Seminar on Continuity in Semilattices

Volume 1 | Issue 1 Article 49

11-29-1978

SCS 48: Projective Limits in CL and Scott's Construction (Comp.
111-3)

Karl Heinrich Hofmann
Technische Universitat Darmstadt, Germany, hofmann@mathematik.tu-darmstadt.de

Jaime Nino

Follow this and additional works at: https://repository.lsu.edu/scs

0‘ Part of the Mathematics Commons

Recommended Citation

Hofmann, Karl Heinrich and Nifio, Jaime (1978) "SCS 48: Projective Limits in CL and Scott's Construction
(Comp. llI-3)," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 49.

Available at: https://repository.Isu.edu/scs/vol1/iss1/49


https://repository.lsu.edu/scs
https://repository.lsu.edu/scs/vol1
https://repository.lsu.edu/scs/vol1/iss1
https://repository.lsu.edu/scs/vol1/iss1/49
https://repository.lsu.edu/scs?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/scs/vol1/iss1/49?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

Hofmann and Nifo: SCS 48: Projective Limits in CL and Scott's Construction (Comp. IlI-3)
\ SEMINAR ON CONTINUITY IN SEMILATTICES ESCS

\NAMES K.H.HOFMANN and J. NifoO ]DATE} 00| 11| 79

|

!TOPIC Projective 1limits in CL and Scott's construction (Comp.££1e°)_

l
!REFERENCES ¢+ COMPENDIUM I.

The following pages: present a first version of a new section
of the compendium which 1is not contained in the DARMSTADT edition
It had been suggested in Darmstadt that someone ought to provide a
first dra“t of a third section in Chapter III which would explolt
the material provided in Section 1 of that Chapter to give a
systematic treatment of Scott's construction o~ the continuous
lattices which are isomorphic to their own function spaces.

Some of this material will be a portion of Jalime Ni%b's disser-
tation.

If comments and suggestions are to be made they have to be made
quicvly 1if they are to a“fect the final entry into the compendium.
We are closing &n on the deadline of the timetable provided bty
Klaus Kelmel.

It may be good to recall that it was also suggested that
someone write a fourth section of Chapter III concerning free
objects in CL. If someone has a draft it would be good to know
about 1t so that we are not duplicating efforts.

;E%%[. ;77MWVWfC. D . Eii?uarcua
QCquJ. Mare. [LSU
Bofeonr /QoMge lax 0go R
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Section III - 3

Projective limits and Scott's constructlion

D.Scott's original motivation to consider continuous lattices
had much to do with the construction of continuous lattices L
which were naturally isomorphic to their own function spaces [L—>L]
(see II-2.5). Such continuous lattices provide set theoretical
models for the LAMBDA calffulus of Church,Curry and Scott. Scott
constructed such continuous lattices through suitable 1imit
‘constructions. In this section we analyze the particular properties
of projective limits in the category of continuous lattices, and
we illuminate the general principle underlying Scott's construction.

We begin by recalling the concept of a projective 1limit. We are
quite aware that projective limits (in the speclal sense in which we
will use this word in a moment) are special cases of the more general
concept of a 1limit in a category. We prefer to define, for the present
record, only the particular kind of 1limit we will be using in the

present section.
3.1.DEFINITION. 1) EXExzmgeEsiixg] An inverse system (respectively,

direct system) in a category ¥ A is a family {Lj’ &k s B jiske J}
of objects Lj indexed by a directed set J, and of morphisms

gjk: Lk---—-->LJ (respectively, gjk:LJ———>Lk) , one for each pair
J <k in J, such that the relations sijgjk = 8yx hold for all
1 < J <k (respectively, gjkgijzgik in the case of a direct system).

e~
2) A cone (respectively,co—cone) ef an inverse (resp.,
direct) system,. 1is a collection (L,gj;jEJ) consisting of an object
and maps gj:L——-——->Lj (resp., gj:Lj——~>L) such that the relations

848 = 85 (resp, gggjk = gﬁj) hold for j <Xk .

