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SEMINAR ON CONTINUITY IN SEMILATTICES (SCS) 

NAMES K.H.HOFMANN and J. NINO iDATE/ 29 ! 11 ! ^ ' 

TOPIC i Projective limits in CL and Scott's construction (Comp. III-'^) 
j " 

REFERENCES : COMPENDIUM I. 

The following pages •. present a first version o"*^ a new section 

of the compendium which is not contained in the DARMSTADT edition 
It had been suggested in Darmstadt that someone ought to provide a 

first dra^t of a third section in Chapter III which would exploit 

the material provided in Section 1 that Chapter to give a 
systematic treatment o-^ Scott's construction o^ the continuous 

lattices which are isomorphic to their ovm function spaces. 
/v> 

Some of this material will be a portion o^ Jaime Nino's disser

tation. 
If comments and suggestions are to be made they have to be made 

(Juic'-^ly if they are to a "feet the final entry into the compendium. 
We are closing 6n on the deadline o^ the timetable provided by 

Klaus Keimel. 

It may be good to recall that it was also suggested that 

someone write a fourth section of Chapter III concerning free 

objects in CL. If someone has a draft it would be good to know 

about it so that we are not duplicating efforts. 
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3^' 

Section III - 3 

Projective limits and Scott's construction 

D.Scott's original motivation to consider continuous lattices 

had much to do with the construction of continuous lattices L 

which were naturally isomorphic to their own function spaces [L—>L] 

(see 11-2.5). Such continuous lattices provide set theoretical 

models for the LAMBDA calSulus of Church,Curry and Scott. Scott 

constructed such continuous lattices through suitable limit 

constructions. In this section we analyze the particular properties 

of projective limits in the category of continuous lattices, and 

we illuminate the general principle underlying Scott's construction. 

We begin by recalling the concept of a projective limit. We are 

quite aware that projective limits (in the special sense in which we 
will use this word in a moment) are special cases of the more general 
concept of a limit in a category. We prefer to define, for the present 

record, only the particular kind of limit we will be using in the 

present section. 

3.l.DEFINITIQN. 1) An inverse system (respectively, 

direct system) in a category ̂  A is a family {L., g., ; j,ke J] 
— J J-K 

of objects L. indexed by a directed set J, and of morphisms 
0 

®jk' \ ̂^j (respectively, ->Lj^) , one for each pair 

j < k in J, such that the relations = g^^^^ hold for all 

i < j < k (respectively, g., g^ —Siv case of a direct system). 
"" JK Ij IK 

2) A cone (respectively,co-cone) ̂  an inverse (resp., 
direct) system^ is a collection (L,g.;j^) consisting of an object 

and maps (resp., Sj'Lj such that the relations 

gjjjgjj = gj (resp, gggjjj. = ggJ hold for j < k . 

Cone Co-cone 

S 

g 

... L 

jk 

>L,_ . f p 
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3) A limit cone of an inverse systeg? is a cone J G j) 
such that for any cone (L',gj ; J G j) over the system there is 

a unique A-morphism g:L' L such that g^g = gj for all J G J. 

^ colimit cone, is de-f^ined dually. 

The object L of a limit cone is called a projective limit 

of the system^ written lim and the maps g^ are called the limit 

maps_.Dually^ the object L of a colimit cone is called a direct 
limit of the system, written colim L., and the g. are called the 

J J 
colimit maps. 

4) A strict projective system Ig an inverse system in which all 

maps g^j are surjective (where we assume that we are in a concrete,, 

i.e. set-based category). The projective limit of such a system 

is called a strict projective limit, [J 
t We will work in such categories as INF' = INF n UPS of 1.9 

and its dual category SUP^ (see Theorem I.IO), or as CL, and 
its dual category . For mere convenience, we Introduce the 

following convention:^ 
4 vX 3 NOTATION. If g: S—^>T is a map In INF' we write g in place of 

D(g)e Thus ^ tlNF^^ > (SUP^)°^ is an equivalence of 

categories. (See 1.1 - 1.10.) 

