Notes on the systemics of *Proechimys* (Rodentia: Echimyidae), with emphasis on Peruvian forms

James L. Patton

Alfred L. Gardner

Follow this and additional works at: https://repository.lsu.edu/opmns

Recommend Citation
DOI: 10.31390/opmns.044
Available at: https://repository.lsu.edu/opmns/vol1/iss44/1
NOTES ON THE SYSTEMATICS OF PROECHIMYS (RODENTIA:ECHIMYIDAE), WITH EMPHASIS ON PERUVIAN FORMS

By James L. Patton1 and Alfred L. Gardner2

The confusion surrounding the systematics of Neotropical spiny rats of the genus Proechimys was aptly summarized by Oldfield Thomas (1928:262) in his often quoted statement, "The bewildering instability of the characters of these spiny rats makes it at present impossible to sort them according to locality into separate species, subspecies, or local races. Whether they represent the forms which have been called brevicauda, simoni, pachita, or hilda, they all seem too variable to distinguish at all constantly from each other. . . . I confess myself defeated in any attempt at present to distinguish the local races." Subsequent attention to members of this genus has contributed little toward clarification of the situation pictured by Thomas. Our interest in the taxonomy of Proechimys stems from attempts to identify specimens collected by us in eastern Perú and deposited in the collections of the Louisiana State University Museum of Zoology (LSUMZ) and the Museum of Vertebrate Zoology, University of California, Berkeley (MVZ). This preliminary analysis has been facilitated by chromosomal data gathered in the four Peruvian localities represented by our material. The chromosomal information indicated four different forms from eastern Perú, all of which were taken on the "same trap line" at one locality. Additional information

1 Museum of Vertebrate Zoology, University of California, Berkeley.
2 Museum of Zoology, Louisiana State University, Baton Rouge.
gathered through the examination of the structure of the baculum and glans, as well as skin and skull morphology, including planar surface features of the hind feet, supports the separation of our material on karyotypic grounds. We have incorporated information from eastern Costa Rican populations for which we also have chromosomal preparations.

Basing our decisions on descriptions in the literature, we have tentatively applied names to the forms we have distinguished. Their correct allocation, however, awaits the gathering and analysis of many more data from other populations that hopefully in all cases possible will include karyotypic information, which, in our experience, has greatly facilitated the morphological separation of forms.

Materials and Methods

Seventy-one specimens (from which we have also examined 22 bacula, 8 glands, and 54 karyotypes) form the basis of this report. Most of the specimens were collected by us under the auspices of the Louisiana State University Museum of Zoology and the Museum of Vertebrate Zoology, University of California, Berkeley, during the period from 1966 to 1971.

Age class determinations were based on tooth eruption sequence and degree of wear on occlusal surfaces as classified by Martin (1970:5). Tooth nomenclature and counterfoil determinations follow Heaithkovitz (1948:155). Chromosome material was prepared in the field using the *in situ* colchicine, hypotonic citrate technique (Patton, 1967). Dried phalli were cleared and stained according to the method used by Hooper (1959). Many of the bacula were extracted and, unfortunately, in these specimens the glans was destroyed. The cranial and bacular measurements are in millimeters and are taken as defined by Martin (1970:5-6) except the length of rostrum (Hooper, 1952:10) and interorbital constriction (least interorbital breadth). Measurements of tail length, length of hind foot, and height of ear from notch are those recorded on the specimen labels. The lengths of head and body were computed from label information. Measurements are given only for adults with fully erupted molars. These animals correspond to Moojen's (1948:332) adult and senile categories and to Martin's (1970:5) age classes IV and V. Capitalized color terms used in the descriptions are those of Ridgway (1912).

For ease in comparison of karyotypes, the autosomal complement of each form has been divided into the following four categories: (A) large meta- and submeta-centrics; (B) medium-sized to small meta- and submeta-centrics; (C) large to small subtelocentrics; and (D) medium-sized to small acrocentrics. Definitions for fundamental number (FN) and chromosomal types follow Patton (1967). These categorical divisions are nonarbitrary for the chromosomal material at hand. Museum numbers, or series of numbers, marked by asterisks in the lists of specimens examined denote animals whose chromosomes have been analyzed.

Localitys

Four localities in eastern Peru (see Map, Figure 1) and a single locality in Costa Rica are represented. Forest formations in Peru are based upon Toel's (1960) interpretation of the Holdridge plant formation and life zone system.

Tingo Maria (69° 18′ S, 76° 00′ W), Rio Huallaga, 650 meters, Departamento de Huánuco, Peru. A large community on the upper Rio Huallaga. Bosque muy Humido Subtropical (Subtropical Wet Forest): extensively cleared for agriculture.

Santa Elena (near 69° 06′ S, 75° 50′ W), ca. 1,000 meters, ca. 35 km NE Tingo Maria, Departamento de Huánuco, Peru. A coffee plantation on the lower slopes of the Cordillera Azul. Bosque muy Humido Subtropical (Subtropical Wet Forest): mixture of mature and second growth forest locally cleared for agriculture.

Yarinacocha (08° 21′ S, 74° 34′ W), 130 meters, Departamento de Loreto, Peru. The Summer Institute of Linguistics community on Lake Yarinacocha near Pucallpa. Bosque Seco Tropical (Tropical Dry Forest): extensively cleared for agriculture.

Cariari (10° 22′ N, 83° 31′ W), Rio Tortuguero, ca. 100 meters, Provincia de Limon, Costa Rica. An Instituto de Tierras y Colonizacion (ITCO) colony north of Guápiles. Tropical Wet Forest (following Slud, 1964): mixture of undisturbed forest and second growth; however, rapidly being cleared for agriculture.

