
Louisiana State University Louisiana State University

LSU Scholarly Repository LSU Scholarly Repository

LSU Doctoral Dissertations Graduate School

2010

Lattice Boltzmann modeling for shallow water equations using Lattice Boltzmann modeling for shallow water equations using

high performance computing high performance computing

Kevin Tubbs
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://repository.lsu.edu/gradschool_dissertations

 Part of the Engineering Science and Materials Commons

Recommended Citation Recommended Citation
Tubbs, Kevin, "Lattice Boltzmann modeling for shallow water equations using high performance
computing" (2010). LSU Doctoral Dissertations. 34.
https://repository.lsu.edu/gradschool_dissertations/34

This Dissertation is brought to you for free and open access by the Graduate School at LSU Scholarly Repository. It
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU
Scholarly Repository. For more information, please contactgradetd@lsu.edu.

https://repository.lsu.edu/
https://repository.lsu.edu/gradschool_dissertations
https://repository.lsu.edu/gradschool
https://repository.lsu.edu/gradschool_dissertations?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/279?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.lsu.edu/gradschool_dissertations/34?utm_source=repository.lsu.edu%2Fgradschool_dissertations%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

LATTICE BOLTZMANN MODELING FOR SHALLOW WATER EQUATIONS USING

HIGH PERFORMANCE COMPUTING

A Dissertation

Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

 in partial fulfillment of the
requirements for the degree of

 Doctor of Philosophy

in

The Interdepartmental Program in Engineering Science

by
Kevin Tubbs

B.S. Physics , Southern University, 2001
M.S. Physics, Louisiana State University, 2004

May, 2010

 ii

To my family

 iii

ACKNOWLEDGMENTS

I want to acknowledge the love and support of my family and friends which was

instrumental in completing my degree. I would like to especially thank my parents, John and

Veronica Tubbs and my siblings Kanika Tubbs and Keosha Tubbs. I dedicate this dissertation in

loving memory of my brother Kendrick Tubbs and my grandmother Gertrude Nicholas.

I would also like to thank Dr. David Constant and Mrs. Claudia Hawkins for the support

through my journey here at LSU, my friend Fatima LaJuan Muse for her constant sacrifice and

support through difficult times, and my friend Borja Servan Camas for so many valuable

discussions and the help he has provided me at many stages.

 I am very thankful to my PhD committee members. It has been an honor to me to be able

to count with such a committee in my graduate studies.

I want to acknowledge National Science Foundation GK-12 program and National

Science Foundation IGERT on Multi-scale Computational Fluid Dynamics for the financial

support provided to pursue my doctorate studies at Louisiana State University.

Finally, I want to acknowledge my advisor Dr. Frank T.-C. Tsai for his support,

guidance, patience, and confidence in my work.

 iv

TABLE OF CONTENTS

DEDICATION ...ii

ACKNOWLEDGEMENTS..iii

ABSTRACT ...vi

1 INTRODUCTION ………………………………………………………………………. 1

1.1 Background ……………………………………………………………………… 1
1.2 Literature Review ………………………………………………………............... 5

1.2.1 Traditional Numerical Methods …………………………………………. 5
1.2.2 Lattice Boltzmann Method ……………………………………………… 8
1.2.3 LBM for Solving Shallow Water Equations …………………………….10
1.2.4 LBM on HPC Environments …………………………………………….14

1.3 Objectives of the Study ………………………………………………………….15
1.4 Goal of the Dissertation …………………………………………………………17

2 GOVERNING EQUATIONS …………………………………………………..............19

2.1 Shallow Water Equations ……………………………………………………….19
2.2 Multi-layer Shallow Water Equations …………………………………………..21
2.3 Depth-averaged Transport Equation …………………………………………….23

3 LBM FOR SHALLOW WATER EQUATIONS ……………………………………….25

3.1 LBM with BGK Collision Operator …………………………………………….25
3.2 Recovery of Shallow Water Equations in D2Q9 ………………………………..28
3.3 LBM with MRT Collision Operator …………………………………………….30
3.4 LBM for Anisotropic Advection Dispersion ……………………………………34
3.5 Boundary and Initial Conditions ………………………………………...............37

3.5.1 Introduction ……………………………………………………...............37
3.5.2 Periodic Boundary Conditions …………………………………………..37
3.5.3 Solid Boundary Conditions ……………………………………...............37
3.5.4 Open Boundary Conditions ……………………………………...............39
3.5.5 Initial Conditions ………………………………………………………..40

4 LBM FOR MULTILAYER SHALLOW WATER EQUATIONS ……………………..41

4.1 MRT Collision Operator ………………………………………………...............41
4.2 Recovery of Multi-layer Shallow Water Equations ……………………………..43
4.3 Boundary and Initial Conditions ………………………………………………..44

4.3.1 Introduction ……………………………………………………...............44
4.3.2 Multilayer Open Boundary Conditions ………………………………….44

4.4 Multi-Layer LB Algorithm ……………………………………………...............46

5 HPC LBM FOR SHALLOW WATER EQUATIONS VIA OPENMP ………...............49

5.1 Introduction …………………………………………………………….............. 49
5.2 Basic Code and Basic Parallelization ………………………………….............. 49

 v

5.3 Basic Parallelization …………………………………………………………… 50
5.4 Code Optimization and Parallelization ………………………………………… 51
5.5 Cache Optimization ……………………………………………………………. 53
5.6 Cache Optimization for LBM Using OpenMP ………………………………… 53
5.7 Parallel Speedup and Efficiency ……………………………………….............. 55

6 HPC LBM FOR SHALLOW WATER EQUATIONS VIA

GPU ACCELERATION ……………………………………………………………….. 58
6.1 Introduction …………………………………………………………………….. 58
6.2 NVIDIA GPU Platform ……………………………………………….............. 60
6.3 NVIDIA CUDA ………………………………………………………………... 62
6.4 AccelerEye’s Jacket ……………………………………………………………. 62
6.5 Optimizing MATLAB GPU Performance ……………………………………... 63
6.6 Computational Aspects ………………………………………………………… 64
6.7 Parallel Performance …………………………………………………………… 64

7 NUMERICAL EXAMPLES …………………………………………………………… 67

7.1 Dam Break Flow Over A Forward Facing Step ………………………………... 67
7.2 Flow of Partial Dam Break …………………………………………….............. 69
7.3 Mass Transport of Point Continuous Injection ………………………………… 74
7.4 Mass Transport in Partial Dam Break …………………………………............. 79
7.5 Circulation in Rectangular Lake ……………………………………….............. 81
7.6 Wind-driven Circulation in Rotating and Non-rotating Basins ………………... 85
7.7 Wind- and Density-driven Circulation in Rotating Basins …………….............. 92

8 CONCLUSIONS …………………………………………………………………… ...111

REFERENCES ………………………………………………………………………...............116

VITA …………………………………………………………………………………...............128

 vi

ABSTRACT

 The aim of this dissertation project is to extend the standard Lattice Boltzmann method

(LBM) for shallow water flows in order to deal with three dimensional flow fields.