Cone Co—cone

;__‘L } e o0 Lj >I‘k e

8 ik

L
TN k gk
e oL, < Lk < s L

J
https://repository.lsu.ed u%g'i(vol 1/iss1/49
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3) A 1imit cone of an inverse systep is a cone (L,gigﬁj e J)
such that for any cone (L’,g& ;3 J €J) over the sysﬁém there 1is
a unique A-morphism g:L' > L such that gjg = g3 for all j = J.

A colimit cone is defined dually.

The object L of a 1limit cone is called a projective 1imit
of the system, written 1lim Lj’ and the maps gj are called the 1imit

maps,Dually, the object L of a colimit cone 1s called a direct
1imit of the system, written colim Lj’ and the gj are called the

colimit maps.

4) A strict projective system i€ an inverse system in which all
maps gij are surjective (where we assume that we are in a concrete,
i.e. set-based cztegory). The projective 1imit of such a system

is called a strict projective 1limit. [§

We will work in such categories as INF? = INF n UPS of 1.9
and its dual category sup® (see Theorem 1.10), or as CL, E®x\and
its dual category g&?p . For mere convenience, we introduce the

following convention:§

3 2.NOTATION. If g: S—>T 1is a map in INF1 we write ‘& in place of £%l
D(g). Thus :INFT —> (suP®)°P  is an equivalence of

categories. (See 1.1 - 1.10)

We are ready for the first result:

3.3 .THEOREM. Tet {(L.,g2..3 J € J) be an inverse system in INFT, Fxl
— 377k W INET
and let (L,gj; j € J) be a cone over this sytem [ Then the fcllowing

statements are equivalent:

(1) (I,g. 3 j€J) is a limit cone of [Lj,gjk,' j.k € J).in :cmv/T

J
A A
(2) (L,gs 3 J €J)is a colimit co-cone of {Lj,égk;j,k€51 in UPS.

Remakk. It is important to notice that in condition (2) the universal
property for the colimit is satisfied for the category UPS which 1s
much larger than the category[&ﬁﬁ’SUPo which is dual to INF

Proof (2) =>(1): Since all maps g 5x and g; are in SUP° by 1.10

Published by LSU Scholarly Repository, 2023
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a
L

then L is in particular a colimit of the system of the
Jk

Then (1) follows by simple duvalizing.

(1)=>(2):
Proof. We need an explicit

in SUP°.

description of the upper adjoint‘@l:Li—;L

of 8q° For this purpose we fix 4 and take an arbitrary J € J which

. i
we also fix temporarily. For any k > 1, we have a functlol = ... e

N A\ %
o — : i is
gjkgik'Li >Lj' We claim the family {gjkgik k > 514
A\
in [Ll,,_>Lj]: consider i,j < k < k'. Then gjk(@ Bik

Py N
ExnE > & xBik since Eyy 18y >1 by

9

= N
(8 et ) (Braer Enidd)

~
0-3.6. We let fj:Li———-—>Lj be the directed sup fj= Sup{gjkgik:i’j

and claim that for each J < ' we have fjm= gjj'fj: Indeed
- ,\it ' -
i30Ty (X) = gy (SuP{B 0By 1,J' <k} =
A
sup { gjj.gj,kgik(x): i,j' <k} (since 8331 is Scott continuous

and the sup is directed)

= sup {gjggik(x) : 1,3 <k 1 (since gjj,gj.k = 83k and the

sup is directed) v Li

= fj(x) , as was asserted. Thus (Ea,fj;J
Hi,j < kyk' € J} in UPS. Now

) is a cone over the

inverse system {Lk’ Bgyct
Eixmxel 1, < ke J) is a 1limit cone of this system

(L38k5
i,j <keJ} is cofinal in J; but

in INF* , since the set {k:

then it is also a 1imit cone in UPS, since the forgetful functor

from INFT to UPS preserves 1imits. Hence there 1s a unique

UPS—map gj° Li--~>L with fJ = gjgi for all j € J.

it

But now g g} = £y = Sup {giggik i<k} >1, since 8318132t

by 0-3.6; and fer all je T e haoe
'ﬁ‘jf(x):
3485_81(}() =Asup {gjkgikgi(x): i!j S k}

A .
= Sup { gjkgikgikgk(x) : 1,5 < k }

v

https://repository.lsu.edu/scs/vol1/iss1/49
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. A
< sup {gjkgk(x): j <k} (since 81181k S 1 by 0-3.6 and

< k} 1s cofinal in {k:j < k} )

—

{k: 1,3

= sup {SJ(X)= J <k} = g5(x).