Figure 1. Map of central Peru showing the four localities represented by specimens of *Proechimys* herein reported on.
PROCHIMYS BREVICAUDA (Günther)

External features.—Large, robust spiny rats with medium-sized ears, large hind feet, and relatively short tails. Color of dorsum from Hazel to Russet, finely and more or less evenly interspersed with small amounts of black and paler on sides of head and body (color between Sayal Brown and Pinkish Cinnamon); venter, chin, and margins of upper lips white, or chin dusky brown; large white patch at base of vibrissae in Balta specimen (absent in Yarinacocha representatives); inner surface of hind legs below knee dull grayish brown, color darker distally and completely encircling the tarsus; outer half of hind feet grayish brown, inner half from tarsal joint to ends of first two toes white; lower forelegs and forefoot white medially, grayish brown laterally (in Balta specimen brown restricted to proximal ends of metacarpals, forefoot otherwise white); tail dark brown above and whitish, irregularly shaded with gray, below. Plantar surface of hind feet with six tubercles; lateral metatarsal tubercle (fifth postdigital tubercle, sensu Herskovitz, 1960:524-525) well-developed, but short; distance between medial metatarsal tubercle (MMT) and first postdigital tubercle less than width of MMT; medial and lateral metatarsal tubercles and first and fourth postdigital tubercles forming the close-set corners of a square; hallux long, extending to middle of second postdigital tubercle; distance between heel and first postdigital tubercle approximately equal to distance between first postdigital tubercle and end of third digit (Figure 2, a).

Cranial features.—Skull large with a narrow, elongated rostrum; supraorbital ridges beaded, overhanging orbits, and discontinuous posteriorly across parietals to lambdoidal crests with anterior parietal portion separated from and distinctly ventral to posterior portion; incisive foramina lyre-shaped, constricted posteriorly, and extending as deep grooves onto maxillae (Figure 3, c); maxillary portion of incisive foramen septum weakly developed, attenuated, and not strongly connected to premaxillary sheath (lacking contact in 9 of 11 skulls at hand); premaxillary portion of incisive foramina septum short, usually not expanded, and with vomerine portion almost entirely enclosed in premaxillary sheath and not contributing significantly to ventral aspect of septum; lateral margins of proximal portion of paroccipital processes conspicuously indented (Figure 3, d); hamular process of pterygoids separated from auditory bullae by a distance equal to or exceeding one-half its width; prempterygoid fossa relatively short and broad with angle of indentation into posterior margin of palate averaging 35.5 degrees (30 to 45 degrees) and never extending forward beyond level of anterior one-quarter of last molar. Counterfold pattern: 3-4/3, 3-4/3, 3-5/3, 3-5/3.

Bacula and glands.—No glans material has been examined from this species. The baculum, represented by four specimens (LSUMZ 14413, 14414, 14416, and 14417; see Figure 4, a to d), has a long, narrow shaft, a broadened, paddle-shaped base, and slight development of apical wings, which are separated by a wide median depression.

Karyotype.—2n = 24; FN = 42 (Figure 9, e). The autosomes include a pair of moderately large metacentrics (A); seven pairs of medium-sized to small metacentrics and submetacentrics (B), of which the second pair possess ter-
Figure 3. Details of the palatal and occipital structure of representative skulls of Proechimys: a and c) P. brevicauda, LSUMZ 15760; d) P. longicaudatus, LSUMZ 12430; b and e) P. hundell, LSUMZ 14429; f) P. guyannensis, LSUMZ 16959. X 2.5.

Figure 4. Representative bacula of P. brevicauda (a, LSUMZ 14413; h, LSUMZ 14417; c, LSUMZ 14414; d, LSUMZ 14416) and P. hundell (e, LSUMZ 14431; f, LSUMZ 12427; d, MVZ 136654). a-d from Yarinacocha, Perú; e-h from Balta, Perú.
fusion and in the different sizes of the Y-chromosome. The Venezuelan P. cherriei has 26 chromosomes and isomorphic sex chromosomes.

The structure of the glans penis is not known. The narrow, elongate baculum is unlike any in the other forms we have examined except the animals we are calling P. bendeei from Balta. The same bacular type has been described for spiny rats identified as Proechimys sp. (Hooper, 1961), P. guayanensis Type III (Didier, 1962), and P. canicollis (Didier, 1962; Martin, 1970) from Colombia; for P. steerii from Brazil and P. guayanensis from Brazil and Bolivia (Martin, 1970); and for P. guayanensis brevicauda (Didier, 1962) from Perú.

Remarks.—The choice of the name Proechimys brevicauda for these spiny rats seems to be the least confusing of the alternatives available to us at this time. This is the only species we have thus far collected in the vicinity of Yarinacocha, and Proechimys from this area have been referred to rather consistently under the species-group name brevicauda (Sanborn, 1949; Moojen, 1948; Didier, 1962). Proechimys brevicauda was also collected with P. longicaudatus, P. bendeei, and P. guayanensis at Balta.

One male had scrotal testes measuring 21 by 41 millimeters on 8 August 1968, whereas three males had non-scrotal testes on 8 June 1966, and 7 and 8 August 1968, respectively. A postlactating female was collected on 4 August 1968.

Specimens examined.—Perú. Departamento de Loreto: Balta, Rio Caranuma, 300 m, 1 female (LSUMZ 16757*); Yarinacocha, 150 m, 4 males, 6 females (LSUMZ 12416, 12439, 12440, 14412*-17*, 16760*).

Proechimys longicaudatus (Regger)

External features.—Moderate-sized, robust spiny rats with medium-sized ears and hind feet, and relatively short tails. Color of dorsum generally uniform, from Tawny to Clay Color, coarsely streaked with black (upper parts distinctly dull, slightly darker mid-dorsally with a tendency to be grayish along sides of head and body); venter, including chin, narrow stripe along margins of upper lips, and in specimens from Balta, a very small spot at base of vibrissae, white; dark color of lower hind legs not completely encircling tarsal joint; forefeet and hind feet covered with an even mixture of whitish and pale-tipped brown hairs (except in animals from the vicinity of Tingo Maria whose lower legs and hind feet differ
as follows: white of underparts becoming Pinkish Cinnamon along the narrow pale stripe on inner surface of lower legs and upper surface of hind feet, outer surface of tarsal joint dark brown, band across distal end of metatarsals dusky brown, and toes except whitish digital bristles pale proximally and dusky brown distally; tail dark brown above, paler below. Hind feet with six plantar tubercles; lateral metatarsal tubercle well-developed, but short when compared to medial metatarsal tubercle (mmnt); distance between mmnt and first postdigital tubercle greater than width of mmnt; hallux long, nearly reaching middle of second postdigital tubercle; distance between heel and first postdigital tubercle equal to or exceeding distance between first postdigital tubercle and tip of third digit (Figure 2, b).

