Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 44

1-18-1978

SCS 43: Locally Quasicompact Sober Spaces are Baire Spaces

Karl Heinrich Hofmann Technische Universitat Darmstadt, Germany, hofmann@mathematik.tu-darmstadt.de

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Hofmann, Karl Heinrich (1978) "SCS 43: Locally Quasicompact Sober Spaces are Baire Spaces," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 44. Available at: https://repository.lsu.edu/scs/vol1/iss1/44

NAME Karl H.Hofmann	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
TOPIC Locally quasicompact sober s	paces are Baire spaces	
REFERENCES Lawmann I (K.H.Hofma Lawmann II ("	nn and J.D.Lawson ,Irreducibility, Semigroup F. <u>13</u> (" " " . The spectral t	76/77 heory
of cont	inuous lattices, on the referee's	tabl +
LEMMA 1. Let L be a continuous that for some sequence $a_0 > a_1 >$	lattice and V a Scott-open subset . $a_2 > \dots$ one has	such
(HYF) $Va_n \subseteq V$ for $n = 0, 1,$	•	
Then for all $v \in V$ there is an op	en filter $\underline{U} \subseteq V$ such that $va_n \in U, n$	0,1,
(Remark. For the applications in	this memo, $v=1$ would suffice.)	
Proof. Let v & V be given and se b _k ,k=0,,n such that	t b _o = 1.Suppose that we found eleme	ents
(i) $vb_k \in V$ for $k = 0, \dots$, n ,	
(ii) $b_k \ll va_{k-1}b_{k-1}$ for k	=1,,n.	
(For n=0 ,nothing is assumed in	lieu of (ii)). We construct bn+1:	
By (i) we have $vb_n \in V$, hence by (HYP) we have (1) $va_n b_n \in V$. Let by	D
denote the directed set $\sqrt[4]{va_n b_n}$ continuous. In particular, L is $= v^2 a_n b_n = va_n b_n \in V$ by (2) and i.e. there is a $b_{n+1} \in D$ with ((4) $b_{n+1} \ll va_n b_n$. Then (3) and	. Then (2) sup D = $\operatorname{va}_{n} \operatorname{b}_{n}$ since L is meet-continuous, and thus sup vD = (1). As V is Scott-open, vD \land V \neq 3) vb _{n+1} \in V and b _{n+1} \in \bigvee va _n b _n , is (4) make (i) and (ii) valid with r	is v sup! Ø, .e. n+1 ⁺
in place of n. By induction we t (resp.,k=1,2,). Then (ii) imp	hus have (i) and (ii) for all $k=0$ lies $b_{n+1} \ll va_n^b \leq b_n$, hence	, 1 ,
(5) b _{n+1} ≪b _n for all n. By (i) we note $b_k \ge vb_k \in V$, whence	
(6) $1\mathbf{b}_{n} \in \mathbf{V}$ for all n. By (ii) (7) $\mathbf{va}_{n} \in 1\mathbf{b}_{nq}$ for all n. Now as an ascending union of filters $\mathbf{U} \subseteq \mathbf{V}$. But (F) shows $\mathbf{va}_{n} \in \mathbf{U}$ for	we note $va_n \ge va_n b_n \ge b_n \in V$, when set $U = \bigcup_{n=0}^{\infty} \uparrow b_n$. Then U is a f .By (5) it is an open filter, and by all n. []	ce filte: y (6)

1

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 44 LEMMA 2. Let L be a continuous lattice and A \in L a countable set such that a \in A, x \neq 0 implies xa \neq 0. Then IRR L \subseteq 1 xA implies x = 0. Proof. Fix x \neq 0 and write A = {x₀, x₁,...} and set a_n = x₀...x_n. Then xa_n \neq 0 for all n (by induction). Apply Lemma 1 with V = L (0), v = x, and find an open filter U such that 0 \notin U, xa_n \in U for all n Now let p be a maximal element in L U. By Lawmann I, p \in IRR L. BUT p \in L U \subseteq L \bigvee 1 xa_n \in L \bigvee 1 xx_n = L 1 xA. I

Hofmann 1-18-78 page 2 -

LEMMA 3. Let L be a continuous lattice and $A \subseteq L$. Then the following are equivalent: (1) $\uparrow A \cap$ Spec L is nowhere dense in Spec L . (2) Spec $L \not = \uparrow x \cup \uparrow A$ for all x with Spec $L \not = \uparrow x$. (3) Spec $L \not = \uparrow x \cup \uparrow A$ for all x with Spec $L \not = \uparrow x$.

If L is also distributive and $A = \{a\}$, then these are also equivalent to (4) $0 \neq xa$, for all $x \neq 0$.