The shallow water and mass transport equations have wide applications in ocean, coastal,

and hydraulic engineering, which can benefit from the advantages of the LBM. The LBM has

recently become an attractive numerical method to solve various fluid dynamics phenomena;

however, it has not been extensively applied to modeling shallow water flow and mass transport.

Only a few works can be found on improving the LBM for mass transport in shallow water flows

and even fewer on extending it to model three dimensional shallow water flow fields. The

application of the LBM to modeling the shallow water and mass transport equations has been

limited because it is not clearly understood how the LBM solves the shallow water and mass

transport equations.

The project first focuses on studying the importance of choosing enhanced collision

operators such as the multiple-relaxation-time (MRT) and two-relaxation-time (TRT) over the

standard single-relaxation-time (SRT) in LBM. A (MRT) collision operator is chosen for the

shallow water equations, while a (TRT) method is used for the advection-dispersion equation.

Furthermore, two speed-of-sound techniques are introduced to account for heterogeneous and

anisotropic dispersion coefficients.

By selecting appropriate equilibrium distribution functions, the standard LBM is

extended to solve three-dimensional wind-driven and density-driven circulation by introducing a

multi-layer LB model. A MRT-LBM model is used to solve for each layer coupled by the

vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to

obtain stratified flow velocities. Numerical examples are presented to verify the multi-layer LB

 vii

model against analytical solutions. The model’s capability of calculating lateral and vertical

distributions of the horizontal velocities is demonstrated for wind- and density- driven circulation

over non-uniform bathymetry.

 The parallel performance of the LBM on central processing unit (CPU) based and

graphics processing unit (GPU) based high performance computing (HPC) architectures is

investigated showing attractive performance in relation to speedup and scalability.

 1

1 INTRODUCTION

Coastal wetlands make up only a small portion of the United States’ land area; however,

they are very influential to the economic, social and ecological health of the nation. The loss of

coastal wetlands is area of importance to nation and the state of Louisiana. Annual land loss rates

in coastal Louisiana have varied over the last 50 years, declining from a maximum of 100 square

kilometers (2
km) per yr (39 square miles [2mi] per yr) for the period 1956–1978. Cumulative

loss during this 50-year period in Louisiana represents 80 percent of the coastal land loss in the

entire United States (Board 2006). Louisiana accounts for 25 percent of the United States’

coastal wetlands and 40 percent of its salts mashes making this issue one of great importance for

the state. During colonial times, the contiguous 48 states contained an estimated 221 million

acres of wetlands while today about 100 million remain. This loss continues at a rate of 25 miles

per year since 1930 (Corel 2004).

 Louisiana wetlands are unique and vital ecological assets. Made more evident by the

tremendous humanitarian and economic impact of hurricanes Katrina and Rita in 2005, wetlands

play in important role in the natural protection of the region from such storms. Wetlands act as

both storm buffers and flood control devices during hurricanes and coastal storms. The wetlands

also replenish aquifers and purify water by filtering out pollutants and absorbing nutrients as well

as provide habitat for a variety of wildlife. Coastal areas in Louisiana also play in important role

in shipping for the state and entire nation. Louisiana wetlands and coastal areas are an influential

part of the security of the state and the nation.

Coastal wetlands develop due to a balance of natural geomorphologic and coastal ocean

processes. These natural processes such as relative sea level rise, wave action, tidal exchange,

river discharges, sediment deposition, accumulation of organic material, seawater intrusion and

 2

hurricanes and coastal storms play important roles in the development and sustainability of the

wetland. Understanding how these processes interact over time is important to scientist,

engineers and policy makers and used to make decisions to ensure the sustainability of the

wetland. The same natural processes that develop the wetland also cause the loss of the wetland

over centuries. This wetland loss is further complicated human activities. Human activities

causing wetland loss include the construction of river levees, large water control structures, and

ship and access canals to name a few. Numerical modeling and simulation serves as a valuable

tool validate and understand natural processes that affect wetland loss as well as predict and

study the effects of human activities on the restoration and management of wetlands in the

future. The current trend of increasing computational capabilities allow for more accurate models

and more sophisticated management and decision making tools. A major challenge for

environmental science is to develop dynamic models that can simulate future environmental

responses to the combined effect of human activities and environmental change (J.A Dearing

2006).

This dissertation, though an interdisciplinary and interdepartmental approach, seeks to

study and develop new numerical, high-performance-computing modeling tools that would

improve management and decision making on Louisiana wetland and coast protection.

1.1 Background

The shallow water equations are used to describe flow in bodies of water where the

horizontal length scales are much greater than the fluid depth (i.e., long wavelength phenomena).

The shallow water equations have wide applications in ocean engineering, hydraulic engineering

(Meselhe et al. 1997; Cao et al. 2004; Zhou et al. 2004; Klar et al. 2008) and coastal engineering

(Teeter et al. 2001; Al-Barwani and Purnama 2008; Klar et al. 2008). The shallow water

 3

equations can be used to study main physical phenomena of interest to scientists and engineers

such as storm surges (Garcia-Navarro et al. 1992), tidal flows (Banda and Thömmes 2009) and

fluctuations in estuary and coastal water regions (Huang and Spaulding 1995; García et al. 2002),

tsunami and bore wave propagation (Keming Hu 2006; Simpson and Castelltort 2006), the

stationary hydraulic jump, forces acting on off-shore structures, and river, reservoir and open

channel flows (Meselhe et al. 1997; Ghidaoui et al. 2001). The shallow water equations can also

be coupled to transport equations to model the transport of various physical quantities such as the

prediction of pollutant transport in flows (Chertock et al. 2006; Tao and JianHua 2006;

Benkhaldoun et al. 2007; Cai et al. 2007), salinity and temperature transport (Loose et al. 2005;

P. Ortiz 2006; Navarrina et al. 2008), and sediment transport (Teeter et al. 2001; Wu 2004;

Simpson and Castelltort 2006), which are important subjects in many industrial and

environmental projects.