We are ready for the first result: 

t 3.3 .THEOREM, Let fL.,g., ; j G Jl be an Inverse system in INF', 
I'M IMFL 

and let (L,g^; j G j) be a cone over this sy^emf Then the following 
statements are equivalent: 

4 (1) (L,g. ; j G j) is a limit cone of rL.,g., ; j.k G J}.ln INF' 
J J J ̂  

(2) (L*,^. ; j G j)is a colimit co-cone of [L ; j, kGJl in UPS. 
J J 

Remakk. It is important to notice that in condition (2) the universal 
property for the colimit is satisfied for the category UPS which is 

much larger than the category SUP^ which is dual to INF'^ . 

Proof (2) =>(l): Since all maps gand g. are in SUP® by 1.10 
JK ^ 
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\ \ 
! / 

O then L is In particular a colimlt of the system o"'^ the in SUP . 

Then (l) follows by simple dualizing. 

Proof. We need an explicit description of the upper adjoin gj_. ^ 

of g,. For this purpose we fix 1 and take an arbitrary j e J 

we also fix temporarily. For any k > l,j have a fun°'t^°Sonotone_ 

®Jk®ik"H family ^ 

PL >L ]: Consider i,j < ®jk'® ®ik' 
^ >. 1 "hv 

(Sjk^kk.)(«kk.^ii6)) ^jk^ik'^^-® Skk.^kk'S^ ^ 

0-3.6. we let fj:L^ ^e the directed sup fsupCg^j^gu,: 1,j<k 

and claim that for each j < V have f .s= i y-

sup { Sy.Sy^S^y,M- l.J' <k] (sinoe gj^, is Scott continuous 

and the sup is directed) 

= sup : lU < k } (since gjj.gj-k = Sjk 

sup is directed) 
- f (X) , as was asserted. Thus ^ 

inverse system {L , I S i, 3 < k.k' e J] in UPS. Now 
(L.g^j Sx5^ i,3 < k e J) is a limit cone of this system 

in INF1~ , since the set {k: i,j < k s J) is cofinal in J; but 

then it is also a limit cone in UPS, since the forgetful functor 

from INF'^ to UPS preserves limits. Hence there is a unique 

UPS-map gp >L = SjSi all j e J. 

But now s^si = fi = sup : i < k] > 1 . since gii,gii,>l 

by 0—3.6; and lU 

3jSiSi(k) =A®^P fSjk^ikSi(:=!:) 5 1.3 < k] 

= sup { gjkSik®ik®k^^^ ' 1'3 < k } 

4
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< sup j < k] (since < 1 t)y 0-3.6 and 

{k: i,j < k} is cofinal in {k:j < k] ) 

= sup [g^(x): j < k) = g^(x). 

Since this relation holds for all limit maps g^ and the limit 

maps separate the points of the projective limit we conclude 

S[S^ < 1. But the validity of the relations gg g^g^ > 1 

and gj^g^ < 1 implies g]^ = "by 0-3.6- Therefore we have shown 

(1) g^g^- = sup < k G J} for all i,j e J. 

and this relation expresses in terms of the original data(and 

the limit maps). 

Now we prove the claim on the colimit property. Let therefore 

'^:^hx:;::5xci]| (S,d.; je-J) "be an co—cone under the direct system 
*—-—.—3-—J 
{L., j,k G J]. We define a function d:L >S by 

3 J-K 

(2) d.(x) = sup {d^(Sj(x))^ j e J}. 

We first notice that h is in UPS since all the d. and g. are and 
3 . j 

[L >S] is closed under sups. 

Now let i G I and x G L^. Then dg^(x)= sup{d^g^g^(x) : jj jGj} 

(by (2)) = supj {dj sup[ SjjjSikC^) •" < l^]} (by (1)) 

= sup : j,k e J with i,j < k] (since dj e l^S). 

But j < k gmSxHz] implies d^ = and so d^g^j^ = < dj^, 

since< 1 by 0-3-6. Therefore = d^, 

Vihence dgj^(x) < d^(x). But d^(x)= sup i < k} 

< sup{ : i,j < k} = dg^(x).Hence dg^(x) = d^(x), and 
sinew 

d is the desired fill—in map for the colimit, Xt is clearly unique^^ 

Thus we have shown that (B,gj: jGj) is a colimit cone 

in UPS as was claimed. [] 
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From the proof of 3.3 «e extract the following information which is 

of independent interest: 

3.4 COROLLARY. Under the circumstances of Theorem 3 3, the 

colimit maps determined by the formula: 

, . fo- • i. 1 < k in Jl. (1) , gjSi = sup Si^- I'J S. 

