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Per T spaces ;X , Y , Z , Proposition 1.1 of [l] says in effect: if a map 
f : XX Y-—>Z is separately continuous and Y quasilocally compact, then f is 
jointly continuous. This is well known to be false if X = Y = Z = [0,l] , the unit 
interval. Prop. 1.1 was used in [l] to prove Corollaries 1.2 and 1.3. Both corollaries 
are valid. Corollary 1.2 says that if the functors and - KY2 on spaces 
have right adjoints, then their composite (up to natural equivalence) - X(Y^X Yg) 
has a right adjoint. This is of course true. Corollary 1.3 in [l], is important for 
[1] and probably also otherwise; thus a rescue effort is in order. This effort led 
to a study of the basic properties of Scott topologies which I present here. 

It seemed reasonable to study Scott topologies in the maximal feasible generality; 
this led to the consideration of a category of upper Dedekind complete posets, with 

maps preserving suprema of updirected sets as morphisms.. We denote this category 
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by D , Scott topologies define a full and faithful functor from D to spaces. 

We denote this functor, with an appropriate codonain restriction, by S . 

As pointed out by the Grothendieck school in SGA 4-1 (Lecture Notes in Hath* 

269), and used by D, Scott in LM 274 for the creation of Scott topologies, every 
space X has an induced poset structure, with in X iff, equivalently, every 

open neighborhood of x in X is also a neighborhood of y , or x^ ̂y} , the 

closure of -^yl; * We shall call X a d-space if X with this order is upper Dede-

kind complete, and the topology of X is adarser than the induced Scott topology. 

Every sober space turns out to be a d-space. Not every d-spacs is sober, for 

every space is a d-space. If X is a space, then the induced order on X 

is discrete, hence Dedekind complete, with the discrete topology as Scott topology, 

d-spaces define an epixeflective full subcategory of spaces; we skip the proof of 

this result as irrelevant for our present purpose. Warning: reflections for d-spaces 

are not surjectivej they are strict embeddings. 

We do not know whether an object of D with the Scott topology is always a sober 

space. It is always a d-space; the order induced by the Scott topology is the given 

order, Aua der Not eine Tugend machend, we substitute d-spaces for sober spaces in 

the present/study. The category D is cartesian closed; it is also embedded into 

d-spaces as a fiill coreflective subcategory. Combining the last two statements, 

we re-establish Cor. 1.3 of [l]. 

1. Dedekind complete posets 

1.1. We call a poset S (upper) Dedekind com-plete if every updirected subset 

of S has a supremum in S , A morphism of Dedekind complete posets S , T is a 

mapping f : S •—which preserves order, and suprema of updirected subsets. With 

composition of mappings as composition of morphisms, Dedekind complete posets and their 

morphisms form a category which we denote by D . By a mathematician's habitual la2y-

ness, an object of D will be called a d-set in this memo. 

1.2. A sup semilattice S is a d-set iff S is complete, but there are many 

d-sets which are not complete lattices. In fact, every discrete poset is a d-set; 

the only updirected subsets of a discrete poset are singletons. This includes the 

2

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 36

https://repository.lsu.edu/scs/vol1/iss1/36



empty poset: an updirected subset, having upper bounds of all finite subsets, cannot 
be empty. One verifies easily that discrete posets are free d-setsj they define a 
left adjoint of the forgetful functor from D to sets. 

The category D has products (and in fact limits of all small diagrams), and the 
forgetful fvinctor from D to posets preserves these products. Thus the product poset 
of a family of d-sets is the product of this family in ^ , 

1,3. THEOHEM, The category D is cartesian closed. 

Proof• We denote by D[S,T3 , for d-sets S and T , the set of all morphism 
f : S—^T .In D , ordered point-wise. If PC DCS,T] is updirected, then every 
set P(x) of points f(x) of T , with fP , is updirected, for x6X , 
We put (sup F)(X) = sup P(x) ; this clearly is the desired supremum of P if it is 
a morphism of D . Por C. S updirected, we have 

(supP)(sup^) = sup f(supcp) = sup sup f(x) 
feP f<£P 

= sup sup f(z) = sup (sup p)(x) , 
XGCp fep x£:tj> 

Thus D[S,T] is indeed a d-set, with pointwise suprema. 
Now let f* : R—^D[S,T] correspond to f ; R>CS—^T by f*(x)(y) = f(x,y) , 

for d-sets R , S , T and (x,y) 6-RXS. If f6P and 4^ C. ̂  is updirected, 
then tx^ K is updirected in R X S for x ̂  R , with supremum (x, sup vp) , and 
f*(x)(sup(p) = f(x, sup^) = sup f(x,<p') = sup f*(x)(^ . Thus each f*(x) is in D » 

A similar computation shows that f* preserves suprema of updirected sets. 
Conversely, let f* ; R —^D[S,T] in D , and let 4^ be updirected in RX S , 

with projections cpCR and t^CS . !^ien f : RX S'—clearly preserves 
order, and sup f(4^) .£f(sup(p, supip) = f(sup^) follows. We have 

f(sup 4^) = f(sup(^, sup^) = f*(supcj) )(suptp) 