Craniat features.—Skull medium-sized with a relatively short, blunt rostrum; supraorbital ridge elevated, usually beaded above orbits, and discontinuous posteriorly across parietals to lambdoidal crests with posterior portion (when present) dorsal to anterior portion; incisive foramina lyre-shaped, strongly constricted posteriorly, and continuing as deep grooves onto palate (Figure 3, d); maxillary portion of incisive foramina septum short, narrow and blade-like, and always in contact with vomerine and premaxillary portion of septum; vomerine portion of septum conspicuous and forming up to one-third of septal length; premaxillary portion of septum expanded laterally with margins of sheath usually rounded anteriorly and dorsoventrally compressed posterolaterally; lateral margins of parasphenoid processes not indented; hamular process of pterygoids separated from auditory bullae by a distance less than one-half its width; mesopterygoid fossa relatively short and broad, angle of indentation into posterior margin of palate averaging 42.6 degrees (35 to 45 degrees) and never extending forward beyond level of anterior one-quarter of third molar in 19 skulls examined. Counterfold pattern: 3/3-4, 3/3, 3-4/3, 3-4/2-4.

Bacula and glands.—The baculum, represented by ten specimens from three localities (Baila: LSUMZ 12430-32, 12437, 12438, and 12617; MVZ 136648 and 136644. Santa Elena: LSUMZ 12616. Tingo Maria: LSUMZ 14410), displays considerable variation in shape (Figure 5) which cannot be correlated with locality. Generally, the baculum is elongate and broad with well-developed apical wings. The margins are concave and the proximal and distal ends are usually about equal in width. In some specimens, the proximal end bears a median indentation of variable depth; whereas, in

Figure 5. Representative bacula of *P. longicaudatus* (a, LSUMZ 12430; b, MVZ 136664; c, LSUMZ 12437; d, LSUMZ 12431; e, LSUMZ 12432; f, LSUMZ 12617; g, LSUMZ 14410; h, LSUMZ 12616. a-f from Baila, Perú; g from Tingo Maria, Perú; and h from Santa Elena, Perú.
others this indentation is absent. The shaft is arched dorsally from base to tip and transversely concave ventrally along its entire length.

The glans penis (five specimens examined) is short, thick, and subcylindrical (Figure 6). The index of robustness (greatest diameter/length) is 0.63. The epidermis has sloughed off in these specimens revealing a deeply corrugated, or pleated, dermis. The corrugations extend from the base to the tip on the dorsal surface of the glans, but are restricted to the tip on the ventral surface. Slight ventrolateral swellings at about mid-length set off by deep troughs below and shallow depressions above, characterize

![Figure 6. Glans penis of *Procimys longicollis* as viewed: a, dorsally; b, ventrally; and c, laterally. LSUMZ 12616, Santa Elena, Perú. The heavy dashed line indicates the orientation of the urethra.](image)

the general appearance of the glans. The most prominent feature of the ventral surface is an ampulla-shaped mass bordered laterally by deep troughs and bisected midventrally from near the base to the tip of the glans by a deep groove. The intromittent sac is large and deep (about three-quarters of glans length) with a comparatively thick ventral wall.

Karyotype.—2n=28; FN=50 (Figure 9, d). The autosomes include a pair of moderately large submetacentrics (A); eight pairs of medium-sized to small metacentrics and submetacentrics (B); two pairs of large and one pair of small subtelocentrics (C), of which the small pair possess terminal satellites on the long arms; and a single pair of moderately small acrocentrics (D). The X-chromosome is a moderately small acrocentric and the Y is a very small acrocentric.

Measurements.—The mean and range for external and cranial measurements of 20 adults, unless otherwise noted: head and body (N=19), 210.4 (189-228); tail (N=14), 135.6 (114-155); hind foot (N=19), 47.4 (43.50); ear (N=19), 21.6 (19-24); greatest length of skull (N=19), 52.3 (48.8-56.5); condylobasal length (N=18), 46.6 (42.9-50.1); mastoidal breadth (N=18), 20.8 (19.3-22.8); length of nasals, 19.1 (17.1-23.3); zygomatic breadth, 25.2 (23.5-27.5); length of palate, 24.4 (22.1-27.7); maxillary breadth, 8.3 (7.3-9.4); alveolar length of maxillary tooth-row, 8.7 (8.0-9.6); interorbital breadth (N=12), 11.5 (11.0-12.8); length of rostrum (N=12), 20.7 (18.5-23.9).

Measurements of baculum (N=10): length, 8.8 (4.7-11.6); distal width, 4.6 (1.7-5.3); proximal width, 4.2 (1.8-5.1).

Comparisons.—The following combination of characters serves to distinguish this species from all other forms described herein: medium-sized body, relatively short tail averaging 64.4 (58.9-72.3) per cent of head and body length, rather uniform, dull reddish to clay-brown color of dorsum coarsely streaked with black, maxillary portion of incisive foramina septum short with vomerine portion conspicuous (up to one-third of septal length) from ventral view, hamular process of pterygoids long and nearly touching auditory bullae, and mesopterygoid fossa short and broad with shallow anterior angle. The color pattern of the feet (forefeet and hind feet of Batla specimens nearly unicolored and dark or, as in specimens from vicinity of Tingo Maria, hind feet dark on lateral margins and across terminal portions of metatarsals), is also distinctive of our *P. longicollis*. Skin and skull features apparently unique to *P. longicollis* include drab
reddish to clay-brown color of dorsum, conspicuous vomerine contribution to septum of incisive foramen, and very broad angle of anterior border of mesopterygoid fossa.

This species is similar to the Costa Rican *P. semispinosus* in the majority of external and cranial features. The two species can be distinguished, however, by color pattern (*P. longicandatus* is uniformly darker and duller dorsally), length of lateral metatarsal tubercle (well-developed in both species, but short in *longicandatus* and long, almost equaling length of medial metatarsal tubercle, in *semispinosus*), development of parietal portion of supraorbital ridges (ridge continuous across parietal in *semispinosus* as opposed to discontinuous with posterior portion usually obsolete in *longicandatus*), and development of vomerine portion of septum of incisive foramina (conspicuous in *longicandatus* and inconspicuous or absent in *semispinosus*).

The karyotype of *P. longicandatus* is also very similar to that of *P. semispinosus*, from which it differs only in lacking the pair of minute metacentric chromosomes.

