Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 60

11-22-1981

SCS 59: Sober Quotients

John R. Isbell SUNY Buffalo, Buffalo NY USA

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Isbell, John R. (1981) "SCS 59: Sober Quotients," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 60. Available at: https://repository.lsu.edu/scs/vol1/iss1/60

Isbel	l: SCS	59: So	ber (Quotients
-------	--------	--------	-------	-----------

SEMINAR	ON CONTINUITY IN SEMILATTICES	(SCS)					
NAME:	John Isbell		Date	М	D	Y	
				11	22	81	
TOPIC:	Sober quotients						

It is not easy to guarantee that a T_0 quotient space of a sober space is sober. For instance, it the quotient map $X \longrightarrow Y$ is two-to-one, that is not enough. (Construct \cdots , with open set = upper set, by sticking together adjacent 2's. If you want it exactly two-to-one, add a 1.)

LEMMA. If $S \subset X$, if X is sober, and if the quotient space Y of X in which S is pinched to a point is T_{c} , then Y is sober.

Proof. Let $f:X \longrightarrow Y$ be the quotient map. If $C \subset Y$ is irreducible closed, $f^{-1}(C)$ is closed; and if it is irreducible, it has a dense point which gives a dense point of C. So suppose $f^{-1}(C)$ reducible, having two disjoint, nonempty relatively open sets. It can't have two such sets that are f-saturated, for their images would be disjoint relatively open. (This depends on C being closed, so f $f^{-1}(C)$ is a quotient map.) In particular, S \in C, S \subset $f^{-1}(C)$. If $f^{-1}(C) \subset S$, then C has a dense point, viz., S.

If not, we have a non-empty relatively open $W = f^{-1}(C) \setminus S^{-1}$. There are not two disjoint relatively open sets meeting W, since subsets of W are f- saturated. Hence W is irreducible closed and has a dense point w. Now W meets S; otherwise W, S would be f-saturated closed proper subsets covering $f^{-1}(C)$, and $f(W^{-1})$, $f(S^{-1})$ would reduce C. Then in C, $\{f(W)\}^{-1}$ contains $f(W^{-1})$, S, S; This is all of C.

1