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Completely distributive algebraic lattices

REFERENCES: A Compendium of Continuous lattices (and the literature

quoted therein)

Further references: Areski Nait -Abdallah: Faisceawx et semantique des

programmes, These d'etat 198%

The Compendium touches upkn completely distributive
lattices in various places., As people get more and more interested
in continuous posets, completely distributive lattices will atbract
more atterition in view of the close relation between the two.

The Compendium says almost nothing on completely distribu-
tive algebraic lattices; perhaps the authors of the compendium
considered them too special to merit special attention., But in the
same vein, they correspond bijectively to the algebraic posets
via their spectral and co-spectral theory. These have been'studied
-in the context of programming,notably by Plotkin. M Completely
distributive algebraic lattices also appear to play a role in the
domains of algorithms of Nolin. Of course, there is a literature on
these lattices, but it seems anyhow reasonable to revisit them in the
light of continuous lattice theory. I offer some remarks in the follow-
ing (and possibly in a subsequent) memo.
| My original motivation stems from my desperate efforts to
understand Nolin's domains of algorithms as axiomatized in the thése
of Nait-Abdallah,but I have not succeeded with that. However, I think
that before one can settle that issue in a way satisfactory to the
SCS semlnar, one would have to cover some of the theory I want to

discuss. I

Iet me remark that I have a terminological difficulty. A

goodshort name is wanted for completely distributive algebraic lattices.

Thls name 1s too long. The logicians have called them Kripke models,
we have also called them distributive bi-algebraig lattices. In the

ository,

' -
Pummhanﬂ?ﬁﬂﬁ%gﬁwﬁegallta%@ baHa's (bl-algebraic Heyting algebras). 1
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1. Complete irreducibles revisited.

In view of what I want to s say later, I propose to take
a second look at complete irreducibles which are intrduced on
p. 92 (of the"Gompendium"- all references which are not specified
are made to the "Compendium"). In an earlier version we also R
k#k talked about "complete primes",but then we gave up on them,
seemingly because we had no real need for them.

I think that the need will arise in the near future. A lot
of thinking will go into more spectral theory and notably into
the study of continuous posets. We have a pretty good idea that
studying continuous posets means studying completely distributive
lattices and vice versa-thanks to JB.Lawson's theorem (p.241,p.265)
and to Hyphen-Hoffmann's advocating continuous posets in general
topology. I have the impressiong that in the @ompendium completely
distributlive lattices -are generally treated as an rather narrow
special case of continuous lattices and as a matter of history, by
and large. It would not surprise me if the connection between
continuous posets and completely distributive lattices would lead
to a renaissance of completely distributive lattices. For the
moment, the precise correspondence between completely distributive
lattices and continuous posets in its full functorial aspects
1s still a project for the future; Jaime Nifio is likely to have
something to say about that Xk in his dissertation.

If we look at completely distributive algebraic lattices we notice
thét they are not even mentioned in the compendium (or are they?).
The compendium apparently treats them even more as a curiosity than
completely distributive lattices themselves. Once again, the
literature has much information on these, but nothing of substance
appears to be on record on their relation to continuous poset theory.
They relate,of course, to algebraic posets. These have been looked
at by Plotkin in the context of certain programming situations; this
‘topic does not seem to be cleaned out either. The domains of algorithm
by Nolin are based on completely distributive algebraic lattices, and
Batbedat's studies on monogenetic spaces have led him up against
completely distributive algebraic lattices,too. I therefore think
that a few things here and there should be addressed by SCS when it
comes to -completely distributive lattices,respectively, c.d.algebraic
lattices. I wart to make a few observations which pertain to the

httpsAESRkoridedindglamakes reference to the forthcoming ThEse d' Etat 2
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of Areskl Nait-Abdallah.

1.11EMMA., Iet L be a complete lattice and p € L. Then the following
statements are equivalent:
(1) There is a (unique)element p' > p such that Ip = (p} U 10t
'n
(2) p < 1 and for each subset X C L the relation p = séﬁ'x
implies p & X.
Also the following statements are equivalent:
(I) There is a(unique) element p* ¢ p such that L = Jp U 4p*.
"
(II) p < 1 and for each subset X C L the relation == X <p
implies p € 4X.

(III) p © KetEsmx K(z°P) A Spec L.