The glans penis is unique among those examined in its relatively thick and blunted appearance, corrugated dermis of dorsal and lateral surfaces, ampulla-shaped ventral swelling, and deep groove along ventral midline. The highly variable baculum is similar in general shape to those figured by Martin (1970) as representing *P. guayanensis* from Perú, Bolivia, and Brazil, and by Didier (1962) as his *P. guayanensis* Type II from Colombia.

Remarks.—At the present time it seems almost impossible to select the correct name from the many that might be applied to this species and, although we believe it to be distinct, evidence suggests close relationship with Central American populations currently recognized as *P. semispinosus*. One reason for employing the name *P. longicandatus* for this species is to emphasize that *longicandatus* of most authors is almost certainly composite.

Proechimys longicandatus was the only spiny rat collected at Santa Elena and Tingo Marfa; however, it was found together with *P. breviceuda*, *P. heneei*, and *P. guayanensis* at Balta.

At Balta, a female was pregnant with three 16-millimeter fetuses on 1 August 1966, another with three 45-millimeter fetuses on 5 July 1968, a third with one 56-millimeter fetus on 6 July 1968, and a fourth with three 56-millimeter fetuses on 15 July 1968. A female from Santa Elena contained two 23-millimeter fetuses on 12 August 1968.

Specimens examined.—Perú: Departamento de Huánuco: Santa Elena, 35 km NE Tingo Marfa, Carretera Central, 1,000 m, 1 male, 1 female (LSUMZ 12616, 14411*); Tingo Marfa, 1 male (LSUMZ 14410*). Departamento de Loreto: Balta, Rio Curanja, 300 m, 12 males, 16 females (LSUMZ 12429-34, 12436-38, 12617, 14914, 16748, 16749*53*, 16754*; MVZ 136644*.49*, 136651*.53*, 136655*, 136656*).

Proechimys semispinosus (Tomes)

External features.—Large spiny rats with medium-sized ears, large hind feet, and long tails. Color of dorsum from Auburn to Tawny, coarsely streaked with black, and clearer (less streaked) along sides of head, body, and legs; venter white; darker color of lower hind legs extending onto proximal one-third of metatarsals, otherwise hind feet covered with a mixture of light brown and whitish hairs with these feet often appearing darker on lateral margins; color of lower forelegs and forefeet dusky-brown; tail dark brown above, whitish below. Six plantar tubercles on hind feet; lateral metatarsal tubercle well-developed and long, its length approximating that of medial metatarsal tubercle (mnt); distance between mm and first postdigital tubercle greater than width of mnt; hallux long, extending to middle of second postdigital tubercle; distance between heel and first postdigital tubercle equal to distance between first postdigital tubercle and tip of third digit (Figure 2, c).

Cranial features.—Skull large with a relatively short, broad rostrum; supraorbital ridges beaded, broadly overhanging orbits, and continuing posteriorly as well-developed, elevated ridges across squamosal and parietal bones to lambdoidal crest; incisive foramina lyre-shaped, strongly constricted posteriorly, and forming conspicuous grooves that extend onto anterior portion of palate; maxillary portion of septum of incisive foramina variable in development and always in contact with long, well-developed, and laterally expanded premaxillary sheath; vomer not contributing to ventral aspect of septum; lateral margins of proximal portion of paraoccipital processes not conspicuously indented; hamular process of pterygoids separated from auditory bullae by a distance equal to, or greater than, one-half the width of that process; mesopterygoid fossa relatively long and broad; angle of indentation into posterior margin of palate shallow, averaging 39.1
degrees (30 to 45 degrees) and never extending forward beyond level of anterior one-third of last molar in six skulls examined. Counterfold pattern: 3/3-4, 3-4/3, 3-4/3, 2-4/2-3.

Bacula and glands.—No gland material has been examined from this species. The baculum, represented by two specimens (LSUMZ 13366 and 13368), is characterized by its massiveness—its breadth approximating one-half its length (Figure 7, a and b). The margins are deeply concave, the base is broadly expanded and thickened, and the distal portion is wide with

![Figure 7](image)

Figure 7. Representative bacula of *P. semispinosus* from Carisari, Costa Rica (*a, LSUMZ 13366; b, LSUMZ 13368*) and *P. gaynamentis* from Balta, Peru (*c, LSUMZ 12424; d, LSUMZ 16779*).

the well-developed apical wings separated by a median depression. Proximal and distal portions are transversely convex dorsally and deeply concave ventrally.

Karyotype.—2n=30; FN=54 (Figure 9, c). The autosomal complement includes one pair of large submetacentrics (A); nine pairs of medium-sized to small metacentrics and submetacentrics, including one pair of minute metacentrics (B); two pairs of large subtelocentrics and one pair of small subtelocentrics (C), the long arms of the latter with secondary constrictions; and one pair of small acrocentrics (D). The X-chromosome is a moderately small acrocentric, and the Y is a very small acrocentric.

Measurements.—The mean range for external and cranial measurements of five adults, unless otherwise noted: head and body, 222 (202-275); tail (N=1), 180; hind foot, 53.0 (48.5-58); ear, 23.6 (22-25); greatest length of skull, 57.3 (52.7-64.2); condylobasal length, 51.3 (48.0-57.7); mastoid breadth, 19.9 (18.5-22.0); length of nasals, 21.6 (19.4-25.0); zygomatic breadth, 27.0 (25.9-28.9); palatal length, 27.3 (25.5-30.8); maxillary breadth, 8.6 (8.3-8.9); alveolar length of maxillary toothrow, 9.7 (9.2-10.0); interorbital constriction, 13.0 (12.3-13.4); length of rostrum, 22.7 (20.5-26.0).

Measurements of the baculum (N=2): length, 9.4 (8.3-10.4); distal width, 4.7 (3.7-5.7); proximal width, 5.0 (3.6-6.5).

Comparisons.—The combination of large body, short tail averaging 65.1 (64.8-65.4) per cent of head and body length, dark reddish brown color of dorsum coarsely streaked with black, generally dark feet, enlarged lateral metasternal tubercles, strongly beaded supraorbital crests continuing posteriorly as prominent ridges on parietals to lambdoidal crests, and broad, shallow mesopterygoid fossa serve to distinguish this species from all other forms described herein. External and cranial features apparently unique to *P. semispinosus* include: well-developed and long lateral and medial metasternal tubercles and prominent supraorbital crests that continue posteriorly across parietals as conspicuous ridges.