If (S d • j= J) is a co-cone under the direct system 
[L «g ; ji's J] and d: S > L the fill -in map guaranteed by 

the colimit porperty, then d is given by the formula 

(2) d = sup J ^ J 
important 

Furthermoireone has the^ formula 

(3) sup gjgj = Ij, • 

Proof VJe proved (l) and (?) in the proof of 3-3 and (3) will 
be an imme'^diate consequence of the following slightly more 

general result D 

s COROLLARY, I^t {L,,g,^; be an inverse system- „ 

,!«(UBj. J''t' Vl f, • 
over the system and let g:L'-^ L be the canonical map o. 3.13 

Then the following statements are equivalent: 

(1) g is injective. 

(2) •^g =^L. • 
(3) sup g\g^ =\,-

Proof. (1)^> (2) by 0—3*7* 

(2)=>(3): sup fjg' = sup g' •; (since g* = gjS) 

rr-gCsup-gjg' ) (since g s UPS) = g(sup'gjgjg) = g(sup g^g^)g 

(since sup is calculated pointwise) = gg ( since sup SjSj = Ijj 

by 3-"-(2) with dj= gj , d = 1^) = ij^, by (2). 

gg =(sup O 
(3) =>(2): 3«^'(2) with dj= gj and g ) 

sup "^gjg = sup -^g^ (since g»= g^g) = Ij^, by 13)- ̂  — t 
6
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Nothat In particular Vfe have: 

3.5,COROLLARY* For the limit maps gj of a projective limit we have 

sup g.g^ = 1- • 

7
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1^0 

S ^ 
We no 1?^ address the question when the map in Corollary 3«^ 

surjective. 

3.6.PROPOSITION. Under the conditions of 3.5 the following conditions 

are equivalent: 

(1) g is surjective. 

(2) im g^ c im g^ for all J. 

Proof. (1)=>(2;: im g' = g.g(L*) = ' im g if g is surjective. 
J J J 

(2)=>(1): By (2), all sets ni [ ' gj~^gj(y) non-

empty for any y e L. 1 If j < k , then u e implies 

g^(u) = gj^(y) and so gj(u) = = gj(y)» i*®-

u e g'^^.Cy). Thus the family [g*''^gjy) : j e J} is a filter basis 
^ ^ and II-5.9 ^ ^ 

in L*. By II—5» 8>'^ihese sets are closed in -AL* , and AL* is quasi-

compact by II—5*9* Hence there is an element x in the intersection of 

the filter basis. Then g.g(x) = g*. (x) = g.(y) for all j G J, whence 
J 0 J 

eM = y-D _ 
3.7. PROPOSITION. Under the conditions of J,Sr. assume that all L. are 

{ ^— —— also 
continuous lattices. Then L is a continuous lattice. If all are sur

jective, then all g. are surjective, too. More generally, im g =n .^im g^. 
In this case. j — 
Proof. Since CL is closed under product and subalgebras (1-2.?), the 

category CL is complete and L is ajcontinuous lattice. We now consider 

the Lawson topologies on and L, which are compact by II—5»l0* All 

maps g^j^ and g^ are continuous by II- 5, 8 . It is a well-known fact 

that for an inverse system of compact spaces and continuous maps one 

has Im gj = r)j<k im all ,1. 0 

8
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VJe now return for a moment to the general category theoretical 

setting and recall V7hat it means that a functor preserves projective 

limits; 

3.8. DEFINITION. Let A and B be complete categories A functor 
p. A >B is said to preserve propjective limits [resp.^ in the case 

of concrete categories, strict projective 1imits] iff the following 

condition is satisfied: 
Let (L,G^; J C J). be a limit cone of an inverse system [resp a strict 

projective system (3.1.^)] fL.^g.,^; J^k G J} in A , and let 
J J ̂  

( T, h, ; J e J; ) be the limit cone of the image inverse system 
K. 

(PLj,Fg^^; J,k e J) in B. Let f: FL T be the natural map guaranteed 

3-^ 3 Then f is an isomorphism 

In short: F(lim L.) = lim FL. 
J J 

Notice that -v-- - the preservation of strict projective limits 
is a weaker property than the preservation o-^ projective limits (in 
case we are dealing, as we always are ' , ., with concrete categories). 

