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For To spaces ‘X , Y , Z , Proposition 1.1 of [1] says in effect: if a map
f : XX Y—>Z is separately continuous and Y quasilocally compact, then f is
jointly éontinuous. This is well known to be false if X =Y =2 = [0,1] ,' the unit
interval. Prop. 1.1 was used in [l] to prove Corollaries 1.2 and 1.3. Both corollaries
are valid, Corollary 1.2 says that if the functors - };Yi and - )(Y2 on To'spaces
have right adjoints, then their composite (up to natural equivalence) - ><(Yl>( Yé)
has a right adjoint. This is of course true. Corollary 1.3 in [l].is important for
[l] and probably also otherwise; thus a rescue effort is in order. This effort led
to a study of the basic properties of Scott topologies which I present here. _

It seemed reasonable to study Scott topologies in the maximal feasible generality;
this led to the consideration of a cetegory of upper Dedekind complete posets, with

maps preserving suprema of updirected sets as morphisms.. We denote this category
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by D . Scott topologies define a full and faithful functor from D to To spaces,

. We denote this functor, with an appropriate codomain restriction, by S .
4 As ﬁointed out by the Grothendieck school in SGA 4-1 (Lecture Notes in Math,
269), and used by D. Scott in LNM 274 for the creation of Scott topologies, every To
space X has an induced poset structure, with x<£y in X iff, equivalently, every
open neighborhocd of x in b 4 is also a neighborhood of y , or x557§§§ ,» the
closure of {y} . We shall call X a d-spade if X with this order is upper Dede-
klnd complete, and the topology of X is coarser than the 1nduced Scott topology. ‘

Every sober space turns out to be a d~space. Not every d-space is sober, for
every T, space is a d-space. If X is a T, space, then the induced order on X
is discrete, hence Dedekind complete, with the discrete topology as Scott topology.
'd—spacés define an epireflective full subcategory of To spaceé; we skip the:proof of
this result as irrelevant for our present purpose. Warning: reflections for d-spaces
are not surjéctive; they are strict embeddings. ‘ v
We do not know whether an object of D with the Scott fopology is always a sober

space. It is always a d-space; the order induced by the Scott topology is the given
order. Aus der Not eine Tugend machend, we substitute d-spaces for sober spaces in
the present study. The category D is cartesian closed; it is also embedded into

. d-spaces as a full coreflective §ubcategory. Combining the last two statements,
we re-establish Cor. 1.3 of [1]. '

1, Dedekind complete posets

;5%; We call a poset S (upper) Dedekind complete if every updirected subset
of S has a supremum in S ., A morphism of Dedekind complete posets S , T is a
mapping f ¢ S ~—>T which preserves order, and suprema of updirected subsets. Wi@h
composition of mappings as composition of morphisms, Dedekind complete posets and their

morphisms form a category which we denote by D . By a mathematician's habitual lazy-

ness, an object of D will be called a d-set in this memo.

1.2. A sup semilattice S5 is a d-set iff S is complete, but there are many
d-sets which are not complete lattices. In fact, every discrete poset is a d-set;
the only updirected subsets of a discrete poset are singletons. This includes the
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empty poset: an updirected subset, having upper-bounds of all finite subsets, cannot
be empty. One verifies easily that discrete posets are free d-sets; they define a
“left adjoint of the forgetful functor from D to sets. '

The category 1D has products (and in fact limits of all small diagrams), and the
forgetful functor from D to posets preserves these products. Thus the product poset

of a family of d-sets is the product of this family in D .

1.3. THEOREM, The category D is cartesian closed.

Proof. We denote by D[S,T] , Tor d-sets S5 and T , {he set of all morphis;n
f:8-—>T ;in D, ordered point-wise. If F C ‘D[S,"‘t'] is updirected, then every
set F(x) of points f(x) of T, with fEF s is updirected, for x&€X .

We put (sup F)(x) = sup F(x) ; this clearly is the desired supremim of F if it is
a morphism of D . For ¢ & S updirected, we have ' ‘
(sup F)(sup Cf) = sup ;‘(supc?) = sup isup f(x)
 of <5 fEF "‘xX&EQ

= sup sup f£(x) = sup (sup F)(x) .
xp fEF X &P -

"Thus D[S,T] is indeed a d-set, with pointwise suprenma.

Now let f* : R—>D[S,T] correspond to £ : RXS—>T by f*(x)(y) = £(x,v) ,
for d-sets R, S , T and (x,y) €RXS . If f€D and Y X5 is updirected,
then {x]; k&{/ is updirected in RX S for x &R, with supremum (x, sup ty) , and
£*(x)(supy) = £(x, supy) = sup £(x,4) = sup £*(x)(¢) . Thus each f*(x) is in D .
A similar computation shows that f* preserves suprema of updirected sets.