Remark. The union occurring in (I) is clearly disjoint as a consequenc

of p* ¢ Jp .
x
Proof. (1)m <=>(2) is used widely in I-4 and (I)<=>(II) 1s Just

as easy to see,

(1) end (II) => (III): p< Spec L 1is clear from (II). Condition
(I) tells us that fLop p = \Lp 1s  &(r°P)-open in L°P,

whence p < K(L°P).(See p .85,I-4.2.)

(III) =>(I): From p € Spec L we know that L \ Jp is a filter,
and from p < K(L°P) we derive that L \ Jp = L% 7 opP 18
i

, eT(LOP) —closed in IL°P, and hence, after the preceding, 1s a
Scott closed ideal in L°P. Hence it has a maximal element p¥*/in 1°P.

This yilelds (I). (J

1.2.DEFINITION. a) An element p € L satisfying (1) and (2) in 1.1
is called completely ggzgggglpig (p.92, I- 4.19) and the set of
all complete irreducibles is called Irr L.
b) An element p € L Satisfying (I),(II) and (III)
is called & completely prime. The set K(L°P) A Spec L of all
complete primes will be abbreviated ©*(L), and the set BE
K(L) A Spec L°P of all complete coprimes will be abbreviated o,(r). U

1.3.Notatipn. If p& 6,(L) then there is a unique element o*(LER)
which we will again call ﬁ*’such that L ¢ 1s the dijoint union of

B _
Pubh’LRed by%g&cmaarly Egpository, 2023 3
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1.4 PROPOSITION. The functifns pl—> p: 0%(L) UG, (L)->6%(L)ue, (L)

is an involution mapping ©%(L) bijectively onto 6,(L)(and vice versa)

Proof.Clear.])

Thus complete primes and complete coprimes appear togetheg,or not
at all., Nait Abdallah calls complete coprimes "éléments atomiques"
They combine the properties of being compact wxkk and being g coprime..
When are complete lrreducibles completely primem ?

1.5. PROPOSITION. Let L be a complete lattice. Then %(L) Cc Irrfl L

and pt = p v p*. 1f 1°P 1s a cHa (i.e. if L is join-continuous

and distributive(p.31,0-4.3)) then 6%(L) = Irr L ,and Ea po=(p+%ﬁPPp

Proof. Firstly, if p € 6*(L), the element pt = p v p° satisfies the

requirements of 1.1(1).
Secondly,suppose that 1°P is a cHa. Then the element

-+ +
= (p > 0P p) is exactly max; op (x| X/\Lop P <op P ] =
min (x| x vp > p *} and this is clearly min{xlx i p} .

(One may of course use Jjoin- continuityag% fee¥ie 1, 1(II) from
1.1(22q hut this would still leave you with the task of determining

vationall iven
p*'as anfunction. o p and g@ p' (and thus of p).)

In order to have complete symmetry such as is indicated by 1.4
theg right class of lattlcds for the 6* -0, theory 1is that of
all L which are cHa's such that L°P is also a cHa,in other words
the class of meet and join continuous distributive lattices.
Exxxxdwgsxkxixn] In this class we have Irr L = L) and Irr(LOp)=O*(L).
This kx® brings us near completely distributive lattices,but not
quite. We have continuous lattices which are Join continuous but
which are no completely distributive (seé%gl6 £f. ,pp329 ff.).

Recall th&t a set X €L is order generating iff x = inf(TanX

for all x (p.70,3.8).The following must be on record somewhere,but
I do not know where.

1.6.THEOREM., Let L be a compagete lattice. Then the following are
egquivalent:

(1) o*(L) is order generating.

(2) 6,(L) 1is order generating in L°P (every element is the sup

https://repository.lsu.edu/scs/vol1/iss1/54 4
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of complete coprimes. )

(3) L is a completely distributive algebralc lattice.

Remark. For condition (3) we hﬁye numerous eguivalent statements
which parallell p.72, I-3. 15 ,pp 317 ff.plus all those shkatements
which are in the literature,e. g. the following:

() The SUPA INF morzphisms L—> 2 separate the points.

Proof. (3)=>(1). By p.93, Irr L is order geneﬁating; by p.72,I-3.15,
the hypotheses of 1.5 are satisfied, and so Irr L = 0%(L).
Next we note that (1) is equivalent to the following

(*) For any pair of elements in L with x* { x there is
a p<oex() with x < p and x*{ p.