Since this relation holds for all limit maps gj and the limit
maps separate the polnts of the projective 1limit we conclude
g}gy < 1. But the validity of the relations Eg g g kA3 > 1

and Sigi < 1 implies .gi = Eﬁ by 0-3.6. Therefore we have shown

. A\

(1) gjga = sup {gjkgik : 1, <k e J} for all i,j e J.

and this relation expresses EE in terms of the original data(and
the 1limit maps).

Now we prove the claim on the colimit property. Let therefore
g;hxxggg! (S,dj; je-J) be an co—cone undéer the direct system
{Ljs ﬁ\jk;

(2) d(x) = sup {dj(gj(x))=/3 e J}.

We first notice that h is in UPS since all the dj and &5 are and

jok € J}. We define a function d:L——>S by

[L——>S] 1s closed under sups.
Now let 1 € I and x € Ly. Then df, (x)= sup{djgjgi(x) N
(by (2)) = sup; {d; sup{ &, &, (x): 1,§ < k}} (by (1))

A . .
= sup djgjkgik(x) : jyk e J with 1,j < k} (since dj e UPS).

But j < k Ixpiex) i - d.% = 4.2
J < k @=mpieX] implies dj dkgjk, and so djsjk = dkgjkgjk < 4y
A A A
sin -3.6. -
ce k8 S 1 by 0-3.6. Therefore djgjkgik < dkgik = dy,

whence dgi(x) < di(x). But di(x)z sup {dkgkﬁgik(x): i<k}
< supf{ djgjkgik(x): 1, <k} = dg, (x).Hence dg (x) = d;(x), and

sincw
d is the desired fill-in map for the colimit, It is clearly uniquel®

dpterminiedy Thus we have shown that (L,gj: jeJ) 1is a colimit cone

in UPS as was claimed.[]

ARARRRRRRRY

Published by LSU Scholarly Repository, 2023
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From the proof of 3.3 we extract the followling information which is

of independent interest:

3.4 COROLLARY. Under the circumstances of Theorem 3 3, the

cdlimit maps @&: Li——4> L are determined by the formula:
(1) 2 sup (B. Bavt 1,3 < X in J)
. Bj3Bq = SUP (B5p ik T = :

If (S,d.; j€ J) is a co-cone under the direct system
[Lj’gjk; j.x € J) and d: §——> L the 11l -in map guaranteed by
the colimit porperty. then d is given by the formula

(2) d = sup {djgj: jeJd}.

important
Furthermore, one has thekformula

A
2 g, = 1. .
(2)  sup &8y f

proof We proved (1) and (2) in the proof of 3.3 and (2) will
be an immeﬂdiate consequence of the following slightly more

general result 0

3 5 COROLLARY. Tet {L. ,ng, j,k € J) be an inverse system _.

with 1imit cone (L, 18yt j€J) in INF' . Let (L',g5 3 J€J) be a cor
over the system and let g:L'—> L be the canonical map of 3.13

Then the following statements are equivalent:

(1) g is injective.
(2) E’a\g = 1L'

. N
Q 1 1 1 =
() sup gjgj 1L"

Proof. (l)=> (2) by 0-3.7.

(2)=>(3): sup glg} = sup BEjg} 1 (since gj = g;g)

A s A
=’g(sup g.g' ) (since g € UPS) 2(sup 2 =g g
383 UPS g(sup gjgjg) = g(sup sjsj)g

(since sup is calculated pointwise) = gg ( since sup éagj._ 1
- 7L

by 3.7.(2) with d
) 3= gJ »d=1;) =1, by (2).
(sup 27 )
§.,8A =\Sub 8185’8
(3) =>(2): ‘w_“_;Jw,w,’“L; (by 3.4.(2) with d,= g\ ahd'éjl 4 )
https //rep05|tory Isu. edu/scs/voH /is53/49 - J 3 N

o _ 4 ) '
_ up ngJg = sup gjgj (since gj= gjg) = lL' by 43). e
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Notethat in particular we have:

3.5.COROLLARY. For the 1limit maps gJ of a projective 1limit we have

sup 8,8, = 1. ]

Published by LSU Scholarly Repository, 2023 ' ' 7
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~ ~

g 5
We notvw address the question when the map in Corollary 3.4 1s

surjective,

3.6.PROPOSITION. Under the conditions of 3.5 the followling conditlions

are equivalent:
(1) g is surjective.