Conversely, let f* : R —>D[S,T] in D, and let (D be updirected in RX S ,
with projections CPC.R ‘and &,UCS . Then f : RX S—>T clearly preserves
order, and sup f((})) éf(sup P supq/) = f(sup (b) follows. We have

f(sup P) = f(supc;), supy) = £*(supg ) (sup )

(sup f*(x))(sup L}/) = sup Ssup f*(x)(y)- »

x€EQP YEY x€eFP ‘ ‘ ,
If x6¢ and yey; then (xy')ed amd (x',y)e @, for suitable x' &R
and y' €S . These points have a common upper bound (x* , ") in @, with x £x"
and y£y", andwith *(x)(y) < £(x",y") . Now f(supP)< sup £(() follows;
thus f is a morphism of D and 1.3 is proved. '
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2. d—-s‘_n__gg__g_s;

_ 2.1. Ve recall that every To space X has an induced order, with the following
statements equivalent for x ,y in X. (a) XLy . (v) xém » the closure
of {y& . (e¢) Every neighborhood of x in X is also a neighborhood of y . This
order is discrete iff X is a ’I‘l space. ' | , '

From now on, every To space will be provided with the induced order. We note
that every open set is increasing, and that -{;E = ,.be for x&X . )

2 2 VWe recall that a closed set P in a T space X is called 1rreduc;ble in
X if F is "not empty, and riot’ the set union of two proper closed subsets...One sees
easily that a plosed set F in X is irreducible in X iff the open sets "V < X
such that VAF £ 8 form a filter in the lattice of open sets of X . )

If x&€X, then. '{i}‘ = ,Lx is irreducible. We say that x is a generic point
of an irreducible closed set F if F = J,x .

If @ € X with irreducible closure Cp , then x&X 1is a generic po:mt of ? '
iff x€V &= NV £ for every open set V< X, It follows that x = sup P

in the induced order of X .

gé. LEPfMA If qu_’. X is updirected for the induced order of a T space X ,

then ?) is irreducible in X .

Proof. If V is openin X, then V r)ff# g.&=> Ve #8. If V neets
cf: in y , and an open set U meets P in %, then x and y have a common
upper bound z in @ with z& UNV . Thus the open sets meeting Z:%T form &
filter, and cP is irreducible.

2.4, DEFINITION, We say that a To space X is a d-space if ?ﬁ' has a generic
point for every P X which is updirected in the induced order of X . _
We recall that a Tc space X is called sober (primal has also been used) if .. -

every irreducible closed set in X has a generic point. Thus every sober space is
a d-space. .

If X isa T, space, then an updirected subset is a singleton «{x} , with
generic point x . Thus every Tl-space is a d-space.

. We denote by TOPd the category of d-spaces and their continuous maps.

¥*) The filters thus obtained are the completely prime filters of open sets.
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2,5. PROPOSITION, Induced orders define a functor I : ’J.‘OPd —> D which pre-

serves underlying sets and mappings.

Proof. If X is'a d-space and c‘/>C X updirected, then P has a supremum in
the induced order, by Def. 2.4 and 2 2. Thus X with the induced order is a d-~set
which we denote by I X .

If f:X~—»Y is a map of d-spaces and P X is -updirected with
supremum X , then we show that f(x) is a generic point of ?(ér. It follows that
£(x) = sup f(;p) ; thus £:IX—>IY in D . Indeed, if V(. X is open, then

f(x)eV & €V &= fl(V)ncF;é g &= vr\f(cp) A
this venfles our cla:un, by 2.2.
2.6, As noted in the introduction, d-spaces form a reflective full subcategory

of T o Spaces, with strict embeddings as reflections. We shall not prove this here;

all we need is a much more modest result.

PROPOSITION, VThe product of two d-spaces is a8 d-space.

gr_@. Tet “X" and Y bé - d-spaces, and let O XXY be updirectéd with
projections ¢ and . Then’ ? and Y’ have generic points u = supsp and
=supy din X and Y. Let W 'be a neighborhood of (u,v) = supd , with
U XV W for open 'neighborhoods U of uw and V of v. Then U meets sa P
and V neets \//s, in points x azid Yy . As in the proof of 1.3, there is (x",y")
in @ with (x,y) £ (x",y") , and hence (x",y")& UX V < W . Thus every neigh- -
borhood of (u,v) meets &b, and (u,v) isf?'generic point of 6- " ,

2: Scott topologies

3.1. Ve define the Scott topology of a @&-set L in the usual way. UC. L is
Scott-open iff U is increasing, and sup @ el = Un? £¢ for every updirected
subset of L v In particular, a discrete ordered set has a discrete Scott topo-
logy. If 2 ={_0,1} ‘with 01, then 2 with the Scott topology is the Sier-

pirfski}space. If L is a d-set, then we denote by S L the topological Spacev
obtained by providing L with the Scott topology.
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P ————

3.2. PROPOSITION. If L is a d-set, then S L is a d-soace, with induced
-order ISL=L, ‘ /

; ‘Proof. Sets L\J}x are Scott-open; it follows that SL is a To space, with
X é’; ¥y in the induced order if x 4Ly in L. Uf;.the other hand, x <y for the
induced order of SL if x<£y in L ; thus ISL=1L ., By the definition of the
Scott topology and 2.2, supz? is:éeneric point of c(a - for cr C Ir updirected; thus
SL is a d-space.
Ou: next result is thoroughly predictable.