= (sup f*(x))(suptp') = sup sup f*(x)(y) . 
x&f xacp 

If xG(f> and y e ^ then (x,y*)eCj) and (x',y) & (p , for suitable x* ̂  R 

and y' 6"S . These points have a common upper bound (x",y") in Ct> , with x ̂ x" 
and yXy" , and with f*(x)(y) f(x",y") . Now f(supC(>):$ sup f(Cli) follows; 

thus f is a morphism of D and 1.3 is proved. 
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2« d-STjaces 

2»1. We recall that every space X has an induced order, with the following 

statements equivalent for x , y in X . (a) x^y . (b) x^-jyj , the closure 

of |yj; . (c) Every neighborhood of x in X is also a neighborhood of y , This 

order is discrete iff X is a T^^ space, 

Froa now on, every space will be provided with the induced order. We note 

that every open set is increasing, and that {x^ = ^/x for x X . 

2,2. We recall that a closed set P in a space X is called irreducible in 

X if P iinVnot empty, and not the-set union of two proper closed subsets, .. One" sees 

easily that a closed set P in X is irreducible in X iff the open sets 'V X 

such that Y ^ F 0 form a filter in the lattice of open sets of X . 

If x£ X , then, {xj = ^x is irreducible. We say that x is a generic point 

of an irreducible closed set PifP=4,x, 

If q> C2 X with irreducible closure then x £X is a generic point of ̂  
iff X ̂  V -<1==^ O V for every open set Y cHl X , It follows that x = sup <p 

in the induced order of X . 

If (pd X is undirected for the induced order of a T^ space X , 

then ̂  is irreducible in X , 

Proof, if V is open in X , then V V/o<^ • If V meets 

(|5 in y , and an open set U meets cp in x , then x and y have a common 

upper bound z In <^ , with z ̂  U A V , Thus the open sets meeting form a 

filter, and cp is irreducible. 

2.4. DEPIKITION, We say that a T^ space X is a d-space if ̂  has a generic 

point for every X which is updirected in the induced order of X . 

We recall that a space X is called sober (primal has also been used) if.. ^ 

every irreducible closed set in X has a generic point. Thus every sober space is 

a d-space. 

If X is a T^ space, then an updirected subset is a singleton , with 

generic point x . Thus every T^^-space is a d-space. 

We denote by TOP^ the category of d-spaces and their continuous maps. 

*) The filters thus obtained are. the completely prime filters of open sets. 
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2.5. PROPOSITION. Induced orders define a functor I : TOP^ —which pre­

serves \inderlying sets and mapplners. 

Proof. If X is a d-space and t^dX updirected, then has a supremum in 

the induced order, by Bef. 2,4 and 2.2. Thus X with the induced order is a d-set 

which we denote by I X . 

If f : X —y is a map of d-spaces and ^ d X is updirected with 

supremum x , then we show that f(x) is a generic point of fC^J". It follows that 

f(x) = sup f(^) ; thus f : I X —>I Y in B . Indeed, if V ̂  X is open, then 

f(x)€V ̂  x6f~^(v) 4=^ f~^(v)r.(p Y^f(<p) ^ ^ \ 

this verifies our claim, by 2.2. 

2.6. As noted in the introduction, d-spaces form a reflective full subcategory 

of T^ spaces, with strict embeddings as reflections. We shall not prove this here; 

all we need is a much more modest result. 

PROPOSITION, The product of two d-snaces is a d-space.. 

Proof. Let "X"' and Y be d-spaces, and let 0 C. X X Y be updirected, with 

projections <p and vf/» Then (p and have generic points tt. = sup^ and 

y = sup*^ in X and Y . Let W be a neighborhood of (u,v) = sup<^ , with 

U X.V dW for open neighborhoods U of u and V of v , Then U meets ̂  • 

and V meets , in points x and y . As in the proof of 1.3, there is (x'^y") 

in 4) with (x,y) ̂  {x",y") , and hence (x",y")€:UX V dW . Thus every neigh­
borhood of (u,v) meets (|> , and (u,v) is^eneric point of . 

3. Scott topologies 

3.1, We define the Scott topology of a d-set L in the usual way. U C. L is 

Sbott-open iff U is increasing, and sup<p6U 0 for every updirected 
subset of L V In particular, a discrete ordered set has a discrete Scott topo­

logy. If 2 = {.0,1^ with 041, then 2 with the Scott topology is the Sier-

pinski space. If L is a d-set, then we denote by S L the topological space 

obtained by providing L with the Scott topology. 
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3»2. PROPOSITION. If L Is a d-set. then S L is a d-space« with induced 
order I S L = L . 

Proof. Sets LX^'X are Scott-open; it follows that SL is a space» with 

X 4 y in the induced order if x 4 y in L . Oh the other hand, x y for the 

induced order of SL if x ^ y in L ; thus ISL = L . By the definition of the 
_ ft, 
Scott topology and 2.2, sup<^ is^generic point of for d L updirected; thus 

SL is a d-space. 