Proof. Write X= Spec L. Then $\uparrow A \cap X$ is nowhere dense in X iff every non-empty open set in X meets the complement $X \setminus \uparrow A$, and since the closed sets of X are precisely the sets $\uparrow x \cap X$, this is equivalent to saying that for all x with $X \setminus \uparrow x \neq \emptyset$ we have $\emptyset \neq (X \setminus \uparrow x) \cap (X \setminus \uparrow A) =$

 $X \setminus (\uparrow_{X \cup} \uparrow_{A})$, which shows the equivalence of (1) and (2). But $p \in X \setminus (\uparrow_{X \cup} \uparrow_{A})$ iff $x \notin p$ and $a \notin p$ for all $a \in A$ iff $x \notin p$ for all $a \in A$, since p is prime, and this means that $p \in X \setminus \uparrow_{XA}$. Thus (2) and (3) are equivalent. If L is distributive, then Spec L $\notin \uparrow_{X}$ iff $x \neq 0$ by Lawmann I, and Spec L $\notin \uparrow_{XA}$ iff $x a \neq 0$. Thus (3) and (4) are equivalent. []

RECALL. A topological space X is a <u>Baire space</u> iff for all closed subsets $Y' \neq \emptyset$ of X and each sequence Y_1, Y_2, of subspaces which are (closed and) nowhere dense in Y, we have $\bigcup Y_n \neq Y$.

THEOREM 4. Every locally quasicompact sober space is a Baire space. Proof. Let X be locally quasicompact sober. By Lawmann II we may assume X =Spec L for a continuous Heyting algebra L. Each closed subset of X is of the form $f_X \cap X_A =$ Spec f_X , hence is itself the spectrum of a continuous Heyting algebra. Thus it suffices to show that for any sequence X_n of nowhere dense closed sets in X we have $X \neq \bigcup X_n$.

2

page 3

Now $X_n = X \cap f x_n$ with $xx_n \neq 0$ for all $x \neq 0$ by Lemma 3. Since L is distributive, LRR $L \setminus \{1\} = X$ (see Lawmann II). Apply Lemma 2 with $A = \{x_0, x_1, \ldots\} \text{ and find } X \not \in \uparrow A = \bigcup \uparrow x_n, \text{ i.e. } X \not \in \bigcup X_n \cdot I$ EXAMPLE 5. 1. Let X = N with upper sets open. Then X is locally quasicompact T_o, but is not a Baire space. 2. Let X be the set of all ordinals less than the first uncountable one with upper sets open. Then X is a locally quasicompact T Baire space which is not sober. [] Remark. Both examples are 1st countable. For the second, X (the sobrification) is not. PROPOSITION 6. Let L be a continuous Heyting algebra and X an order generating subspace of Spec L. (Note.By Lawmann II, every core compact space is of this form.) Now suppose that L satisfies the following countability hypothesis: (COUNT) For each prime $p \neq 1$ the space $\int p$ is first countable in p (w.r.t.the Lawson topology). Then the following statements are equivalent: (1) X is sober .(2) X = Spec L . (3) X is a Baire space. Proof. (1) (\Rightarrow) (2) by Lawmann II and (2) \Rightarrow (3) by Theorem 4. Suppose not (2). Then we find a p \in Spec L \setminus X, and Y = $\uparrow p \cap X$ is a closed subspace of X. Note that by Lemma (3) we have (i) for all $\mathbb{R}^{v > p}$ (xv > p_{λ} and thus) $\int v \cap Y$ is nowhere dense closed in Y. Let $V = \{p \setminus \{p\}; \text{ since } p \text{ is prime, } V \text{ is a filter. Since } X \text{ is order}$ generating $(\mathcal{X})_{A} p = \inf(\uparrow p \land X) = \inf Y$ whence $Y \neq \emptyset$. . By the definition of the Lawson topology, p now has a neighborhood basis in posts of of/the form $p \setminus (fv_1 \dots v_n)$ with $v_k \in V./(Sing plig)$ prime. however. we can say that (iii) in the point p has a neighborhood basis of sets of the form $p \setminus h$, $v \in V$. By (COUNT), this becomes: (iv) in the point p has a basis of neighborhoods of the form $p \setminus \uparrow v_n$ with a sequence $v_0 \ge v_1 \ge \cdots$ in V. The Lawson topology is Hausdorff, whence $\bigcap (p \setminus v_p) = \{p\}$, and thus (v) $V \subseteq \bigcup_{n \to \infty} V_n$. By (i), the closed sets $Y_n = \bigwedge_{n \to \infty} Y_n$ are nowhere dense in Y, but $Y = \bigcup_{n \to \infty} Y_n$ by (v). Thus X is not a Baire space, i.e. we proved not (3). Remark. The fact that X is order generating was used in $(1) \Rightarrow (2)_4$

3

Hofmanin 1-18-78 Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 44

Clearly (COUNT) is satisfied if L is metrizable (which is tantamount to saying that L contains a countable subset C such that $(\forall x,y) x << y \Rightarrow (\exists c)$ c<C and x $\leq c << y$). Further, (COUNT) is equivalent to: "SpecL is first countable" (i.e. "X is first countable"). This is satisfied if SpecL is second countable; but O(SpecL) \cong O (X) (Lawmann II); hence the latter means that X is 2nd countable.

Consequence: For 2nd countable X, sobriety \iff Bairity.

• • • • • • • • • • • • • • • • • • •	
Distrubution,	
K.H. Hofmann	TU Paris
Klaus Keimel	TH Darmstadt
J.D. Lawson (+ G.Gierz)	LSU Baton Rouge
M. Mislove	Tulane
A. Stralka	Riverside
O. Wyler	Carnegie-Mellon
J. Isbell	SUNY at Buffalo
H. Carruth	U. Tennessee
D.S. Scott	Oxford

page t