The shallow water equations are obtained by assuming a hydrostatic pressure distribution

and a uniform velocity profile in the vertical direction. In many cases of practical interests,

vertical accelerations of flow are small relative to the horizontal. One can integrate the Navier–

Stokes equations along the depth of the fluid body. Then the three-dimensional free boundary

problem reduces to a two-dimensional fixed boundary problem with the primary variables being

the vertical averages of the horizontal fluid velocities and the fluid depth (Shinbrot 1970; Cobble

1973). When vertical effects are important, for example in baroclinic regimes where density

varies with salinity and temperature, the three-dimensional equations should be used. Tan (1992)

and Vreugdenhil (1994) provide discussions of shallow water models in both two and three

dimensions.

 4

The numerical solution of the shallow water equations is made challenging by a number

of factors. The shallow water equations are a system of coupled non-linear partial differential

equations defined on complex physical domains arising, for example, from irregular land

boundaries. Furthermore, the bottom sea bed (bathymetry) is also often very irregular. Shallow

water systems are subjected to a wide variety of external forces, such as the surface wind stress,

atmospheric pressure gradient, and tidal potential forces. The Coriolis effect accounts for effect

of the Earth’s rotation on the shallow water system resulting in an apparent deflection of moving

objects when viewed from a rotating reference frame. The Coriolis effect is not a force, however

the terms mathematical expression used in the numerical solutions are grouped together with the

external forces of the shallow water system. In addition to these physical factors, there are

additional difficulties arising from the mathematical nature of the shallow water equations. A

major difficulty is the coupling between the fluid depth and the horizontal velocity field which

could lead to spurious oscillations or errors if the numerical algorithms are not chosen with care.

Due to the fact that viscosity effects, especially horizontal viscosity, are usually relatively small,

algorithms that are stable and accurate for smooth to highly advective flows on general

geometries are of interest for the numerical solution of these problems.

A substantial literature exists on the application of various finite difference methods,

finite volume methods, and finite element methods to the three dimensional shallow water

equations (Johnson et al. 1991; Luettich et al. 1991; Lynch and Werner 1991; Casulli and

Walters 2000). Each numerical method for shallow water equations has particular advantages

and disadvantages. The development and improvement of numerical methods is a current area of

research.

 5

1.2 Literature Review

1.2.1 Traditional Numerical Methods

Most numerical algorithms which have been developed for the shallow water equations

over the years can be classified into two broad categories. In the first category, the primitive

form of the shallow water equations that are obtained from the direct vertical integration of the

three-dimensional incompressible Navier–Stokes equations, are numerically solved. In the

second category, the primitive shallow water equations are reformulated and the first-order

hyperbolic form of the primitive continuity equation is replaced with a second-order wave

equation, see. (Lynch and Gray 1979; Luettich et al. 1991). Within those two broad categories,

the only difference is the final form of the governing equation. A number of methods have been

developed to solve both categories of governing equations. Traditional methods such as the finite

difference method (FDM), the finite volume method (FVM) and the finite element method

(FEM) are the most used by scientists and engineers.

Finite difference methods (FDM) are commonly being used, such as the Princeton ocean

model (POM), the Nearshore Community Model (NearCoM), etc. When using the primitive

equation approach to solve the shallow water equations, the use of non-staggered grids in the

finite difference context can lead to spurious spatial oscillations (Lynch and Gray 1979). This is

also a problem when a straightforward use of equal-order interpolation spaces in the finite

element context. Over the years, various researchers have attempted to control these oscillations

through the use of staggered grids or mixed interpolation spaces, with limited success. For

example, King and Norton (1978) approximated velocities through piecewise quadratic functions

and elevations using piecewise linear functions. Johnson et al. (1991) and Blumberg and Mellor

(1987) utilized logically rectangular grids with velocities defined on the edges of the elements

 6

and elevation defined at the element centers. Several numerical methods based on the primitive

shallow water equations and equal order approximations have also been developed, e.g.,

Kawahara et al.(1982) , Szymkiewicz (1993), and Zienkiewicz and Codina (1995) who utilized

various techniques for controlling oscillations. Zienkiewicz and Ortiz (1995) used a special

operator splitting combined with a method of characteristics (MOC). Using these various

techniques, these models have been shown to be accurate where the solution is smooth, but not

suitable for hyperbolic equations near discontinuities, e.g., shock waves. The advantage of the

LBM, shown later, is that it has the ability to be suitable for both.

The reformulation of the primitive equations into a set of hyperbolic equations is

necessary to mathematically model discontinuities in the water depth; however, the numerical

solution of these equations still remains a challenge. The capability to handle discontinuities was

a great challenge and led to the development of shock-capturing high-resolution schemes, in

particular, based on the Riemann problem springing between two nodes or elements with a jump

in the values of the variable. The development provided the FDM the ability to predict the

discontinuous solutions on Cartesian grids (Toro 1992). Another approach in this category is to

express the shallow water equations as a system of conservation laws or as advection–diffusion

equations if diffusive effects such as eddy viscosity are incorporated. This approach is favored

for the FVM and FEM. Aizinger and Dawson (2002) approximated a non-viscid system using a

Godunov-type method defined on triangular elements. This approach used discontinuous,

piecewise constant approximations of elevation and velocity. A similar method defined on

rectangular elements was described by Alcrudo and Garcia-Navarro (1993) for the shallow water

equations. In this type of approach, one can make the method ‘‘higher-order’’ through a post-

processing step whereby linear terms are added to the solution on each element. Chippada (1998)

 7

tested several different post-processing algorithms and devised a method based on linearizing the

system on each element and decoupling the resulting equations. Linear terms (x and y ‘‘slopes’’)

were constructed for the elevation variable. Then these slopes were used to enhance the velocity

approximation derived from the linearized equations. While this approach gave better accuracy

and sharper resolution of the solution for some test problems, it was very ad hoc in nature, and

does not always work well in practice. The LBM is capable of handling shocks without the need

to solve the Riemann problem of characteristic equations.

Another challenge in solving the shallow water equations is the ability to handle complex

geometries. Unstructured meshes are a powerful tool to handle this challenge because they can

conform to these various boundaries very easily. This leads to the development of many methods

that extended the shock-capturing scheme to the FVM and the FEM. The FVM is very popular

due to its simplicity of zero order presentation of elemental unknowns. In order to get a second

order scheme, reconstruction such as a MUSCL-like interpolation must be applied (Yoon and

Kang 2004). To seek high order accuracy, the spectral volume method promotes the solution

order by sub-dividing the spectral cells while keeping the advantages of the normal finite volume

method (Wang 2002). This leads to so called well balanced schemes. Later, this study will prove

that the LBM with correct forcing terms is well balanced and capable complex geometry.