For the purposes of the construction we are about to begin it is 

convenient to have a special notation: 

3.9. DEFINITION. A retro-functor of a category ̂  is a pair (F,p) 
.1 : consisting of a self functor F:A >A of A together with an epic 

natural transformation p^: FL •>L. 
When dealing with concrete categories we will insist that p is 

surJective. 

3.10 CONSTRH^UCTION. Let (F,p) be a retro-functor of a compiete cate

gory A and let 'FL be the projective limit of the inverse system 

L < FL < p 
Pi ^PL ^ PL 

Let 'p^ : FL > L be the limit map ."^rom the limit cone, f 
1J 

Then F :A y>A is a self functor of A and ̂ ^:FL > L 

is a natural transformation If A is a concrete category. F pre
serves surjectives, and i"*^ the limit maps . O'^ any 
strict pr Jective limit are sur Jective, then (F,p) is a retro-'^unc tor, 9
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V.9 

3.: , there is a natural map :F(llm F^L) = FFL 
r>^ 

- FL filling in the diagram 

(1> 

L<-

FL <-

FL <-

F(Fp.) . F(FV) 
F(FL) < —ifF(F^L) < ...F( 

f 

->llni F"' 'L 

.n. 

F^L <-
FP, 

lim F L)=FFL 

' '4 
-F^L < ... lim F"L =FL , 

F^p, 

We have two commuting squares 

^/V 

FL <- FFL 

(2) 
PFL 

L <-

^L 

FL ,• 
?L 

in particular, 3;" coequalizes f^ T'". and pjCjr^ . 

If F preserves projective limits, then fj^:FFL ^>FL is 

an isomorphism. 

If F preserves surjective maps and strict projective limits, then 

f is an isomorphism, too.. 
Ij 

Proof The assertions are straightforv7ard from the definitions Q 

5.11 DEFINITION. If (F.,p) is a retro-functor of A , v/e say that 

(F,P) is the associated retro-functor. and we call f^^rFFL > FL 

the associated morphism 

10
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We need a rather technical condition. 

3.12.DEFINITION. We say that a self functor 

is adapted prvided that there exists a natural/function 

n .[S >S]- > [FS ^>FS] "^(1) = 1 

for all g,h:S >T in INF'.we have (Fh)'^Fg = rr„(hg). Q 

The relevance of this condition becomes apparent in the 

following result: 

3-13* PROPOSITION. Let F be an gjapted self—functor of h__J. 
which preserves surjectivity of F" ~J —functions. Then F preserves 

strict projective limits of continuous lattices. 

Proof. Let [L^jg^^; jjke J] be an inverse system of continuous lattices 

with surjective maps g., . Then the limit maps g.:L-—^->L. are sur-
J J 

jective by 3'7«'l..j By hypothesis all Fg. are surjective. Hence the 
J 

natural map f; FL > lim FL^ is surjective by 3.6. 

On the other hand we calculate 

supCFgp'^CFg^) = sup Tr^(gjgj) = TTj^(sup 

= 1. Then f is injective by 3»'^»D 

CSIAITTU 
This allows us to conclude the following result: 

3»1^» THEOREM. Let (F,p) be a retro—functor of CL . - • 

and suppose that F is adapted and preserves surjectivity of CL—maps. 

Then the associated fetrpfunctor (F,p)-existsand.. • -

the associated map fj^:FFL-—->FL is an isomorphism. 

Proof. Since p is surjective and F preserves surjectivity, all maps 

in the Inverse system L< ^FL< ^F'^L<—-—^F^L.... 
PL ^ PL 

are surjective.Hence FL is a strict projective limit and all limit maps, 

in particular p^j^:FL >L are surjective. By 3*13> the map f^^ is an 
isomorphism. (J 

^_^ott we 
Foilowirfgyassociate with each complete lattice L the complete lattice 

11
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H(L) = [Ir—>L]( see 11-2.5). g:S~ >T is in we define 

a function H(g):H(S) >H(T) by H(g) (cp) = gcpg ,• note that gcpg 

is Indeed Scott continuous and so H(g) is well defined.Clearly H(l) 