Proechimys semispinosus is similar to *P. longicaudatus*; however, they can be distinguished by the features outlined previously (see under Comparisons in the account for *P. longicaudatus*). *Proechimys semispinosus* is easily distinguished from *P. brevicauda* and *P. hendeei*, spiny rats of similar size, by the number, development, and arrangement of plantar tubercles—
five plantar tubercles in hendeei as opposed to six in semispinosus and brevicauda, distance between medial metatarsal tubercle and first postdigital tubercle less than width of mnt in brevicauda and hendeei, but greater in semispinosus. The apparent absence of the vomer in the ventral aspect of the septum of the incisive foramen is a feature P. semispinosus shares with the otherwise very different and much smaller P. guyannensis.

The karyotype of P. semispinosus (2n=30) is similar to that of longicaudatus (2n=28), differing only in the presence of a pair of minute metacentric chromosomes.

The baculum is similar in general morphology to that described herein for P. brevicauda. It is also similar to bacula described by Martin (1970) for P. guyannensis from Bolivia and Brazil.

Remarks.—The name P. semispinosus is the name currently assigned to Costa Rican populations of Proechimys, and we have no reason to question its application at this time.

Specimens examined.—COSTA RICA. Provincia de Limón: Cariati, 2 males, 3 females (LSUMZ 13566, 13367*+70*).

PROECHIMYS HENDEEI (Thomas)

External features.—Large rats with relatively long ears, large hind feet, and long tails. Color of dorsum in live or fresh animals between Burnt Sienna and Sanford’s Brown, coarsely streaked with varying amounts of black (faded color of dorsum in prepared specimens near Cinnamon, and in some, as pale as Pinkish Cinnamon), clearer (less streaked with black) and slightly paler on sides of head, body, and legs; venter, chin, sides of upper lips, spot at base of vibrissae (spot sometimes confluent with upper lips and chin), and undersurfaces of forelimbs and hind limbs, white; reddish to dusky-brown color of lower legs extending across tarsal joint and over outer surface of hind feet to base of, and sometimes including, fourth digit; inner margin of hind feet and digits 1, 2, 3, as well as inner margin of digit 4, white (in some specimens hind foot appears almost entirely white, and in others distinctly bicolor with the darker outer margin separated from the plantar surface by a narrow white stripe); forefeet pale dusky-brown with varying amounts of white on inner and outer margins; tail dark brown above, white below. Five plantar tubercles; lateral metatarsal tubercle absent; medial metatarsal tubercle (mmt) well-developed and elongate; distance between mnt and first postdigital tubercle less than width of mnt; hallux long, extending approximately to middle of second postdigital tubercle; distance between heel and first postdigital tubercle less than distance between first postdigital tubercle and tip of third digit (Figure 2, d).

Cranial features.—Skull large with relatively long, narrow rostrum; supraorbital ridge beaded, broadly overhanging orbits in most individuals, and discontinuous across parietals, where anterior portion of crest is inferior to posterior portion; incisors ovoid in outline, not strongly constricted posteriorly (Figure 3, e); deep post-orbital grooves not present on anterior portion of palate; maxillary portion of septum of incisive foramina attenuated and usually not in contact with vomerine and premaxillary portion (no contact in 11 of 15 skulls examined); vomer almost entirely enclosed in premaxillary sheath and not contributing significantly to ventral aspect of septum; premaxillary portion of septum usually expanded anteriorly with rounded margins; lateral margin of proximal portion of paraoccipital process not conspicuously indented (Figure 3, b); hamular process of pterygoids separated from auditory bullae by a distance exceeding one-half its width; mesopterygoid fossa long and narrow, angle of indentation into posterior margin of palate acute, averaging 30 degrees (25 to 35 degrees) with indentation varying from a level near the middle of M₂ forward to a level near the middle of M₃ in 15 skulls examined. Counterfold pattern: 3/3-4, 3.4/5, 3.4/3, 3.4/2-3.

Basal and glands.—The glans penis of this species is essentially identical to that described and figured by Hooper (1961:2-5) for Proechimys sp. from Colombia. The shape of the glans is subcylindrical, elongate, and relatively slender. Index of robustness (greatest diameter/length) of the single specimen available to us from Peru and that calculated from Hooper’s (1961:4) drawing are 0.35 and 0.37, respectively. The baculum, represented by four specimens (LSUMZ 12426, 12427, and 14431; MVZ 13654) is elongate and narrow with a rounded and slightly broadened base (Figure 4, e to b). The weakly expanded apical end is usually characterized by a small lateral platform on each side separated by a shallow median depression. The straight shaft is slightly convex dorsally and concave ventrally. The total length of the baculum is approximately two-thirds that of the glans, with the os penis alone slightly more than one-half the glans length.

Karyotype.—2n=32; FN=58 (Figure 9, b). The autosomal complement
includes two pairs of large submetacentrics (A); eight pairs of medium-sized small metacentrics and submetacentrics, including one pair of minute metacentrics (B); one pair of large and three pairs of small subtelocentrics (C), of which one of the latter pairs have secondary constrictions on the long arm; and one pair of medium-sized acrocentrics (D). The X-chromosome is a moderately small acrocentric and the Y is a small acrocentric.

Measurements. — The mean and range for external and cranial measurements of 12 adults, unless otherwise noted: head and body, 226.8 (200-263); tail (N=9), 177.4 (154-205); hind foot, 51.2 (46-57); ear, 25.4 (23-29); greatest length of skull (N=11), 57.3 (53.5-61.3); condylobasal length (N=11), 51.7 (47.6-55.5); mastoid breadth, 21.3 (18.9-23.2); length of nasals (N=11), 21.9 (20.1-24.0); zygomatic breadth, 26.3 (24.0-27.9); palatal length (N=11), 23.6 (23.5-27.8); maxillary breadth, 8.5 (7.9-9.1); alveolar length of maxillary toothrow, 8.7 (8.2-8.9); interorbital breadth (N=10), 11.4 (10.3-12.3); length of rostrum (N=8), 23.0 (21.0-23.2).

Measurements of baculum (N=4): length, 8.2 (6.6-9.8); distal width, 1.8 (1.5-1.9); proximal width, 2.0 (1.7-2.4).