(2) im 2y c im 83 for all j.

Proof. (1)=>(2): im 83 = gjg(L') =" im gy if g is surjective.
(2)=>(1): By (2), all sets 1 ?:'iY g3_lgj(y) are non-—
empty for any y e L. {1 If j <k, then ue gi_lgk(y) implies

1 - ] - ? — -
gk(u) = gk(y) and so gj(u) - gjkgk(u) = gjkgk(y) = gj(y)! i’e'
u e gB-lg.(y). Thus the family {g'—lg.(y) : je J} is a filter basis
J and II-5.9 37l
in L'. By II-5.8,/these sets are closed in AL, and AL' is quasi-

compact by II-5.9. Hence there is an element x in the intersectlon of

the filter basis. Then gjg(x) = g&(x) = gj(y) for all j € J, whence

g(x) =y.0 B
5
3.7.PROPOSITION. Under the conditions of 3.4, assume fhat all LJ are
also

continuous lattices. Then L i1s a continuous lattice. If all gjk are sur—

i 11 im =N, , im
igc%%XS,cggg? all gj are surjective, too. lore generally, gj j<k Sj
Proof. Since CL 1s closed under product and subalgebras (I-2.7), the
category CL is complete and L 1is apontinuous lattice. We now consider

the Lawson topologies on LJ and L, which are compact by II-5.10. All
maps gy and gy are continuous by II- 5.8 . It is a well-known fact

that for an inverse system of compact spaces and continuous maps one

ha i g = . th j
s im g, (N)Jﬁk im g5, Tor all j. []

https://repositoryisu.edu/scs/vol1/iss1/49
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We now return for a moment to the general category theoretical

setting and recall what it means that a Tunctor preserves projective

limits:

2.8. DEFINITION. Let A and E' be complete categories A functor
F: A——>B 1is saild to preserve propjective limits [resp., in the case
of concrete categories, strict projective limits] iff the following

condition is satisfied:

Tet (L,Gj; j &€ J) be a 1imit cone of an inverse system [resp a strict
projective system (2.1.%4)] {Lj,gjk; j,k €J)} in A , and let

( T, hy; j€J ) be the 1imit cone of the image inverse system

k

(FLJ,Fng; j,k €J) in B. Let f: FL—> T be the natural map guaranteed
by 3.1 3 Then f is an lsomorphism

In short: F(1lim Lj) = 1lim FLj

Notice that ~**-- - the preservation of strict projective limits
is a weaker property than the preservation of projective l1limits (in

case we are dealing, as we always are ' . ., with concrete categories).

For the purposes of the construction we are about to begin it is

convenient to have a special notation:

3.9. DEFINITION, A retro-functor of a category A is a pair (F,p)
> consisting of a self functor F:A——>A of A together with an epic

natural transformation Py * FL—>L.
When dealing with concrete categories we will insist that p 1s

surjective.

3.10 CONSTRFUCTION. Iet (F,p) be a retro-functor of a comp%ete cate-
gory A and let T, be the projective limit of the inverse system

2
I ¢ FI, < FeLe—p FL oL
Py Fpy, Fpy,
Tet 5i: %L———} L be the 1imit map from the 1limit cone. ’
o~ o
Then - F :A—>A 1s a self functor of A and pL:FL —> L

is a natural transformation If A is a concrete category. F pre-
serves surjectives, and 17 the 1imit maps FEE s of any
Publishdctdy LB SeholbrlyRepdkitony, bosre surjective., then (F,P) is a retro-“unctorp
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83.31.5/; -y there is a natural map fL :F(1lim FnL) = FFL ——>1im Fn'1L

= FL filling in the diagram
2

Fp F(Fp;) F(F™p) -
FL oo F(FL) <mmmeenlf (FPL) <o JOF(1im FOL)=FFL

(1) ﬂ II’ | e

L< FL < F?L <——p——F’L <—... lim F'L 5L,
Fp F'p 3
by, L L F'pp,
We have two commuting squares
Fq -
FL < a? FFL
(2)
PL PFL| | To
L < — FL H
AL ‘

in particular,'ﬁl‘ij coequalizes f [" and '] pyp -

—}

If F preserves projective limits, then f :FFL—>FL is

L
an isomorphism.