=1 and H(g)H(g') = H(gg'), and so H is functorial. We now claim 

that H(g) has a lower adjoint H(g)'^ :H(T)' >H(S). Indeed if we 

set H(g)'^ (^) jthen H(g)'^ H(g) (cp) ='ggcpfe < cp and 
H(g)H(gy^(ijr) = ggijrgg > f hy 0--3'6, which shows by 0-3«6 that H(g) 
is the desired adjoint. In particular, H(g) preserves arbitrary 

g 
infs by 0-3•3* Finally, if ̂  is Scott continuous, then so is 

H(g), since sups are calculated pointwise and g preserves directed ga 

sups. We have 

3-15'F'EiyiMA. There is a retro-functor (H,p) of INF'^^ 

, , , , 'v such that H(L) = rh >L] and H(g) = gcpg® ; also p.(g)=min g(L). - ^ ^ ^ 
^ If we let TT^:[S—>| S] ——> [HS >HSJ be defined by 

TT2(g)(cp) = gcpg , then preserves directed sups and 

(Hg)^ (Hg) = UgCgg). 

Moreover, H maps CL into itself and preserves the surjectivity of 

morphisms. 

Proof. If we define p^:H(L)-—>L by Pj^(g) = niil p(L), then 
Pj^ is a surjective INF1^ -morphism whose lower adjoint associates 

with an element x e L the constant function L >L with value x. 

We have (Hg)'^(Hg) (cp) = ^gcpgg = TT2(gg)(cp). It is straightforward 

to verify that preserves directed sups, If L is a continuous 

lattice then so is H(L) = [L >L] by II—2.8. In order to see that 

hjpreserves surjectivity, let g;S >T be a surjective INF^^-map. 

Aen take f e H(T) and set cp = H(g)'^(iV). Then H(g)(cp) = 

g^>]^ggt = t since gg= 1 by O-3«7-0 

3• 16. MOTIVATION. We call H the Scott functor. Q 
S.'V 
We now retrieve Scott's original theorem: 

3* i?* THEOREM, ̂or any continuous lattice ̂^^he retrc^functor (H,j 

associated with the Scott functor .exists ^ - and the 

associated map f^:HHL > HL is an isomorphism. In other words, 

i# S is the continuous lattice HL , then there is a natural 

isomorphism [s >s] 3^ Bach element sf f of S may be 12
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J 

considered as a ̂ iinEtxEKi Scott continuous function S-~->3 so that 

for s e S the element f(s) is vrell—defined* 0 

Notice that Scott's theorem could be ^ rephrased as saying, in 
H C (cnCi 1 

short terms, EXR that every is^the quotient 

of a continuous lattice which is^isomorphic to its own function 

space. 

Now we consider the functor Id: ̂  CL >CL (see 1.18 and 1.19)• 

Then (Id, r) , r(I) = sup I is a retrofunctcr with surjective r 

by 1-2.1. We define >S]- ^>[Id S—>Id S] by 

= |g(I)-Then n2(g) preserves directed sups and satisfies 

n2(l) = 1. Moreover, by 1.18 and 1.19 we have (Id g)^ (Id g)(I) 

= -|-S(js(U)= jgs(I) (by 0-1.11) = TT3('gg)(I). Furthermore, 

the functor Id preserves surjectivity: Indeed if g is surjective, 

then gg = 1 by 0-3«iB7.and thus (Id g)(Id g)'^(I) = = TTg(gg)(I) 

= n3(l)(I) = I. 

Now we have the following theorem^^^!^ 

3»18.THEOREM. The retro-functor (Id,r) of CL has an associated 

retro-functor (Id,r ) with a surjective CL -map r: Id L ^>L such that 

the associated map f^^: Id Id L Id L is an isomorphism. 

In orther words, if S is the continuous lattic Id L , then there is 

a natural isomorphism Id S > S. Each element I of S may be 

considered as an ideal of S so that for s e S the glEXEni relation 

s e I is well defined.Q 

Notice that this theorem could be rephrased by saying,tfest in 

short terms, that every lattice is^the quotient of an 

arithmetic lattice which is isomorphic to its own ideal lattice. 
A 

13
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.J 

The constructions in 3*17 a-nd 3-18 appear to yield rather big 

continuous lattices. We record, however, that in terms of weights? 

the increase in size is not so exorbitant! in the case of Scott's 

construction. The ideal construction may be substantial,though. 