 One extension of the shock-capturing method to the FEM could be the discontinuous

Galerkin (DG) finite element method, which is getting popular recently. Cockburn (2003) made

a series studies on the discontinuous Galerkin method on general differential equations. Unlike

the usual continuous FEM, which usually assembles a global system and solves a huge linear set,

the DG FEM lies between the FVM and the FEM. It has the advantages of locally enforced mass

conservation (element by element) and of the ability to capture steep gradients and fronts. The

 8

DG FEM does not limit itself on the selection of element basis pairs indicating compatibility of

velocity and pressure, which is important and troublesome in the continuous FEM. The flux

continuity through element interfaces can be weakly enforced by the commonly used

approximate Riemann solvers, which particularly are the Harten Lax and Van leer approach

(HLL) (Harten et al. 1983), the Roe approximate Riemann solver (Roe and Balsara 1996), etc. It

has been found that the limiter plays an important role in suppressing the unphysical oscillations

in high order methods. Most limiters come from the idea in one-dimensional case that no local

extremer is created during the interpolation (Cockburn 2003). The LBM has been compared to

DG FEM solutions with favorable results .

1.2.2 Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is an alternative numerical scheme for simulating a

wide range of fluid dynamics and transport phenomena. The LBM was originally created to

model flows governed by the Navier-Stokes equations (Gunstensen et al. 1991; Alexander et al.

1992; Chen et al. 1992; Chen and Doolen 1998; He et al. 1998; Inamuro et al. 1999; Lallemand

and Luo 2000; Wolf-Gladrow 2000). More recently, the LBM has developed into an alternative

and promising numerical technique for a wide range of computational fluid dynamics (CFD)

techniques (Dawson et al. 1993; Martinez et al. 1994; He et al. 1998; Kang et al. 2002; Kang et

al. 2002). This method can be either regarded as an extension of the lattice gas automata or as a

special discrete form of the Boltzmann equation from the kinetic theory of gases. The method is

based on statistical physics and models the fluid flow by tracking the evolution of the

distribution functions of the fluid particles in phase space. The method can be considered in the

class of kinetic theory approaches.

 9

The LBM is based on solving the discrete-velocity Boltzmann equation in statistical

physics as opposed to conventional numerical schemes based on the discretization of partial

differential equations describing macroscopic conservation laws. It describes the microscopic

picture of the movement of particles in an extremely simplified way, while at the macroscopic

level, it gives a correct average description. The essential idea of the LBM approach lies in the

recovery of the macroscopic governing equations, e.g., the Navier-Stokes equation, the shallow

water equation, the diffusion equation, the advection-diffusion equation, etc., from the

microscopic flow behavior of the particle movement as described by kinetic theory. The

approach does not use the actual details of the particles but follow a collection of fictitious

particles whose properties recover the macroscopic behavior. The basic idea is to replace the

nonlinear differential equations of macroscopic fluid dynamics with a simplified description

modeled on the kinetic theory of gases. To obtain the hydrodynamic behavior, the Chapman-

Enskog expansion, which is a perturbation expansion in time and space to describe slowly

varying solutions of the underlying kinetic equations, is undertaken. The advantages of the

method are its ease in parallelization because of the locality of particle interaction and the

transport of particle information, and flexibility in geometry because of the easy implementation

of complex boundary conditions and complex properties of a fluid system. The method has been

proven to be effective in exploiting these advantages in various applications and implementations

on different high performance computing architectures. Furthermore, the method has become an

alternative to conventional numerical methods like FDMs, FEMs, and FVMs in computational

fluid dynamics.

The LBM has found a wide range of applications in a variety of fields including the

shallow water equations. The LBM has been successfully adopted to simulate shallow water

 10

equations of wind-driven ocean circulation (Salmon 1999; Zhong et al. 2006), to model three-

dimensional planetary geostrophic equations (Salmon 1999b) and to study atmospheric

circulation of the northern hemisphere with ideal boundary conditions (Feng et al. 2001). Many

free surface flows can be modeled by the shallow water equations with the assumption that the

vertical scale is much smaller than the horizontal scale. These equations can be derived from the

depth-averaged incompressible Navier-Stokes equations. The application fields of shallow water

equations include a wide spectrum of phenomena in environmental and hydraulic engineering,

including tidal flows in an estuary or coastal regions, rivers, reservoir and open channel flows.

1.2.3 LBM for Solving Shallow Water Equations

Modeling of problems in hydrodynamics, hydraulics, and environmental fluid mechanics

may be undertaken at three different length scales, commonly referred to as the microscopic,

mesoscopic, and macroscopic levels (Frisch et al. 1986). Microscopic modeling involves the

application of Newton’s laws to every molecule in the system. It requires knowledge of the

initial state of each molecule and the quantification for the interactions among all the molecules

in the system. Because of the level of detail needed, microscopic modeling is computationally

infeasible except in some cases where the mean free path between molecules is large.

Mesoscopic modeling (i.e., modeling from statistical perspectives) entails the application of

Newton’s laws to a probability distribution of molecules. Mesoscopic modeling uses the

Boltzmann equation as a starting point for system simulation, where the dependent variable is the

probability distribution of particles (Reitz 1981). Mass, momentum, energy, and entropy are

computed from the moments of this distribution function. Macroscopic modeling entails the

application of the basic laws of mechanics and thermodynamics to a continuum. Examples of the

macroscopic continuum models in hydraulic engineering, hydrodynamics, and environment fluid

 11

mechanics include the shallow water equations (Tubbs and Tsai 2008; Tubbs and Tsai 2009),

Richard’s unsaturated flow equation (Zhang et al. 2002; Ginzburg 2006), the Navier-Stokes

equations, and the equation of chemical species transport (Chen et al. 1993; Dawson et al. 1993;

Deng et al. 2001).

 Until recently, the analyses and solutions of problems in hydraulics, hydrodynamics, and

environmental fluid mechanics have been based exclusively on macroscopic continuum models,

which are solved either analytically or numerically. However, over the last three decades

numerical schemes based on mesoscopic models have been developed and applied to a multitude

of hydrodynamic problems, including shock waves in compressible flows (Chu 1965; Reitz

1981; Xu et al. 1995; Xu et al. 1996), multicomponent and multiphase flows (Gunstensen et al.

1991; Xu 1997; He et al. 1998), flows in complex geometries (Rothman 1988; Chen and Doolen

1998), turbulent flows (Chen et al. 1992; Martinez et al. 1994), low Mach number flows (Su et

al. 1999), and heat transfer and reaction diffusion flows (Qian 1993; Xu 1999). Mesoscopic

models based on the Boltzmann equation can be categorized into two sub-classes: continuous

Boltzmann models and discrete Boltzmann models such as the LBM. The main difference in the

two is that the distribution function in is continuous or discrete in particle velocity, respectively.