If F preserves surjective maps and strict projective limits, then

fL is an isomorphism. too.

Proof The assertions are straightforward from the definitlons U

3.11 DEFINITION. If (F,p) is a retro-functor of A , we say that

(F,p) is the associated retro—ﬁgggggy, and we call fL:FFL—~%> FL
the associated morphism . [j

https://repository.'Isu.edq/scs/vol1/iss1/49 ‘ 10
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We need a rather technical condition.

. T*__ r orF (L
3.12.DEFINITION. Ve say that a self functor [F: : 0F e | [or Lot

is adapted prvided that there exists a natural/functlon
SFS] o T _"?3T”j”- such that m (1) =1 |

resp. CL ] “ . A
for all g,h:S—>T in INF!,we have (Fh)"Fg = mg(hg). f

Mg :[S >S] > [FS

The relevance of this condition ;7] becomes apparent in the

following result:

3.13. PROPOSITION. Let F be an % apted self—functor of | ] CL

which preserves surjectivity of k ,ﬂ~functions. Then F preserves

strict projective limits of continuous lattices.

Proof. Let {Lj,gjk; jske J} be an inverse system of continuous lattices
with surjective maps gjk’ Then the 1limit maps gj:L--»———->Lj are sur—
Jective by 3.7.. ] By hypothesis all ng are surjective. Hence the
natural map f: FL—> 1lim FLk is surjective by 3.6.

On the other hand we calculate

A A pas
F . 0 . b— & = = L]
sup(Fg;) (Fg,) sup w; (g,85) m,(sup gyg5) = mp (1) (by 3.5)
= l. Then f is injective by 3.4.[] ‘
Conlnl

This allows us to conclude the following result:

3.14. THEOREM. Let (F,p) be a retro—functor of CL .i.. . ~~_ ..-

and suppose that F is adapted and preserves surjectivity of CL—maps.

Then fhe associated retrofunctor (F :P) ‘exigts, and.. U SRS Y
r the associated map fL:FFL—-~>FL is an isomorphism.

Proof. Since p is surjective and F preserves surjectivity, all maps
in the inverse system IL< Fl< F2L< 5 FBL....

are surjective.Hence FL is a strict projective 1limit and all 1limit maps,
in particular gL:FL———>L are surjective. By 3.13, the map fL is an

isomorphism. {J

Scott we
Followin g)fassociate with each complete lattice L the complete lattice

Published by LSU Scholarly Repository, 2023 11
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H(L) = [L——>L]{ see II-2.5). If g:S >T is in INF we define

a function H(g) :H(S)—>H(T) by H(g)(p) = gopg ; note that go&

is indeed Scott continuous and so H(g) is well definedfclearly H(1)
=1 and H(g)H(g') = H(gg'), and so H is functorial. We now claim

that H(g) has a lower adjoint H(g)’\:H(T7-—>H(S).Indeed if we

set H(g)” (¥) =Evg »then H(g)” H(g)(9) = Bevés < ¢ and

H(g)H(ng(w) = g8ygZ > ¥ by 0-3.6, which shows by 0-3.6 that H(g)

is the desired adjoint. In particular, H(g) preserves arbitrary

infs by 0~3.3. Finally, if % is Scott continuous, then so 1is

H(g), since sups are calculated pointwise and g preserves directed Ex

Sups. We have
3 15.LEMMA. There is a retro-—functor (H,p) of INFT P

» such that H(L) = [L—->L] and H(g) = g@%@ ;5 also
> [HS—>HS] be defined by

If we let mg:[S—>{f S]
ns(g)(@) = gpg 5 then Ty preserves directed sups and

pr (g)=min 5(1).