Comparisons. — The combination of large size, relatively long tail averaging 80.1 (67.0-94.4) per cent of head and body length, pale straw-brown dorsum coarsely streaked with black (color of dorsum definitely reddish and darker in fresh specimens), white chin and sides of mouth, nearly all white or bicolor white and brown forefeet and hind feet, five plantar tubercles (lateral metatarsal tubercle absent in all specimens examined), ovoid outline of incisive foramina, lack of deep grooves on maxillary portion of palate, and acute palatal border of narrow, elongate mesopterygoid fossa serve to distinguish this species from all other forms described herein.

Skin and skull characteristics apparently unique to P. bendeii include rapidly fading color of dorsum, absence of fifth plantar tubercle, relatively smooth surface of palate between cheek teeth and incisive foramen, and deeply indented acute angle of posterior margin of palate.

This species is similar in size and color (in fresh specimens) to the sympatric P. brevicauda. The two can readily be distinguished, however, by the number of plantar tubercles (five in bendeii and six in brevicauda), the configuration of the incisive foramina and maxillary portion of palate (foramina constricted posteriorly and deep grooves on anterior palate in brevicauda in contrast with ovoid outline of foramina and nearly smooth surface of anterior palate in bendeii), and the anterior angle of the mesopterygoid fossa (wider in brevicauda and acute in bendeii).

Superficially, P. bendeii is also similar to the sympatric P. guyannensis in that occasionally P. guyannensis lacks the fifth postdigital tubercle and both species share some features of the incisive foramina, palate, and mesopterygoid fossa. But bendeii is a much larger animal and greatly exceeds P. guyannensis in nearly all dimensions.

Karyotypically, P. bendeii differs most from the other species examined in the number and size of the group A, C, and D elements. It is the only species we have examined with two group A chromosomes. Examples of Proechimys with the same karyotype have been recorded from Puerto Asis, Estado de Putumayo, Colombia (O. A. Reig, pers. comm.).

The glans penis is distinct from all other glands examined, differing in its narrow and elongated shape and in its distally directed apical mass containing the urethral opening. The glans appears to be identical to the one figured and described by Hooper (1961) for Proechimys sp. from Colombia. The baculum is also similar to that described herein for P. brevicauda.

Remarks. — The name Proechimys bendeii is provisionally applied to this species because the characters of the palatal notch, the relatively short incisive foramina, and the body proportions and size roughly agree with those of the holotype as diagnosed by Thomas (1926:162-164). As far as we can now determine, the greatest contrast between our specimens and those described under bendeii by Thomas (1926), Osgood (1944), and Hershkovitz (1948), is in the color—our animals being much paler.

Proechimys bendeii was found only at Balta, where it is sympatric with P. brevicauda, P. longicaudatus, and P. guyannensis.

One female from Balta contained three 10-millimeter fetuses on 12 August 1966, another from the same locality carried a single 48-millimeter fetus on 15 July 1968, and a third had three 62-millimeter fetuses on 21 June 1968.

Specimens examined. — PRR1. Departamento de Loreto: Balta Rio Curanja, 300 m, 8 males, 10 females (LSUMZ 12425-28, 12435, 14424, 14426*, 29*, 14431*, 14915, 14916, 16750*, 16754*, 16756*, 16758*; MVZ 136650, 136654*).
PROCHEIMYS GUYANNENSIS E. Geoffroy St.-Hilaire

External features.—Small spiny rats with disproportionately long ears, small hind feet, and disproportionately long tails. Color of dorsum between Orange-Cinnamon and Cinnamon, heavily streaked medially with black, becoming progressively less heavily streaked laterally on back and sides of head and body; vent, chin, margins of upper lip, and small spot at base of vibrissae, white; dark color of lower hind leg terminating as a band that completely encircles tarsus; forefoot and hind feet entirely white or forefoot white medially and dusky-brown laterally; tail dark brown above, pale brown to white below. Number of plantar tubercles five or six, lateral metatarsal tubercle weakly developed or absent, distance between medial metatarsal tubercle (mm) and first postdigital tubercle greater than width of mm, hallux short and not reaching second postdigital tubercle, distance between heel and first postdigital tubercle much less than distance between first postdigital tubercle and end of third digit (Figure 2, c).

 Cranial features.—Skull small with a narrow and elongate rostrum; supraorbital ridge usually beaded and continuous posteriorly onto anterior portions of parietal; incisive foramina ovoid or lyre-shaped, constricted posteriorly in some individuals, and forming weak grooves extending posteriorly onto maxillary portion of palate (Figure 3, f); maxillary portion of incisive foramina septum dorsally compressed and in contact with moderately expanded and keel-sided premaxillary sheath; vomer not visible on ventral margin of septum; lateral margin of proximal portion of paroccipital process sometimes weakly indented; hamular process of pterygoids separated from auditory bullae by a distance equal to or less than the width of that process; mesopterygoid fossa long and narrow, angle of indentation into posterior margin of palate acute, averaging 31.7 degrees (30 to 40 degrees) in six skulls examined, and variable in depth, extending forward in some to near middle of Mμ. Counterfold pattern: 3/3-4, 3/2-3, 3/3, 3/2.

Bacula and glands.—The glans of the one specimen examined (LSUMZ 16759), is short, very stout, and considerably heavier at the tip than at the base. The index of robustness is 0.67. Externally, the glans is characterized by ventrolateral swellings located slightly distal to midlength and a pronounced keel-like midventral ridge that extends from near the base to the apex. The urethral opening is directed dorsally and is surrounded by a distinctive enlarged lip that protrudes from the dorsal rim of the glans (Figure 8). The lateral margins of the rim surrounding the intro-

Figure 8. Glans penis of Procheimys guyannensis as viewed: a, dorsally; b, ventrally; and c, laterally. LSUMZ 16759, Bela, Perú. The heavy dashed line indicates the orientation of the urethra.
and deeply concave ventrally. The distal end has a pair of diverging apical extensions separated by a wide and deep median depression. Each apical bony extension or wing bears a straight cartilaginous shaft and the baculum is so situated that its distal portion nearly circumscribes the swollen, dorsally directed, urethral mound.