Excellent reviews of the LBM and continuous Boltzmann models are provided by Chen and

Doolen (1998), Xu (1999), and Ghidaoui et al. (2001).

 In those reviews, the main advantages of mesoscopic Boltzmann based numerical models

over macroscopic based numerical models are summarized below:

1. While the advective operator in the macroscopic approach is non-linear, its counterpart in

the mesoscopic approach is linear (Chen and Doolen 1998).

 12

2. A mesoscopic based numerical model can be easily extended to multidimensional flows

because the distribution function of particles is a scalar (Xu et al. 1996).

3. In mesoscopic modeling, the implementation of complex boundary conditions is

straightforward (Reitz 1981; Frisch et al. 1986; Abbott and Minns 1998; Chen and

Doolen 1998).

4. In mesoscopic modeling, the incompressible flow solution is obtained in the limit as the

Mach number tends to zero. This means that the solutions of two and three-dimensional

non-hydrostatic surface water models do not involve the tedious and difficult solution of

the Poisson equation for the pressure field (Su et al. 1999).

5. The scalar nature of the Boltzmann distribution function and the fact that the Boltzmann

equation is only the first-order ordinary differential equation (ODE) give mesoscopic

modeling the intrinsic features required for parallel computation (Abbott and Minns

1998; Chen and Doolen 1998). This is highly beneficial for direct numerical simulation

(DNS) and large eddy simulation (LES) of turbulent open channel flows.

6. The diffusion and viscous terms that appear as second derivative terms in macroscopic

modeling are represented by a simple algebraic difference term in mesoscopic modeling.

Thus, the need for separate treatment of the advection and diffusion terms is eliminated.

7. The collision function in mesoscopic models eliminates the need for numerical entropy

fixes to ensure that the second law of thermodynamics is not violated by the solution (Xu

et al. 1995). In contrast, macroscopic numerical models require ad hoc entropy fixes in

order to satisfy the entropy condition (Reitz 1981; Xu et al. 1995).

The fact that mesoscopic numerical models satisfy the entropy condition was exploited by

Prendergast and Xu (1993) and Xu et al. (1995) to model shock waves in compressible flows and

 13

by Gunstensen et al. (1991), Shan and Doolen (1995), Xu (1997), and He et al. (1998) to model

interfaces in multiphase and multi-component flows. Ghidaoui et al. (2001) reports that these

applications revealed that the mesoscopic approach both accurately resolves shocks and

discontinuities, and does not suffer from the failures associated with the Riemann solution of

macroscopic hydrodynamics equations. The failures of Riemann solvers are well documented in

Roberts (1990), Einfeldt et al. (1991) and Quirk (1998).

The many attributes of mesoscopic modeling, particularly its success in resolving shocks in

compressible flows and resolving interfacial discontinuities in multiphase flow, suggest that

mesoscopic modeling may be useful in simulating fluid flows in shallow water regimes. In these

problems, hydraulic jumps may occur, requiring a method that is flexible to resolve both the flow

regimes and the shocks. The LBM approach is applied to one and two-dimensional shallow

water flows and extended to three-dimensional shallow water flows through a multi-layer

approach. Numerical experiments show that the LBM based shallow water model produces

accurate results for rapidly and gradually varied open channel flow problems and does not suffer

from non physical oscillations as encountered when applying Riemann solvers to the

macroscopic equations. This finding is consistent with conclusions reported by researchers using

Boltzmann theory to model shock waves in compressible flows (Pullin 1980; Reitz 1981; Xu et

al. 1995; Xu et al. 1996) and shallow water flows (Salmon 1999; Salmon 1999b; Zhou 2002;

Zhong et al. 2006; Zhou 2007). Moreover, mesoscopic based numerical models are simpler to

formulate, apply, and implement, including high performance computing environments, than

Riemann solvers since they do not require characteristic decomposition.

 14

1.2.4 LBM on HPC Environments

The LBM has achieved success in the world of computational physics and has also been

used in graphics and visualization for simulating a variety of fluid phenomena with complex

boundary conditions (Thurey and Rude 2004; Wei et al. 2004; Chu and Tai 2005; Han et al.

2007; Zhao et al. 2007). These areas have been dominated by the traditional FDM, FVM and

FEM, which have their advantages and disadvantages. All are capable of being implemented on

high performance computing architectures with different performance benefits and limitations.

Comparing the performance of different computational methods is always a difficult task. Since

the established FDM, FVM and FEM are the result of an evolution over many decades, one

might expect that the simple LBM cannot compete. The accuracy and performance of the lattice-

Boltzmann method have been compared to those of FDM (Noble et al. 1996; Sankaranarayanan

et al. 2003), FVM (Bernsdorf et al. 1999; Breuer et al. 2000; Geller et al. 2006) and FEM (Chen

et al. 1992; Martinez et al. 1994; Kandhai et al. 1999; Geller et al. 2006). These various studies

have confirmed that the lattice Boltzmann method is competitive with other approaches. Indeed,

it is faster in situations where a specified accuracy is required, in particular in the context of the

time-dependent simulation of large, complex systems by means of parallel implementations.

However, a comparison between different fluid solvers is prone to ambiguity since their

accuracy, intrinsic speed and convergence behavior all depend on the chosen parameters and

specific details of the implementation. Implementation of LBM on CPU-based systems is a

current source of research and numerous improvements are possible starting from standard LBM

implementations (Succi 2001; Wilke et al. 2003; Pohl et al. 2004; Wellein et al. 2006). The

implementation of LBM on CPU-based architectures is achieved on both distributed and shared

memory systems. LUDWIG (Desplat et al. 2001) is a parallel LBM code for fluids,

 15

implementing message passing interface (MPI) to achieve full portability and good efficiency on

both massively parallel processors (MPP) and symmetric multiprocessing (SMP) systems. With

OpenMP (Board 2008), the LBM has been optimized to implement on multiple CPUs with

shared-memory parallel programming (Bella et al. 2002).

More recently, the LBM has been seen as a good candidate for implementation on

hardware accelerated systems using Graphics Processing Units (GPU). It has been accelerated on

a single GPU (Li et al. 2005; Zhao 2008; Tubbs and Tsai 2009; Tubbs and Tsai 2010) or a GPU

cluster (Fan et al. 2004) with MPI. Moreover, the LBM for the Navier-Stokes equations was

implemented in two dimensions using the Compute Unified Device Architecture (CUDA™)

interface developed by NVIDIA®. Nevertheless, all these applications use a programming style

close to the hardware especially developed for graphics applications.