\
l
»

(Hg)" (Hg) = ng(Be).

Moreover, H maps CL into itself and preserves the surjectivity of
morphisms.
Proof. If we define pL:H(L)———>L by pL(g) = mil p(L), then
Pr, is a surjective INF¢‘—morphism xR whose lower adjoint associates
with an element x € L the constant function L—->L with value x.
We have (Hg)\(Hg)(p) = 7Bsokg = ns(gg)(m). It is straightforward
to verify that Ty preserves directed sups, EX) If L is a continuous
lattice then so is H(L) = [L—>L] by II-2.8. In order to see that
iﬁreserves surjectivity, let g:S——>T be a surjective INF1—map.

en take ¥ € H(T) and set ¢ = H(g)A(w). Then H(g) (o)

gbVgl$ = ¥ since gB= 1 by 0-3.7. ]

3.16.NOTZATION. We call H the Scott functor. W

By 3.1¢
J AWe now retrieve Scott s original theorem:

3.17. THEORrM.(For any continuous lattice L) %he retrofunctor (H )
assoclated with the Scott functor .exists .- . - - andVthe

assoclated map fL:HﬁL——~> HL is an isomorphism. In other words,
i S is the continuous lattice HL » then there is a natural

https://repositor‘;'/".ﬁarenc?uysgmss1/45S >S] > S. Fach element £ f of S may be 12
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considered as a funeriizm Scott continuous function S—>5 so that

for s € S the element f(s) is well-defined.(

Notice that Scott's theorem could be g rephrased as saying, in
A bern (L

short terms, mxm that every cont%nuoyi lattice 1s the quotient
of a continuous lattice which isAlsomorphic to 1ts own function

spacee.
Now we consider the functor Id:  CL ——>CL (see 1.18 and 1.19).
Then (Id, r) , r(I) = sup I is a retrofuncta with surjective r

by I-2.1. We define mg:[S——>S] >[Id S—>Id S] by

ng(g) (I) = ég(l).Then m5(g) preserves directed sups and satisfies

A
ns(l) = 1. Moreover, by 1.18 and 1.19 we have (Id g)  (Id g)(I)
- &g(ég(l)) = [&s(I) (by 0-1.11) = mg(Bg)(I). Furthermore,
the functor Id preserves surjectivity: Indeed if g 1is surjectlve,
then gg = 1 by 0-3.£7.and thus (Id g)(Id g) (1) = &g@%l) = ns(gg)(l)
= ns(l)(I) = TI.

Now we have the following theorem}%&« 304

3+18. THEOREM. The retro-functor (Id,r) of CL has an associated
retro—-functor (TE,; ) with a surjective CL —map r: Id L ——>L such that
the associated map fL: Id TE L —— EE I. 1is an isomorphism.

In orther words, if S 1is the continuous lattic 1d L » then there 1is
a natural isomorphism Id S —> S. Fach element I of S may be
considered as an ideal of S so that for s € S the =xexzrnt relation
s &€ I 1s well defined.(

Notice that this theorem could be rephrased by saying,zkat in
short terms, that every con%inuiﬁs lattice igbhhe quotient of an
arithmetic latt;ce which isAisomorphic to its own ideal lattice.

Published by LSU Scholarly Repository, 2023 13
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The constructions in 3.17 and 3.18 appear to yleld rather big
continuous lattices. We record, however, that in terms of weights
the increase in size is not so exorbitant} in the case of Scott's

construction. The 1ldeal construction may be substantial,though.
3.19. PROPOSITION. Let L be a continuous lattice. then

(1) w(H(L)) = max (e ,w(L)]

X

(2) w(Id L)/?ﬁﬁﬁﬁiéﬁggiﬁiﬁﬁi < exp‘wO card S , where exp X = 2
for a cardinal x and exp®° X = sup exp? x .
Proof. (1) By I1I-8.13 we have # w(S) = wH(S) for any infinite

continuous lattice. Since E(S) is a subalgebra of a countable
product of continuous lattice of weight w(S), we conclude that
W(E(S)) = W(S) for any infinite continuous lattice S by II-8.1l4.
If S is finite, then w(f(S)) =R,

(2) For every continuous lattice S we have w(Id S) =
card (K(Id S)) (by II~-8.4) = card S.Now card Id S < exp card S
where exp X = 2X_ for a cardinal x. Thus w(Id" g) < expn~l card S
If we write exﬁqo X = sup expn X 4 wWe obtain,as before,

~ 'KQ‘\ o
w(Id L) = exp © card S. {]

https://repository.lsu.edu/scs/vol1/iss1/49
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EXERCISES

5.14% EXBRCISE. An adapted functor F:INFT—w—> INFT preserves
Iinjectivity of maps.