Karyotype.—2n=40; FN=56 (Figure 9, a). The autosomal complement lacks group A chromosomes; includes seven pairs of medium-sized to small metacentrics and submetacentrics (B), with one pair of metacentrics minute; two pairs of moderately small subtelocentrics (C), the smallest of which bear secondary constrictions on the long arms; and three pairs of medium-sized and seven pairs of small acrocentrics (D). The X-chromosome is a moderately small acrocentric and the Y is a small acrocentric.

Measurements.—The mean and range for external and cranial measurements of five adults, unless otherwise noted: head and body (N=4), 182.7 (182.7-193); tail (N=4), 128.0 (124-134); hind foot (N=4), 40.5 (38.4-42); ear (N=4), 21.5 (20.2-23); greatest length of skull (N=3), 47.5 (46.0-48.3); condylar length (N=3), 42.6 (40.9-43.5); mastoidal breadth (N=3), 18.4 (17.8-19.3); length of nasals, 17.2 (16.2-19.1); zygomatic breadth (N=3), 22.9 (21.9-23.6); palatal length, 21.3 (20.2-22.9); maxillary breadth, 7.5 (7.1-8.0); alveolar length of maxillary toothrow, 7.5 (7.3-8.0); interorbital breadth, 10.3 (9.8-10.8); length of rostrum, 18.5 (17.4-19.7).

Measurements of the baculum (N=2): length, 7.2 (7.1-7.3); distal width, 5.3 (4.9-5.7); proximal width, 4.5 (4.1-4.8).

Comparisons.—The combination of small size and moderately short tail, averaging 69.3 (67.8-70.3) per cent of head and body; cinnamon brown dorsum coarsely streaked with black, especially middorsally; dark color of lower hind leg completely encircling tarsal joint; white hind feet with short hallux and weakly developed or absent lateral metatarsal plantar tubercle; absolutely, but not proportionally smaller cheek teeth; vomer absent from ventral aspect of septum of incisive foramen; weak development of palatal grooves on maxillae; narrow, deeply indented, mesopterygoid fossa, serve to distinguish this species from all other forms described herein. Skin and skull features apparently unique to P. guayanensis, in addition to small overall dimensions, include: hallux short, lateral metatarsal tubercle very small or absent, distance between heel and first postdigital tubercle much less than distance between first postdigital tubercle and end of third digit, comparatively small incisive foramina lacking vomerine contribution to ventral aspect of septum, and weakly developed grooves on maxillary portion of palate.

Proechimys guayanensis is unquestionably much smaller than any of the other species we have examined. Despite size, glands, and karyotype differences, P. guayanensis is closest to the sympatric P. bendei in external and cranial features. Among features shared by both species are the white hind feet and sometimes missing lateral metatarsal tubercle (P. bendei occasionally has all white hind feet and always has only five plantar tubercles); the spatial relationship of the first postdigital tubercle with the heel and with the end of the third digit; the lack of the vomer in the ventral aspect of the incisive foramen septum, and the narrow and deeply indented mesopterygoid fossa. Proechimys guayanensis is similar to P. brevicauda in that both species have the tarsal joint completely ringed with the darker color of the lower leg.
The karyotype of *P. guayannensis* is unique in its high chromosome number and the lack of group A chromosomes. The glans is also unique in its stout and blunt shape, smooth surface, shallow intromittent sac, and swollen, dorsally directed, urethral mound. The baculum, while also unusual, is similar to that described and figured by Didier (1962) for his *P. guayannensis* Type I from Colombia and Guyana.

Remarks.—We have decided to use the name *P. guayannensis* for this form despite our conviction that *guayannensis* of most authors is composite—as was acknowledged by Ellerman (1940, for *ceyennensis*) and Hershkovitz (1948). *Proechimys guayannensis* was found along with *P. brevicauda*, *P. longicaudatus*, and *P. bendeeki* at Balata.

A female from Balata was pregnant with two 14-millimeter fetuses on 21 July 1968.

Specimens examined.—PERÚ. Departamento de Loreto: Balata, Río Curanja, 300 m, 3 males, 3 females (LSUMZ 9275, 12424, 14425*, 14430, 14432, 16759*).

DISCUSSION

Our present concern with the taxonomy of spiny rats is limited to members of the subgenus *Proechimys*. Species of the other subgenus (*Trinomys*) currently recognized in *Proechimys* are restricted in distribution to eastern Brazil (Moojen, 1948; Cabrera, 1961).

Oldfield Thomas relied upon color pattern and cranial features, particularly the development of cranial ridges, the configuration of the incisive foramina, and the length and shape of the hamular process of the pterygoids, to distinguish between the forms he recognized. Ellerman (1940), considering the majority of these features to be reflections of age and individual variation, tentatively recognized only twelve species out of the approximately 50 forms that had been named up to that time, and included ten of the species (one an *Echimys* as pointed out by Hershkovitz, 1948:129) under the subgenus *Proechimys*. Hershkovitz (1948), relying primarily upon the number of enamel folds in the cheek teeth, placed the previously named forms in the subgenus *Proechimys* in six species (*cunicollis, iberingi, bendeeki, dimidiatus, guayannensis*, and *ignotus*) and described a seventh, *P. quadruplicatus*. Moojen (1948) used a combination of pelage and dental features (principally the development of aristiforms and the counterfold patterns) to characterize the five species (*guayannensis, longicaudatus, semispinosus, goeldii, and cunicollis*) he recognized in the subgenus *Proechimys*. Moojen did not treat *P. quadruplicatus*; however, he did expand the subgenus *Trinomys* to include *IBeringi* and *dimidiatus*. Cabrera (1961), largely following Moojen, recognized seven species (*cunicollis, goeldii, guayannensis, bendeeki, longicaudatus, quadruplicatus*, and *semispinosus*) under *Proechimys* (*sensu stricto*). Didier (1962) reported on bacula from a number of caviomorph rodents identified and sent to him by Philip Hershkovitz of the Field Museum. *Proechimys* was represented among these by bacula from five species (*guayannensis, quadruplicatus, bendeeki, cunicollis, and albipinus*—the last representing the subgenus *Trinomys*). Didier, attempting to coordinate his findings with Hershkovitz's identifications, reached the following conclusions: *P. guayannensis guayannensis* was represented by four distinct bacular types; the bacula of *P. brevicauda, P. trinitatis*, and *P. crass* were essentially alike and, while superficially similar to the Type III baculum of *P. g. goeldii*, were different from all others in his sample; the baculum of *P. quadruplicatus*, although distinct, was somewhat similar to the shorter Type IV baculum of *P. g. guayannensis*; and the bacular types of *P. minaeae, P. bendeeki*, and *P. cunicollis* were each unique. Only one of the four penises of *P. (Trinomys) albipinus* he examined contained a baculum—a minute bone imbedded in cartilage and lacking distinctive features.

