 
If T is a complete lattice, then is a morphism by 2.9, and so 

f^^ is a morphism, whence ^)* is in SOT .n lOT by 2.8. 

If S is a complete lattice, and F is as in (ii), then g= F/p is a 
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morphism of up-complete posets, since :|.s one by 2.9. Also g*(A) b •) 
sup g(A) = sup F)2g(A) = F( sup »J?g(A)) = F ((L/(4^: a^Aj) = F(A ) 

= F(A). a 

2.11. NOTATION. Let ̂  denote the category of continuous posets with 

morphisms in the sense of 1.7 between them. The category ̂  is then a 

full subcategory of ̂  and the category ̂  of continuous lattices 

and ̂  -morphisms contains the category ̂  as a subcategory which is not 

full. The forgetful functor from ̂  to ^ and to ̂  will be 

denoted | I . 

After 1.8, the categories and CD^ are equivalent. P 
QO 0 C 

2.12. THEOREM. Let S be a continuous poset, M a completely distributive 

lattice, and g: S ^ 1M| a CP-morphism. Then there is a unique 

CD -morphism g*: such that g = |g*|^ g. The function 5^4 ~ 

( g 1-^ g*): (S,lM() > J^(S), M) 

is a natural injection. 

The map S ^ Scott continuous map; it is a C^ -morphism 

iff S is a continuous lattice. In this case, OCg^^ is a natural isomorphism. 

Proof. The function g* is a CD-map by 2.8. We have g* ^(s) = g*(^s) 
= sup g(4s)= = g(s) since g is monotone. If g': ̂ (S) >M is any SUP -morphism 

with S'l^g = equalizer of g' and g* in is a SUP -

subalgebra containing ~ Cospec |p(S). Since ^(S)j as a completely 

distributive lattice^ is order cogenerated by its cospectrum, this equalizer 

is all of Hence g' = g* . Since g* determines its restriction to 

the cospectrum, thne g* determines g uniquely. Thus ^injective. It 

is clearly natural. By _.2.9, ^g is a CP-morphism iff S is a continuous 

lattice. If,in this case, we identify M with ^(Cospec M) (which we may!) 

then 2.10ii shows that CJCg^^ is surjective. £] 

This Theorem calt for a commentary. By the skin of our teath it fkils to 

show that the forgetful functor j | has a left adjoint. The 

standard universal property is satisfied. Only a very close look shows that 

the adjunction will generally fail due to the fact that the candidate for 

the front adjunction is not always a morphism in In fact it is one 

if an only if S is a continuous lattice. Perhaps one can tinker with the 

morphisms a bit and improve the situation, but I do not think that very 

much can be done. At any rate, the universal property we proved in 2.12 

suffices to show that the forgetful functor j ( »CL has a left 

adjoint: 

8
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2.13. THEOREM . The forgetful functor | |: CD ^ has the functor • 

y* adjoint which associates with each continuous lattice " 

L the completely distributive lattice ]p(L) of all Scott closed sets under 

inclusion and with a ̂  -morphism f: S ^T the map ^(f) given by 

Jr(f)(A) = = g(A) (where ( ) is Scott-closure). 

A completely distributive lattice M is free (over CP) 

iff Cospec M is a continuous lattice in which case Cospec M is the freely 

generating continuous lattice. Q 

At this point all the free constructions over the category of compact 

spaces and, finally^over sets fall out. The category ̂  has the grounding 

functor A :CL COM? in the category of compact spaces and continuous 

maps which associates with a continuous lattice the underlying space in the 

Lawson-topology and with a ̂  -morphism the induced continuous map (see 

the old testament). The old scriptures also provide the information that 

there is a left adjoint "P : COM? > ̂  which associates with a compact 

Hausdorff space X the ̂  -object px of all closed subsets with respect 

to reverse containment (so that yx = 0(X)), and with r(f)(A) = f(A), thus p(£) 
-1 

is upper (!) adjoint to the map B|—>f B for any continuous map f: X—>-Y. 