A

o

( Tet g:S—>T be injective Then ®g = 1y by 0-3.7. Then

(Fg)(Fg) = ﬂé(fg) ='ﬁs(1) = %3)and so Fg is injective by 0-3 7.)

2.17, EXERCISE., An adapted functor F (as in 3,14 ) which preserves

~f

the surjectivity of maps preserves Ilmages,li.e F(im g ) ¥ im Fg

(In INF/r every map has a unique (up to isomorphism) decomposition
f

im f

(see 0-2.9): Apply F and observe that Ff is surjective, Ff is
injective, so that one may write (Ff)” = FF , (Ff)_ = Ff and F(im f)
= 1im (Frf).)

2.16 BXERCISE., Iet F: CL—> CL Dbe an adapted functor presering
the svurjectivity of maps and intersections of flltered families o”
subalgebras (i.e., projective 1limits with injective maps gjk)‘

The F preserves arbitrary projective limits

( The injectivity of f:FL —> 1lim FLk fellows as in .13, As to the

surjectivity, observe

= im hj’ where hjzlim Ly =5 Lj is the 1imit map Then 3.6 shows

that g is surjective).

This -may be used to show that Scott's functor H in fact preserves

all projective limits in CL. By pwoving the surjectivity of the
map f:HL——> 1im HLk directly. one can show the stronger statement

3.17 EXERCISE. The Scott functor H: INFT———>INFT preserves

projective limits,

Published by LSU Scholarly Repository, 2023
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EXERCISES

¥ Proposition 2 1% 1is perfectly su”ficient for the proof of

-

the central theorem > 1l But'generaliSatioﬁs—are possible

2 14 EXERCISE. ILet F be an adapted sel” functor of INFI which
preserves surjectivity of maps.and preserves intersections of
filtered subalgebras Then F preserves arbitrary projective
limits in INF%,-

(As 'in ".1° we bnly have to worry about the surjectivity of

the map :FL ——> 1im FLk

7 /
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NOTES

The basic construction which we have formulated in 2,14 in
a general way, was introduced by D.Scott in [ ] for the construction
of the continuous lattices obtained in ~ 17, which are naturally
iéomorphic to their own self function space. This was a canonical
solution for the questimm for a systematic way to construct set
theoretical models for the lambda calculus of Church,Curry and Scott.

. This construgtions was,o  Se¢ s ratl i g inuo:
lattices. Tt was also Scott who iR [ ©J §%8§§v2dm9?%%d§e888n%9a1”558388%198“t1““ 1S

1imits.the essence of theorem ~.? although in the present generality and
in its precise formulation it had not been previously put down.

Theorem ~ 14 itself is new as is Theorem ~.18. Theorem ~ 17 glves

a solution to a question raised by R.E.X Hoffmamnin [ ](Continuous
posets and adjoint sequences. Semigroup Forum to appear ). He

analy-ed precisely the question , when for a continuous lattice L

the map rrt Id L——>I allows a finite sequence fO:rL,rl ...,rp

of morphisms hExEEXIRX¥RE such that r.,1 is lower adjoint to r_

(Example xyExk ri:l—>Id L, rl(x) = éx . see ¥IH I-2.1). [TEEXaigd

Finite chains of this sort exist if L is of the form 1d"L . The
continuous lattices Id L give rilse to infinite chains of lower

ad joints For details we refer to Hoffmann's articele.

At a later point we hope to discuss at greater length the appli-
cations and the raminfications of the ideas discussed in this section

Theorem 2 17 will appear in the Tulane Dissertation of J.Nino.
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