3.3, PROPOSITION, Scott topologies define a functor S : D -———)'JJOPd which pre-
serves underlying sets and mappings. a

Proof. We must only show that £ : SL—> SM in TOP for f : L-——-»_ﬁ in _Il.»
If V is Scott-open in M, then f-l(V) obviously is increasing in L . If 4 < L .
is updirected and sup ¢ € £ (V) , then f(sup(,b) = sup f(c{:) is in V . But then
f(tf) NV £4, and this _ééys $ N le(V) #¢ . Thus f-l(V)' is Scott-open in L ,
and f ¢ SL —> SM is continuous,

3.4. THEOREM. The Scott topology functor 5 : D —>TOP, is a left adjoint
right inverse of the functor I : ’.I.‘OPd —3>D .

Proof. If ‘L-is a-d-set:and -X a d-space, then we show that £ : S L —» X
in TOP, , for a mapping f of the underlying sets, iff £ :L —>IX in D.
As both functors preserve underlying mappings, this provides a natural bijection. _

If £f:L—>IX and V is openin X, then V is it}éreasing in IX, and
thus f.l(V) increaéing in L. If ¢ < L is updirected and f(sup?:) = sup f(gb)
in V, then 'f((P)(\ V##P in the d-space X ; thus N £IV) £ 85 Now £H(V)
is Scott-open, and ‘£ : S L —> X follows. ‘ :

If £:8SL—>X and x£y in L, then Xef-l(v)"':':‘_;’ ye £(V) for
\'} ‘open in X, and f(x) <« f(y) in I X follows. If now P L is updirected,

. and . f(sup ?)e V> for V openin X, then sup?e f-l(v)-, and (Pf\f-l(V) fol~
lows for the Scott-open set f-l(V) . Now f(c?) ~V£F. Thus f(sup so) is the
generic point sup f(cP) of ‘f'(@ y and f: L —IX in D.

The unit.'L —»I S L of the adjunction corresponds to id SL by the adjunc-
tion described above. - By 3.2, this is the identity map id L in D ; thus S is a
right inverse, as well as a left adjoint, of I . '
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l_;._-b:' REMARKS. Since the unit of the adjunction S —] I is an isomorphism, the
functor S is full and faithful. This is well known for the restrictions of S which
have been studied by D. Scott and other authors.

The functor S embeds D into TOPd as a full subcategory of d-spaces with
Scott topologies. Since S has a right adao.mt I, this is a coreflective subcate-
gory of TOP , with coreflections idy :SIX -———>X We note in particular that
the topology of a d—-space X is coarser than the Scott topology of the d-set IX .

It is 6f course possible to define a Mwell below" relation for d-sets,and con-

tinuous d-sets. I have not studied these concepts.

4.__An application

‘1_._3.:. If Y is a topological space and o(Y) the complete lattice of open sets
of Y, then the Scott topology of O(Y) is the §)-topology of Day and Kelly [2].
As shown in [2], this is the finest topology of O(Y) with the property that for
every topological space X and evéry open set U X X’Y » putting yé& fU(x)
<> (x,y) €U, for (x,yJE XX Y, defines a continuous map fy * X —>0(Y) .
Conversely, every continuous map f : X —> 0(Y) is of the form f = fU s for an
open set UC X XY, if the map id O(Y) is of this form, i.e. if the set

= §yeor)xt|yev}

is open in SO(Y) %X Y . In this situation, £ =1f; for U= (£x 1d,)"(E/) . Spaces
with this property have been called- fl-compact in [2] and quasilocally compact by
A8, VWard and other authors.

. It is well known that a. topological space Y is quasilocally compact if and only,
if 0(Y) 1is a continuous lattice.

For a d-set L , the characteristic functions of the Séott-open subsets of L
are the maps f : S L—>5 2, and hence the elements 'f : L —>2 of the d-set
D[L,Z] . This bijection between open séts and their characteristic functions clearly
is an isomorphism of the complete lattices D[L,2] and O(S L) .

We now obtain a slight generalization of Corollary 1.3 in [1].
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a -d-set for which O(S L) is & continuous lattice,

4.2, PROPOSITION, If L is
then SXX SL = S (KxXL) for every d-set K.

~ Proof. We note that S(KX L) = SI(SKX SL) is the coreflection of SK X SL ;
thus S(K X L) has a finer topology than SK X SL , and more open sets.

On the other hand, a Scott-—opeh subset U of KX L is given bj its character-
istic function hU : K XL —> 2 which is g morphism of d-sets, by the remark made
above. By our Thm, 1.3, this corresponds to a morphism gy ¢ K—> D[L,Q] in D,
and composing this with the iscmorphism between D[L,2] and O(S L) , we obtain a
morphism £y : K —-—>O(vS L) of d-sets. It is easily verified that fy is given by
y EfU(x) &> (x,y) EUV, for (x,&;)é. KX5L. , _

‘Now if O(S L) is a continuous lattice, then the mép fU : SK —> S0(SL)" cor-
responds to an open subset U of SKX SL ., Thus SKXSL and S(KX L) have the

same open sets; this proves.é.z.
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