This gives,via composition of adjoints, the following result: 

2.14. COROLLARY. The grounding functor A: CD » COM? which associates 

with a completely distributive lattice the underlying space with the Lawson -

(and indeed interval-) topology has the functor XI—> ^(pX) as left 

adjoint. The front adjunction is X—^ y(Px) , 'V^(x) = ̂ A=A C X:x^ AJ 

(If one interprets the free object as ^(0(X)), then the front adjunction 

associates with an x€ X the set ^U^O(X): u} = 0(x) \ U(x) where 

U(x) is the filter of open neighborhoods of x.) Q 

The category COMP is grounded in the category SET of sets by the 

functor which associates with a compact space X the underlying set. Its left 

adjoint B: SET > COMP associates with a set its ^ech-Stone compactifi-

cation. We recall that P(fiX) = 0(13X) = 2 . As a consequence we have now 

identified the free completely distributive lattice tout court: 

2.15. THEOREM. The free completely distributive lattice over a set X is 

Y t X J(2 ). The front adjunction is xl—> -jA^ X: x ̂  Aj : X—> J^(2 ) 
X As a functor, the free construction X \—>J<2 ) transforms a function 

f:X >Y between sets to the ̂  -morphism ^(2^)=(^-1—> -(B 6 2^^: f ̂ (^)^ A 

for some A^CL^ ' ^ ^ 
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The free bounded distributive lattice over a set X is the sublattice 
* X generated in A(2 ) by the principal ideals.(See literature on distributive 

lattices^e.g.^ Balbes and Dwinger.) This is a sublattice of the free 
n X completely distributive lattice A(2 ) over X and is sup-dense in it. For 

finite X^the two agree. The free completely distributive lattice over 

a set X is quite large: 

2.16. COROLLARY. If X is an infinite set, then the cardinality of the 
• • • • • C3.ird. X free completely distributive lattice over X is -(2 ) 

2 . Q 

Let us pause for some comments on the almost free construction 

, > jp(S) for continuous posets. We recall that Rudolf-E. Hoffmann 

identified the largest essential extension e :X > £(X) of a T -space 
X o 

as a subspace of the lattice of all closed sets C(X) of X as 

€,(X)= {.A C(X): A is a convergence set ,i.e. the set of limit points 

of a filter of open setsj. £ C(X), and = {x} • ^ i^ot exactly know 

how the topology is constructed on £(X) in terms of the lattice C(X), 

since Hoffmann weasels around that,too, by transporting a topology which 

Banaschewski introduced in a different construction. I would not be too 

surprised if it were the topology induced from the upper topology of C(X); 

at any rate that topology will make e an embedding. The lattice g(X) 

is closed in C(X) under arbitrary infs and directed sups,hence is an INF 

-subalgebra of C(X). 

The construction ^3*^ ^ ^ special case of x :X >C(X), 
. for a continuous poset S 

Thus £(S) is an INF* -subalgebra, and hence a CL -subalgebra of ^(S)^ 

since J'(S) is completely distributive, hence continuous. The relevant topology 

on ̂ (S) is the Scott topology which agrees here with the upper topology. It 

induces on £(S) the Scott topology which is the topology for the 

essential extention according to the Banaschewski-Hoffmann theory. 

The members of the family of all ̂  -subalgebras contain'^ing im = 

Cospec ^(S) all share the property of being sup-generated by im each such 

member T is characterized by the lower adjoint d^: ̂ (S) T to the ̂  -

inclusion and by the Scott continuous closure operator k^=i^d^ 

which induces the identity on Cospec ^(S). Now let T be a ̂  -algebra 

containing Cospec and being contained in £.(S). Then d^j cCS): £(S)—>-T 

is the lower adjoint of the inclusion T > £(S) , and (d^js(S)) ̂ gtS >T 

is an embedding for the Scott topologies. Since eg is essential, d^[ £(S) is 

an embedding which is the case iff T = ECS). It follows that £(S) is the 

smallest member of the family in question. 
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\\ 

Thus 

2.17. PROPOSITION. For a completely distributive lattice W , the smallest 

CL ̂ 'subobject L containing the cospectrum S = Cospec M of M is the essential 

huli. of S when S and L are given the Scott topologies (both of which are 

inauced by the Scott topology of M). And all essential hulls of continuous 

pofeets are so obtained. Further, M is free over S (as a CD-object is free 

over ̂  ) iff S=L. D 

The ̂'example of the ordinary square M=]p, ij ̂ is instructive in this regard, 

because it shows the substantial difference between IF£(S) and M = J(S) . It 

also shows that there are millions of CL-objects between £(S) and jf(S), in 

every one of which S is sup-dense in the induced order. 

The category ̂  contains a full subcategory of all algebraic 

completely distributive lattices. The objects were discussed in an earlier 

memo under the name of baHa (bialgebraic Heyting algebras).We should observe 
X at this point that the free competely distributive lattice y(2 ) 

is algebraic. Indeed, an element ^ continuous poset S 
is compact iff A = ^ with a finite set F£K(S). It follows that ̂ (S) 

is algebraic iff S is an algebraic poset. Since 2^ is algebraic, it follows 

that J(2 ) is algebraic. 
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