1.3 Objectives of the Study

The numerical simulating of large systems leads to the necessity of largely increasing the

computational capability available. Currently, the main trend to increment this computational

capability is based on clustering CPUs to operate in parallel rather than on increasing CPUs

processing speeds. Hence the suitability of a numerical scheme to be parallelized is becoming an

important feature to be considered. In this framework LBM offers a great capability to be

parallelized based on its explicit nature and locality, which results in high scalability

performance.

On one hand, LBM is still under development and the reason is because LBM is barely

two decades old, which makes it a relatively new numerical method in comparison with

traditional methods like FDM, FEM and FVM. First developed to model the Navier-Stokes

equation, the majority of literature on LBM has been focused on purpose. Recently, LBM is

 16

gaining attention to model various partial differential equations with applications in a wide range

of engineering and science disciplines. Only over the past decade, LBM has become an attractive

alternative for modeling hydrodynamic and transport problems in many areas such as ocean,

hydraulic and coastal engineering (e.g. shallow water flows). Since LBM is still at a

disadvantage with respect to its competitors regarding solving complex problems, more research

has to be put on developing the theoretical basis and implementation techniques to make LBM

capable of coping with complicated problems and become a practical tool in modeling shallow

water equations.

1. This study aims to investigate the use of the LBM for shallow water equations and the

anisotropic advection-dispersion equation with velocity-dependent dispersion coefficients

on HPC environments. The choice of collision operator in both the shallow water and

advection-dispersion equation play an important role in the stability and accuracy of the

method.

2. This study aims to compare the MRT collision operator to the SRT (BGK) collision

operator for the shallow water equations at the situation that the relaxation time

parameter is close to the stability limit of 0.5. The MRT collision operator is selected in

order to increase stability and accuracy and eliminate spurious oscillations when the BGK

model fails.

3. This study aims to demonstrate that the speed-of-sound techniques are capable of account

for the heterogeneity and anisotropy in the dispersion coefficient in mass transport in

shallow water. Specifically, the speed-of-sound techniques are capable of coping with the

discontinuous free surface water depth in the transport problem.

 17

4. This study aims to extend the standard LB model for the simulation of three-dimensional

shallow water flows using a multi-layer LB model. A MRT-LBM is used to solve each

layer coupled by the vertical viscosity forcing term. To increase solution stability, an

implicit step is suggested to obtain flow velocities.

5. This study aims to demonstrate the proposed multi-layer LB model by testing the

influence of wind stress, vertical viscosity forcing, bottom friction and bathymetry. The

numerical results of flow velocities for wind-driven and density-driven circulation in a

rectangular lake with flat bottom and non-uniform bathymetry are investigated.

6. This study aims to investigate the parallel performance of the multi-layer LB model using

OpenMP. The parallel decomposition along only on the horizontal flow directions has

two advantages: 1.) It retains the inherent parallelism of the LBM for each layer; and 2.)

It retains the locality of the tridiagonal solver over layers with respect to threads. The

study has shown that the use of explicit loop control is important in maintaining linear

speedup as the number of processors increase.

7. This study aims to investigate the parallel performance of the LBM on GPU-based HPC

environments using MATLAB code and the Jacket GPU engine. Moreover, the study

aims to investigate how the parallel performance scales with the problem size. Due to the

architecture of the GPU, the performance increases with increasing computational

intensity and decreasing need for communications between sub-domains.

1.4 Goal of the Dissertation

This dissertation aims to investigate the implementation of the LBM formulation for the

shallow water flow and mass transport equations on both CPU based and GPU based

architectures. Optimization of the LBM formulation on CPU-based systems exhibits promising

 18

performance by exploiting the inherent parallelism of LBM and selecting a good memory access

pattern that uses CPU cache efficiently. A hardware-accelerated LBM shallow water formulation

is promising because of the easy coding of LBM and straightforward GPU mapping, allowing it

to achieve excellent computation efficiency up for large data sets. The current trend in high

performance computing is the use of heterogeneous computer systems which will require

methods that perform well on CPU-based systems and accelerators like GPU-based systems. Due

to the features of the LBM, it has the potential to increase the performance of various

applications in fluid flow and transport in shallow water systems using CPU-based or GPU-

based systems.

The main purpose of this dissertation is to extended the standard to lattice Boltzmann

method (LBM) for shallow water flows to deal with three dimensional flow fields coupled to

mass transport, investigate the stability and accuracy of the method, and investigate its

performance on high performance computing (HPC) environments.

 19

2 GOVERNING EQUATIONS

2.1 Shallow Water Equations

Consider a shallow water flow regime shown in Figure 2.1. Due to the fact that the

horizontal length scale is much greater than the vertical length scale, the shallow water equations

are derived by depth-integrating the continuity equation and the Navier-Stokes equations. The

depth integration of the mass transport equation leads to the shallow water transport equation.

The shallow water equations with forcing terms of wind, bottom friction, bed slope and the term

representing the Coriolis effect are given as (Zhou 2004):

Continuity Equation:

()
0i

i

huh

t x

∂∂
+ =

∂ ∂
 (2.1.1)

Momentum Equations:

() () ()22

2
i ji i

i

j i j j

hu uhu hugh
F

t x x x x
ν

∂  ∂ ∂ ∂
+ + = +  

∂ ∂ ∂ ∂ ∂    
 (2.1.2)

where i and j are Cartesian indices and the Einstein summation convention is used, h is the

water depth,
i

u is the depth-averaged velocity component in the i direction, t is the time. The

forcing terms are given as:

i Pi bi Wi Ci
F F F F F= + + + (2.1.3)

b
Pi

i

z
F gh

x

∂
= −

∂
 (2.1.4)

bi b i i iF C u u u= (2.1.5)

a
Wi W Wi Wi Wi

w

F C u u u
ρ

ρ
= ⋅ (2.1.6)

 20

,

,
c y

Ci

c x

f hu i x
F

f hu i y

=
= 

− =
 (2.1.7)

where
b

z is the bed elevation, 29.81 /g m s= is the gravitational acceleration , ν is the kinematic

viscosity and
i

F , is the external force acting on the shallow water flow consisting of the

hydrostatic pressure approximation,
Pi

F , the bed shear stress,
bi

F , the wind shear stress,
wi

F , and

the forcing term representing the Coriolis effect,
Ci

F . 2 sin
c

f ϖ ϕ= is the Coriolis parameter and

ϖ is rotation rate of the earth and ϕ is the latitude,
b

z is the bed elevation, 2
b z

C g C= is the bed

friction coefficient and 1 6
z b

C h n= is the Chezy coefficient given with the Manning coefficient

at the bed,
b

n , 1 3[]L T− .
w

ρ is the density of water,
a

ρ is the density of air,

3(0.63 0.66) 10W Wi WiC u u
−= + ⋅ × is the wind coefficient, and

Wi
u is the wind velocity in the

i direction.