Evidently, this condition 1s equivalent to
(*) For any palr of elements in L with x*¥ i x there is
a mm@m p* € O,(L) with p* < x* and p* { x.

But this condition 1s equivalent to (2). Thus (1) and (2) are
equivalent.
(1) = (3): Quick proof: Buy that (3)<=>(4),and note that
(1)(4) 1s immediate.
Proof within the Compendium: From (2) we know
that x = sup(JX(w B o,(L)) < sup ( Jx n K(L)) < x by 1.2b. So
L is algebraic,hence continuous.By I- 3.15 we know that L is

completely distributive, since © (L) shence the set of coprimes is

order-cogenerating,[] Nee: We have iufact procicce d o POOF, O foe 2Quivalbc
ot (i) with (3).

1.10,DEFINITION., The lattices characterized in Theorem 1.9 will

be called bi-algebralc lattices or bia-algebraic Heyting algebras

(baHa), O = Sowe & tulorucpton ou these wos grven i +#MS DuauTy (LNM 396)....

1.11.PROPOSITION., Iet L be a baHa. Then ® Spec 1°P is an algebraic
poset in the induced order with K(Spec L°P) =0, (L). Dually,

(Spec L, > ) is an algebraic poset with K((Spec L, >)) = 0*(L).
Proof.By Lawson duality (p.241) we indicate only the first part

of the proof.By p.241 we need only show K(Spec L°P) = 0,(L).

From 1.2b the con‘cainmeri‘:) is clear. ILet k € K(Spec LOp) Then

T rop k 1s an open filter U in Spec 1P, Then 1 x = U 1s
P&BPBML%{%%'if'Vfﬁooﬂt%&Z%eul V-1.11. Thus k € K(L) n Spec 1°P -0, (7).
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1.12.THEOREM. Iet L be a complete lattice and define
g: T—> 2%4L) by g(x) - Jx00,(1) and-d: 2% (L) _5 1 vy

d(P) = sup P. Then we have the following conclusions:

i) (g,d) 1is a Galols connection.
i1) g is a SUPa INF -map. m
i1ii) The image of g is the complete sublattice/of all lower

sets of ©,(L).
iv) The image of d is the set {(x € L| x = sup(ixn 0, (L)).

v) g 1s injective iff d is surjective iff L is a baHa;
in this case g:I——> T is an isomorphism with d[T as inverse,

Proof. 1) d(P) < x means sup P < x and this is eguivalent to

P C Jx n 0,(L) = g(x).

1i) By 1) we know that g is an INF-map. Now let X C L.
Let p € ©%(L). Then p € g(sup X) 1ff p < sup X iff p € \Lx
(by 1.1(II)) iff p < U{ane*(L): x € X} =sup g(X).

1ii) If P is a lower set in ©,(L), then gd(P) = Jsup Pn 0,(L);
we just saw that a p € 6,(L) is in J sup P iff p € JP , but

J,P 0n0,(L) = P. So gd(P) = P.
iv) Clear.
v) Clear from 1.6(1),iv above and p.21 ,0-3.7. []

Of course, the lower sets on 6,(L) are the open sets of an A-
discrete topology. These are the Kripke models. Conversely,

every Kripke model is am baHa. One will notice that in our

tables on pp.268 and 269 (this is where they will be in the .
book!) the Kripke models appear opposite completely distributive
lattices in which Spec 1P - 6,(L): In these tables we have

a @x8 different correépondence between cHa's and spaces,namely,
the one given by Spec and O, For the Kripke models, the one
in%.l? 1s simpler. I leave it to the next man to elaborate on all

of this. Of course there are connections to several papers by
Hyphen-Hoffmann,notably [1979c].

https://repository.Isu.edu/scs/vol1/iss1/54
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2. The "normal" morphisms of Nolin/Nait.