Our next result is thoroughly predictable, 

3.3. PROPOSITION. Scott topologies define a fimctor S : D —>TOP^ which pre­

serves underlying sets and nappings. 

Proof. We must only show that f : SL —> SM in TOP for f : L —* M in D. • 

If V is Scott-open in H, then f~^(V) obviously is increasing in L , If C L . 

is updirected and sup<^£ f ̂ (v) , then f(sup^) = sup f(cp) is in V , But then 

f((|)) A V , and this says A f~^(v) ̂  0 . Thus f~^(V) is Scott-open in L , . 

and f : SL —> SM is continnous, 

2^. THEOREM. The Scott tonologv functor S : D —> is a left ad.iotnt 

right inverse of the functor I : TOP^ •—. 

Proof. If L is a.:-d-set:'and X a d-space, then we show that f : S L —X 

in TOP^ , for a mapping f of the underlying sets, iff f : L •—>I X in jD , 

As both functors preserve underlying mappings, this provides a natural bisection. 

If . f : L —^ I X and V is open in X , then V is increasing in IX, and 

thus f""^(v) increasing in L . If d L is updirected and f(sup^) = sup f(^) 

in V , then f((p) C\ Y 0 0 in the d-space X ; thus <pA f~^(v) 0 0'i Now f""^(v) 

is Scott-open, and 'f : S L —^ X follows. 

If f : S L —^ X and x y in L , then x ̂  f ̂ (v) —y <=- f ̂ (v) for 

V open in X , and f(x) ̂  f(y) in IX follows. If now ^ ci L is updirected, 

, and f (sup £^) is V" for V open in X , then sup 6 f~^(v) , and <p A f''^(vj^^ol-

lows for the Scott-open set f~^(v) . Now f(<^) rsY 0 0 , Thus f(sup(^) is the 

generic point sup f(<|>) of f(<^) , and f t L —>I X in D . 

The unit.',wL —> ISL of the adjunction corresponds to id SL by the adjunc­

tion described above. By 3.2, this is the identity map id L in D ; thus S is a 

right inverse, as well as a left adjoint, of I , 
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3«5» KEMARKS. Since the unit of the adjunction S •—j J is an iscxnorpMsmy the 

functor S is full and faithful. This is well known for the restrictions of S which 

have been studied by D. Scott and other authors. 

The functor S embeds into as a full subcategory of d-spaces with 

Scott topologies. Since S has a right adjoint I , this is a coreflective subcate­

gory of , with coreflections idj^ : S I X —X . We note in particular that 

the topology of a d-space X is coarser than the Scott topology of the d-set IX, 

It is of cotirse possible to define a "well" below" relation for d-sets^ and con­

tinuous d-sets, I have not studied these concepts. 

4. An application 

4.1. If Y is a topological space and 0(Y) the complete lattice of open sets 

of Y , then the Scott topology of 0(Y) is the ̂ l-iopology of Day and Kelly [2]. 
As shown in [2], this is the finest topology of 0(Y) with the property that for 

every topological space X and every open set U c X XY , putting y £ ̂̂ (x) 

(x,y) €. U , for (x,y)^XX Y , defines a continuous map fy : X—>0(Y) . • 
Conversely, every continuous map f : X —^ 0(Y) is of the form f = fy , for an 

open set U C. X X Y , if the map id 0(Y) is of this form, i.e. if the set 

Ey = {(V,y) £0(Y) XY I y 

is open inSO(Y)x Y . In this situation, i" = fy for U = (f x idy)'"^(EY) . Spaces 

with this property have been called il-compact in [2], and quasilocally compact by 

A.S, Ward and other authors. 

It is well known that a topological space Y is quasilocally ccmpact if and only, 

if 0(Y) is a continuous lattice. 

For a d-set L , the characteristic functions of the Scott-open subsets of L 

are the maps f : S L—>^S 2 , and hence the elements f : L 1—?2 of the d-set 

D[L,2] . This bijection between open sets and their characteristic functions clearly 

is an isomorphism of the complete lattices D[L,2] and 0(S L) . 

We now obtain a slight generalization of Corollary 1.3 in [l]. 
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4.2. PROPOSITION. If L is a d-set for which 0(S L) is a continuoxxs lattice. 

then S KX S L = S (K X!») for every d-set K . 

Proof. We note that S(K>V L) = Sl(SKX SL) is the corcflection of SK X SL ; 

thtis S(K X L) has a finer topology than SK X SL , and more open sets. 

On the other hand, a Scott-open subset U of Kx L is given by its character­

istic function hg ; K X.L —2 which is a morphism of d-sets, by the remark made 

above, % our Thm. 1.5, this corresponds to a morphism : K —> P[L,23 in D , 

and composing this with the isomorphism between D[L,2] and 0(S L) , we obtain a 

morphism f^ : K—? 0(S L) of d-sets. It is easily verified that fy is given by 

y ̂ f^(x) (x,y)6U • for (x,y)€. Kx L , 

Now if 0(S L) is a continuous lattice, then the map f^ : SK >—>S0(SL) cor­

responds to an open subset U of SKX SL . Thus SKXSL and S(KX L) have the 

same open sets; this proves 4-2. 
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