Figure 2.1: Shallow water flow regime

u
h

b
z

x

y
z

ζ

0h

 21

2.2 Multi-layer Shallow Water Equations

Although flows in coastal and estuarine areas are usually classified as shallow water

flows, details of the vertical structure of the flow is necessary for better modeling. There is a

need to simulate three-dimensional free surface flows. This would require the solution of a

system of equations coupling the Navier-Stokes equation to a moving free surface boundary.

This approach is computationally expensive and may have difficulties handling the

discontinuities in the free surface. Consider the multi-layer discretization of shallow water flow

illustrated in Figure 2.2. The multi-layer shallow water equations under the hydrostatic

assumption present an alternative solution to the free surface Navier-Stokes system and lead to a

precise description of the vertical profile of the horizontal velocity while preserving the

robustness and computational efficiency of the shallow water equations. Based on the multi-layer

Saint-Venant system (Audusse 2005; Audusse et al. 2006), the governing equations are similar to

the traditional shallow water equations with additional terms for transferring momentum between

the layers:

()() ()()

0
i

i

h uh

t x

∂∂
+ =

∂ ∂

l ll

 (2.3.1)

() () ()() () () () () 2 () ()

() () ()

1

1
, 1,2, ,

2

M
i i j im

i

mj i j j

h u h u u h u
gh h F M

t x x x x
ν

=

 ∂ ∂ ∂∂  
 + + = + = ∂ ∂ ∂ ∂ ∂    

∑
l l l l l l l

l l l L (2.3.2)

where ()
h

l is the local water height in layer l , ()
i

u
l is the local velocity component in the i

direction in layer l , ()
i

F
l is the external force acting on layer l , g is the gravitational

acceleration, ν is the kinematic viscosity,
i

x is the Cartesian coordinate, and t is time. M is the

total number of layers. The external force consists of the wind-driven forcing term (()
Wi

F
l) (only

 22

for the top layer), the bed slope forcing term (()
Pi

F
l), the vertical kinematic eddy viscosity term

(()
iFµ
l), the non-conservative pressure source term (()

NCi
F

l) (Audusse 2005; Audusse et al. 2006;

Audusse and Bristeau 2007; Audusse et al. 2008), the density gradient forcing term,

()()Fρ

l (Shankar et al. 1997), and the forcing term representing the Coriolis effect (()
Ci

F
l) as

follows

()() () () () () ()
i Wi Pi i NCi CiF F F F F F Fµ ρ= + + + + +

ll l l l l l (2.3.3)

W

iz a
Wi M M W Wi s

F C U W
τ ρ

δ δ
ρ ρ

= =l

l l (2.3.4)

() () b
Pi

i

z
F gh

x

∂
= −

∂

l l (2.3.5)

() ()
(1) () () (1)

() ()
1 1(1) () () (1)

2 1 2 1i i i i
i i M

u u u u
F u

h h h h
µ κδ µ δ µ δ

+ −

+ −

− −
= − + − − −

+ +

l l l l
l l

l l ll l l l
 (2.3.6)

2 ()
()

2NCi

i

gH h
F

x H

 ∂
= −  

∂  

l
l (2.3.7)

()
z

F dz
x

ρ

ζ

ρ∂
=

∂∫
l (2.3.8)

()

()

() ,

,

c y

Ci

c x

f h u i x
F

f h u i y

 =
= 

− =

l

l

l
 (2.3.8)

where 1δ l and
M

δ l are Kronecker delta functions; 2 sin
c

f ϖ ϕ= is the Coriolis parameter and ϖ

is the rotation rate of the Earth and ϕ is the latitude;
()

()
1

12
m

m

h
z h

−

=

= +∑
l l

 is the location of the

center of a layer,
b

z is the bed elevation, W

iz
τ , is the wind stress in the i direction, ρ is the fluid

density,
a

ρ is the air density,
W

C is the wind stress coefficient,
Wi

U is the wind velocity

 23

components in the i direction, s WiW U= is the wind speed measured 10 m above the water

surface, κ is the bottom friction coefficient, and µ is the vertical (kinematic) eddy viscosity.

The water depth is the sum of local water heights of all layers, i.e. ()

1

M m

m
H h

=
=∑ . The free

surface elevation above the datum 0z = , is the water depth minus the still water depth, 0H , i.e.

0H Hζ = − .

H0

Figure 2.2. Multi-layer shallow water flow.

2.3 Depth-averaged Transport Equation

The two-dimensional depth averaged anisotropic advection dispersion equation (AADE)

are (Tao and JianHua 2006).

() ()i

ij C

i i j

hC hu C C
D h S

t x x x

 ∂ ∂ ∂ ∂
+ = +  ∂ ∂ ∂ ∂ 

 (2.3.9)

where

 24

0C
S KhC S h= − + (2.3.10)

() i j

ij L ij L T

z

u u h g
D k k k

C
δ

 
= + −  
 

u
u

 (2.3.11)

C is the concentration, K is an attenuation coefficient, 0S is the concentration source term,
ij

δ

is the Kronecker delta, and
ij

D is the eddy dispersion tensor. As the principal directions of

anisotropic eddy dispersion do not align with the flow directions, a distinct dispersion coefficient

is defined for each Cartesian direction. Furthermore, the flow direction may not align with one

Cartesian direction and therefore a general eddy dispersion tensor must be used and is defined in

equation (2.3.10) (Elder 1959; Tao and JianHua 2006), where
L

k and
T

k are the longitudinal and

transverse coefficients, which are dimensionless.

 25

3 LBM FOR SHALLOW WATER EQUATIONS

3.1 LBM with BGK Collision Operator

The LBM was first developed to solve the equations of hydrodynamics governed by the

Navier-Stokes equation based on the kinetic theory of gases described by the Boltzmann

equation (McNamara and Zanetti 1988). The discrete Boltzmann equation for describing

dynamics of local particle distribution functions in a discrete velocity field is

i

i

f f
c

t x

α α
α α

∂ ∂
+ = Ω

∂ ∂
 (3.1.1)

where fα is the particle distribution function moving along α direction; eq
fα is the equilibrium

distribution function (EDF), λ is the relaxation time, { }icα α=c is the streaming velocity along

α direction, ()eqf fα α α λΩ = − − is the Bhatnagar-Gross-Krook (BGK) collision operator

(Bhatnagar et al. 1954) which represents changes in fα due to particle collisions.

The lattice Boltzmann equation is obtained by integrating Eq. (3.1.1) in time along the α

direction. In each time step, the particle distribution functions arrive to their neighboring nodes at

the same time through prescribed lattice connections. Therefore, the streaming velocity αc along

α direction is not arbitrary and is determined by the lattice connection and size. Figure 3.1 gives

a diagram of the two dimensional lattice with nine discrete velocities, known as the D2Q9 lattice.