2.1.DEFINITION. (Nolin,Nait). A function f:S—>T between two baHa's
is called normal iff

S
f(x) = sup f(m JxrwG*(m)) for all x € S. [

By p.1l12 ,II-112(5) we know that every normal function 1s
Scott continuous. In fact we will observe more:

2.2.PROPOSITION. TIet S,T be baHa's (Kripke models). Then a function

f:S ST is normal iff £ & SUP(S,T).
Proof. i) Suppose that f is normal and let X C L. Set m = sup X and

defined g as in 1.12, Then we have f(sup X) = f(m)
s : s
sup f(er\Q*(L)) (by 2.1) = sup fg(m) (g by def.of g)

= sup fg(sup X) = sup f(Ug(X)) (by 1‘12% = sup U fg(X) =

sup, o y SUP fg(x) = sup .y sup'f(¢x(\9*(m)) = SUD, .y f(x)

(by 1.6(1)) = sup £(x). .
11) - Suppose that f & SUP(S,T). Then £(x) = f(sup( Jx n ox(@m))
S
(by 1.6(1)) = sup f(an o,(B)) since f preserves sups. So f is
normal by 2.1. [

2.3.COROLLAR$/. f:S—>T is normal iff it has an upper adjoint
v ~
7 >S. The upper adjoint is co-normal,i.e. F(m) = inf F({xn 6*(T)).

Proof. The first assertion is a consequence of 2.2 and SUP-INF-
DUALITY (p.179, 1.3). Then second assertion is Just the dual of E,Q.L]

2.4, PROPOSITION. E&xA Iet S,T be baHa's and d:5——>T a Twer ad joint
of g:T—>S. Then the following are equivalent:
(1)  d(6,(8)) c g(T).
(2) g is normal,
(3) g is a complete lattice map (g S SUPA INF)
Furthermore,the following are equivalent:
(1)  g(ox(T) c o*(s).
(II) + d is a complete lattice map.
Proof. We know (2)<=>(3) by 2.2. The proof of (I)<=>(II) is dual
to that of (1)<=>(2).
Published by LSU Scholarly Repository, 2023 7
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(1) => (3) (i.e. g preserves sups). Let Y CT. We always have
sup g(Y) <gbup Y). Assume that < holds. Then therewould be a
'p € 6%(L) such that sup g(Y) < p and p¥* < g(sup Y). Then
second inequality means d(p*) < sup ¥. By (1) and 1.1(II) there
is a y € Y such that d(p*) < y, 1.e. p* < g(y). Then p* < sup g(Y),
and that contradtcts sup g(¥) < p.
(3) =>(1) . Iet g € 6%(T) and 1inf X < g(q). Then d(inf X) < q.
But d(inf X) = inf 4(X) by £#3 (3), and so d(x) < q for some x € X.
This means x < g(a).This shows g(a) € 6*(S).(]

Jaime Niffo will develop a duality theorsy between algebraic posets
and baHa'!s with complete lattice maps as morphisms based on this

set-up.

2.5. LEMMA.j)Let X be a topological space obtained from

a continuous poset by taking its Scott topology and let L be

a completely distributive lattice. Then [X,L] is a completely
distributive lattice. If X is obtalned from an algebraic poset and
L is a baHa, then [X,$L] is a baHa.

Remark. These conditions are also necessary.

Proof. We invoke p.264,V- 5.20 and p.241, V-1.10 and p.265,V-5.23.
From V-5.20 we know that Spec [X,2L] = X = Spec L. In the speciali-
sation ordeﬁéﬂk x Spec ;Qis}a continuous poset if L2X is a continuous
poset and L is a continuous lattice. Then [X,:{ L] is a

completely distributive lattice by V-5.23 in view of the general
spectral theory of continuous lattices. The second part of the

Iemma is proved analogously.{]

(Does anyone know an elementary proof for this Lemma?)

2.6. CORHOLBARY. If S and T are baHa's , then [S—>T] is a baHa.
In particular, the functor E¥XE® Funct of p.218, IV- 3.18 preserves

baHa's.
Remark. In the same veln, completely distributive lattices are pre-

httpségwg@[yﬂl.ed u/scs/vol1/iss1/54 8
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2.7.COROLLARY. Iet L be a baHa. Then so is Funet L (p.232,IV-4.12).
Rxmmfy Remarkm. The analogous statement holds for completely
distributive lattices.

Proof. Completely distributive lattices form a complete category
relative to INF SUP maps on account of the equational definition
of completely distributive lattices (p.59,I-2.4). Since AL is

a complete category, we conclude that baHa's form a complete
category relative to INFASUP maps. By p.231,IV- %.11, the

fixed point construction giving Funct L does not lead outside

this category. Hence Funct™ L i1s a baHa.[]

[S->T] [S— T

LEMMA
2.8.REFTRITI®N. ILet S,T be baHa's. Define k:[a>R]->{a—>R]
by (kf)(x) ='§g§§I§§§g§§ sup f(Jx(\ 0,(8)). Then k is a B Scott-

continuous kernel operator, whose image i1s SUP(S,T) , the set
of normal maps S——>T.
Proof: Routine.[]

R¥PX¥ This shows, that SUP(S,T) is a continuous lattice. We would
like to show that it is a baHa.