Martin (1970) included descriptions and figures of the types of bacula he found in his study of the morphological variation in several population samples of *Proechimys*; however, he was unaware of Didier's important paper. Martin recognized four species (*guayannensis, cunicollis, quadruplicatus, and stierli*) from the samples he studied and concluded that the specific status of several forms, particularly of *P. guayannensis* and *P. longicaudatus*, remained unresolved.

Separation of the morphological forms represented in our samples of *Proechimys* was initiated on the basis of the five different karyotypes we found. Subsequently, we discovered a number of color pattern peculiarities and morphological features characterizing each form that permitted the assignment of specimens not represented by chromosomal data to karyotype groups. Nonchromosomal features other than size that have proven valuable for distinguishing the forms in our relatively small and admittedly limited representation of the genus are the color patterns, the configuration of the plantar surfaces of the hind feet, the shape of the incisive foramina and the composition of their septum, the shape and depth of the mesopterygoid
fossa, the development of parietal ridges, the configuration of the parao
coccipital processes, and the size, shape, and surface features of the glands
and bacula.

Features of the aristiforms and the counterfold patterns of the cheek
teeth, two characters utilized by Hershkovitz (1948) and Moojen (1948),
were not very helpful in distinguishing among our specimens. These char-
acters might have proven useful had more species of Proechimys been
represented in our material. Nevertheless, by applying Hershkovitz’s
(1948:130) key to our specimens we would assign all of our 32 P. longi-
caudatus, 5 P. semispinosus, and 6 P. guyannensis to his P. guyannensis
along with 8 of our 11 P. brevicauda. Two of the three remaining P. brevicauda
(the third is a skin only) would be assigned to his P. quadruplicatus, and
all of our P. bendeei would correspond to his P. bendeei. On the other hand,
by relying on Moojen’s (1948:354) key we would make the following
identifications of our specimens: all 6 P. guyannensis, 29 of the 32 longi-
caudatus, 10 of the 17 P. bendeei, and 2 of the 11 P. brevicauda assigned to
P. longicaudatus; 3 P. longicaudatus, 4 P. brevicauda, and 6 P. bendeei
assigned to P. goeldii; 1 P. bendeei, 3 P. brevicauda, and 3 P. semispinosus
assigned to P. semispinosus; and 2 P. semispinosus assigned to P. guyannensis.

Didier’s (1962) and Martin’s (1970) data support our view that the
majority of species of Proechimys are poorly diagnosed and that several,
as currently understood, are composite. The finding of four superficially
similar species at Balta bears out with surprising force Hershkovitz’s
(1948:139) cautioning remark that, when making comparisons, ‘Reliance
cannot be placed upon ‘topotypes,’ or even ‘paratypes’, . . . as two or more
species of very similar appearing spiny rats may occur in the same locality.”

ACKNOWLEDGMENTS

The specimens in the Louisiana State University Museum of Zoology were collected
by members of the LSU-MZ Peruvian expeditions during the summers of 1966, 1967,
1968, and spring of 1971. Appreciation for the financial support of these expeditions is
expressed to the following: Messrs. John S. McPherson (all four years) and Eugene
du Pont III (1968); the Bradley Fisk Fund (1971); and a grant from the Louisiana
State University Graduate Research Council awarded to Dr. George H. Lowery, Jr.
(1968). Gardner’s field work in Costa Rica was conducted while he held an appoint-
ment as a Fellow in Tropical Medicine during 1966 and 1967 with the Louisiana
State University-International Center for Medical Research and Training funded
under National Institutes of Health grant no. AI-00007. Financial support for Paton
was provided by the Museum of Vertebrate Zoology, University of California.

No. 44 Systematics of Proechimys 29

We are grateful to Dr. George H. Lowery, Jr., of the Louisiana State University
Museum of Zoology, for the opportunity to report on specimens in his charge; Dr.
Oswaldo A. Reig of the Departamento de Genetica, Universidad de Chile, Santiago,
for chromosomal information from some Venezuelan Proechimys; Dr. T. C. Hsu of
the Section of Cell Biology, The University of Texas M. D. Anderson Hospital and
Tumor Institute at Houston, for the use of laboratory facilities and for providing
certain equipment; Dr. Robert J. Newman, for constructive criticism of the manu-
script; Mr. Gene M. Christian, for drawing Figure 2; and Messrs. John P. O’Neill
and Kenneth M. Kensingar, Mmes. Mary Ann Gardner and Carol Patton, and the
Cashimaha Indians of Balta, for indispensable assistance in the field.

LITERATURE CITED

CARRERA, A.

DIDER, R.
1962. Note sur l’os penien de quelques rongeurs de l’Americ du sud. Mammal,
26:408-430.

ELLERMAN, J. R.
1946. The families and genera of living rodents. British Museum (Natural
History), 1: xxvii+689.

HERSHKOVITZ, P.
1948. Mammals of northern Colombia. Preliminary report No. 2: Spiny rats
(Echimyidae), with supplemental notes on related forms. Proc. U. S. Nat.
Mus., 97:125-140.

1960. Mammals of northern Colombia, preliminary report No. 8: Aboresal rice
rats, a systematic revision of the subgenus Oecomys, genus Oryzonmys. Proc.

HOOFER, P. T.
1932. A systematic review of the harvest mice (genus Reithrodontomys) of Latin

Univ. Michigan, 61:1-11, 5 plates.

MARTIN, R. E.
1970. Cranial and bacilar variation in populations of spiny rats of the genus
Proechimys (Rodentia:Echimyidae) from South America. Smithsonian Contrib.

MOOJEN, J.
1948. Speciation in the Brazilian spiny rats (genus Proechimys, family Echimi-

OSSGOOD, W. H.
29:191-204.
PATTEN, J. L.

REIG, O. A., P. KIBLISKY, AND I. LORIG

RIDGWAY, R.

SANBORN, C. C.

SLUD, P.

THOMAS, O.

TOSI, J. A., JR.