3*19.PROPOSITION. Let L be a continuous lattice, then 

(1) w(H(L)) = max(^^,w(L))-
^ 

(2) w(Id L) < exp'^ card S , where exp x = 2 
U ri 

for a cardinal x and exp o x = sup exp x . 
Proof. (1) By II-8.I3 we have g w(S) = wH(S) for any infinite 

continuous lattice. Since H(S) is a subalgebra of a countable 

product of continuous lattice of weight w(S), we conclude that 

w(H(S)) = •w(S) for any infinite continuous lattice S by II—8.14. 

If S is finite, then w(H(S)) 

(2) For every continuous lattice S we have w(Id S) = 

card (K(Id S)) (by II-8.4) = card S.Now card Id S < exp card S 

where exp x = 2^ for a cardinal x. Thus w(Id^ §) < exp^""^ card S 
_ n If we write exp " x = sup exp x , we obtain,as before. 

w(Id L) = 0x^® card S. Q 

14
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•V7 

EXERCISES 

t 3.14 EXERCISE,. An adapted functor F:IET' > INF' preserves 

Injectivity maps. 
( Let g:S •>T be Injective Then = 1^ by 0-3,7. Then 

(Fgf(Fg) = TTgCgg) =713(1) = so Fg Is infective by 0-3-'^.) 

3.1'^. EXERCISE. An adapted functor F (as in 3,14 ) which preserves 
the surjectivity of maps preserves images,i.e F(im g ) = im Fg 

(in INF^ every map has a unique (up to isomorphism) decomposition 

?\ iX f 
im f 

-> T 

(see 0-3.^); Apply F and observe that Ff is surjective, Ff is 
Injective, so that one may write (Ff) = F? , (Ef)__ = Ff and F(im f) 

= im (ff). ) 

3.16 EXERCISE. Let F: CE—^>- CL be an adapted functor preserlng 

the surjectivity of maps and intersections filtered if'amilies o"^ 

subalgebras (i.e., projective limits with injective maps Sj^)* 

The F preserves arbitrary projective limits 

( The injectivity of f:FL > lim FL^ follows as in 

surjectivity, observe 

F(in, gj)^= F(Oj<k = /^Kk = Oj<k^™ ^S.ik 

= im h., where h.:lim L, •> L. is the limit map Then 5.6 shows 
J J ^ J 

that g is surjective). 

This may be used to show that Scott's functor H in fact preserves 
all projective limits in CL. By proving the surjectivity of the 
map f:HL > lim HL, directly, one can show the stronger statement 

3.17 EXERCISE. The Scott functor H: INF' ^>1NF' preserves 
projective limits. 
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EXERCISES 

M Proposition 3 1'^ is perfectly su"^Ticient -^or the proof of 

the central theorem .14 But generalisations are possible 

3 EXERCISE. Let F be an adapted sel' functor of INF' which 
preserves surjectivity o-^ maps-and preserves Intersections of 
filtered subalgebras Then F preserves arbitrary projective 
1imits in INF L 

(As in '.1" we hnly have to worry about the surjectivity of 
the map f;FL lim FL^^ 
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NOTES 

The basic construction which vje have "formulated in in 

a general viay, was introduced by D.Scott in [ ] for the construction 

of the continuous lattices obtained in 17, which are naturally 

isomorphic to their own self function space. This vms a canonical 
solution for the questmmK for a systematic way to construct set 

theoretical models for the lambda calculus of Churchy Curry and Scott. 
h This constructions was^one of Scott's,motivations to introduce,continuou lattices. It was also Scott who in [ J observed .for sequential projective 

limits, the essence of theorem although in the present generality and 

in its precise formulation it had not been previously put down. 

Theorem l4 itself is new as is Theorem ^.1^. Theorem " l"^ gives 

a solution to a question raised by R.E.S Hoffmannin [ ](Continuous 
posets and adj'oint sequences. Semigroup Forum to appear ), He 
analysed precisely the question , vzhen for a continuous lattice L 
the map r^: Id L ^>L allows a finite sequence f^=r^,r^ , . . , r^ 
of morphisms such that is lower adjoint to r^ 

(Example ^ ? see 1-2,1). 
V 

Finite chains of this sort exist if L is of the form Id^L . The 

continuous lattices Id L give rise to infinite chains of lower 

adj'oints For details we refer to Hoffmann's articKle. 

At a later point we hope to discuss at greater length the appli

cations and the reminfications of the ideas discussed in. this, section 

Theorem ^ 17 will appear in the Tulane Dissertation of J.Nino. 
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