2.9.ILEMMA. Iet S,T be baHa's. The function
(p,a) F—> {S\Jp v constq: 0, (S)x o*(T) > 6% (sup(s,T))
is a well defined bijection, anl &*(SUP (ST)) s orcter g2uemating,

‘Proof. We write p#q = )LS\‘¢p v constq; i.e. (p#a)(x) =q if x <q
and = 1 otherwise.

Firstly, we show that p#q is well-defined,i.e. that p#q 1is

completely prime in SUP(S,T). Suppose that fJ is any family in
SUP(S,T) and that inf f, < p#q.

Case 1. x < p: then inf fJ(x) < (p#a)(x) = q, and so there is some k
@szxxxxz§§§§§§§@ j(x) such that fj(x)(x) < q.

Case i1, x { p: then (p#a)(x) = 1, and thus fj(x) < (p#a)(x)

for all J.

Now we have g&&gﬁmg f 3(p
have x < p => fj(p)(x) < fj(p)(p) < aq = (p#a)(x) and also x { p =>

kg fj(p)(x) < (p#a)(x) by Case 1i. Thus £y(p) € p#q. +This shows that

)(p) < q.By monotonicity we

Published by LSU Scholarly Repository, 2023 9
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Next we show that ©,(S) # ©*(T) 1is order -generating in SUP(S,T).

let £:S5—>T be normal. We note that (F(a)#a)(x) = q 1if x < #(q)

1ff £(x) < q , and = 1 1f £(x) ¢ q. Thus T(a)#a > £ for all q.

Now we set F = inf{ F(a)#a : @ € 0*(T)). Then f < F. Suppose

that there were an x with f(x) < F(x). Then there would be a gq& 6*(T)
such that f(x) < a , but F(x) { q. But f(x) < q implies

F(x) <(f(a)#a)(x) = q, a contradiction. Thus f = inf{f(q)# q: q € 0%(T
Finally, if s € S is arbitrary, then s = sup(Js N o,(s)).

Thus s#q = inf {p#a| p < s, p€6,(S)}:Indeed if x € 3, then

x < s implies (s#q)(x) = q on one hand andq/énf b#a)(x)]| s >pe 0,fs)

< inf (p#a(x)| x @ > p €®R 6,(S))} = q ; however, if x { s , EER then

(s#q)(x) = 1 on one hand and inf {(p#a)(x)| s > p € 6,(S)} =1
on the other, since s > p and x { s implies x ¢{ p, and s0 (p#a ) (x)=1.

Thus f is the inf of elements BH p#q with p € 9*(5) and q € o*(T).

.

Now ©*SUP(S,T) C Irr(SUP(S,T) C 6,(S) # ©*(T) by p.92, I- 4.20,
Thus the function # is surjective; it 1s clearly injective.ZZzdl []

2,10,.THEOREM, Iet S and T be baHa's. Then SUP(S,T), the lattice

of namal maps from S to T is a baHa,and ©*(SUP(S,T)) is isomorphic
to 0,(S8) x o*(T). . 3 :

Proof. This follows from 1.6 and 2.9. 1|

EXERCISE. Verify that the isomorphism of 2.9 and 2.10 respects

the x§ﬁ§§gﬁ§ﬁg poset- and thus the topological structure.

(Hint.: Show that # 1s decreasing in the first argument, increasing
in the second relative to the induced order structures; 1n the
second argument and the range, the induced order 1is opposité to

the algebraic poset (= specialisation) order. Then use p.265,

V-5.23. ]

2.11COROLLARY. If S and T are baHa'sa , thén so 1is ESQ§ T.
Proof. 2.10 and p.192,IV-1.44, [] ‘

Turn to p.218, IV-3.18 in the case that L is a xhﬁx baHa.If g:S—>T
is a complete lattice morphism, then Funct(g)(f):gg;@ preserves
sups for 70CTSUP(S,S); since g preserves sups as a complete

lattice morphism. Thus the functor L ARERL; XXXX)

https://repository.lsu.edu/scs/vol1/iss1/54 10
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