The streaming velocity for D2Q9 is

()

()() ()()

()() ()()

1 1
4 4

1 1
4 4

0,0 0

cos 2 2 ,sin 2 2 1,2,3, 4

2 cos 2 9 ,sin 2 9 5,6,7,8

c

c

α

α

α π α π α

α π α π α

 =

  = − − =  


 − − =  

c (3.1.2)

 26

 D2Q9

f5f2f6

f3

f7 f8

f0
f1O OO

O O

OO O

O

f4

c =(c,0)1

c =(-c,0)3

c

=
(0

,c
)

2
c
 =

(0
,-c

)
4

c
 =

(c,
c)

5

c =(-c,c)

6

c =(c,-c)

8

c
 =

(-c
,-c

)

7

Figure 3.1. D2Q9 lattice. D stands for the number of dimensions and Q stands for the number of
lattice velocities.

The lattice Boltzmann equation with BGK collision operator (LBGK) on a D2Q9 lattice

for shallow water is given as follows (Salmon 1999; Zhou 2002; Zhou 2007):

() () () ()() ()2

1
, , , , ,

6
eq i

i

tc
f t t t f t f t f t F t

c

α
α α α α α

τ

∆
+ ∆ + ∆ = − − +x c x x x x (3.1.3)

where, tτ λ= ∆ is the relaxation time parameter, /c x t= ∆ ∆ is the lattice speed, x∆ is the

lattice size, t∆ is the time step and the third term in equation (3.1.3) is the forcing term

representing the external forces in equation (2.1.3). The choice of discretization of the forcing

term is determined in the recovery of the shallow water equations presented in section 3.2. The

macroscopic variables of water depth and flow velocity are calculated as the zeroth and first

moments of the distribution functions, respectively:

 27

h fαα
=∑ (3.1.4)

i i
hu c fα αα

=∑ (3.1.5)

The EDFs are given by

()
22

2 2 4 2

0

3 1
, 0

2 2
eq s

eq eq

c
f h

c c c c

f h f

αα
α α

α α
α

ω α

>

 ⋅⋅ ⋅
= + + − > 

 
 

= −∑

u cu c u u

 (3.1.6)

where 2 / 2
s

c gh= is the squared speed of sound, and αω are the weighting factors that depend on

lattice directions and the type of lattice to be used. For D2Q9, 1/ 3 , 1,2,3, 4αω α= = and

1/12 , 5,6,7,8αω α= = . The EDFs are derived to satisfy the following constraints on the

zeroth, first, second and third moments:

eqf hαα
=∑ (3.1.7)

eq

i i
c f huα αα

=∑ (3.1.8)

()2eq

i j ij s i j
c c f h c u uα α αα

δ= +∑ (3.1.9)

()
2

3
eq

i j k ik j jk i ij k

c
c c c f h u u uα α α α

α

δ δ δ= + +∑ (3.1.10)

Equation (3.1.6) can be also derived as a Taylor expansion of the Maxwell-Boltzmann

distribution up to second order in the Mach number (Chen and Doolen 1998) or as a Taylor

expansion up to second order in Mach number around the kinetic states that minimize an H

function (Karlin et al. 1999).

The viscosity, v , in the LBM for shallow water is recovered as follows

2 1

3 2

c
tν τ
 

= ∆ − 
 

 (3.1.11)

 28

For the monolayer shallow water equations, the forcing term in the LBM is as follows

b a
i b i i i W Wi Wi Wi Ci

i w

z
F gh C u u u C u u u F

x

ρ

ρ

∂
= − + + +

∂
 (3.1.12)

3.2 Recovery of Shallow Water Equations in D2Q9

To ensure that the LBGK model solves the shallow water equations with proper LB

parameters, the moments in equations (3.1.7) – (3.1.10) are used to show the recovery of the

shallow water equations (2.1.1) – (2.1.2).up to second order by Chapman-Enskog multi-scale

analysis. Similar recovery work for single-layer shallow water equations can be found in (Zhou

2004). To recover the multi-layer shallow water equations without the forcing term,

(),f t t tα α+ ∆ + ∆x c is expanded around (), tx using the Taylor series expansion:

1

(,)
(,) (,)

!

n n

n
n

d f t t
f t t t f t

dt n

α
α α α

∞

=

∆
+ ∆ + ∆ = +∑

x
x c x (3.2.1)

where
t t i

d = ∂ + ⋅∇c is the total derivative with respect to time. For multi-scale analysis, the

Chapman-Enskog expansion is adopted as follows:

1i i
ε∂ = ∂ (3.2.2)

2
1 2t t t

ε ε∂ = ∂ + ∂ (3.2.3)

Furthermore, the particle distribution functions, fα , are perturbed around eq
fα in terms of

Knudsen number ε (Takashi 1997):

(1) 2 (2) 3 (3) 4()eq
f f f f f Oα α α α αε ε ε ε= + + + + (3.2.4)

where ()k
fα are the perturbation terms. Introducing equations (3.2.1)-(3.2.4) into equation (3.1.3)

and grouping terms of the same order in ε , the differential equations up to second order are

() (1)

1 1

1
: eq

i

i

O t c f f
t x

α α αε
τ

 ∂ ∂
∆ + = − 

∂ ∂ 
 (3.2.5)

 29

()
22

2 (1) (2)

2 1 1 1 1

1
:

2
eq eq

i i

i i

t
O t f c f c f f

t t x t x
α α α α α αε

τ

    ∂ ∂ ∂ ∆ ∂ ∂
∆ + + + + = −     ∂ ∂ ∂ ∂ ∂    

 (3.2.6)

Taking Eq.(3.2.5)
α∑ , Eq.(3.2.5)

i
eαα∑ , Eq.(3.2.6)

α∑ , and Eq.(3.2.6)
i

eαα∑ , one can obtain

() 0 1

21

: 0

0

i

i

iji

j

M M
O

t x

MM

t x

ε
∂ ∂

+ =
∂ ∂

∂∂
+ =

∂ ∂

 (3.2.7)

()2 0

2

2 31

2 1 1 1

: 0

1

2
ij ijki

j k

M
O

t

M MM
t

t x t x

ε

τ

∂
=

∂

  ∂ ∂∂ ∂  
= ∆ − +    ∂ ∂ ∂ ∂    

 (3.2.8)

where

0 1

2 3

,

,

i i

ij i j ijk i j k

M f M f c

M f c c M f c c c

α α αα α

α α α α α α αα α

= =

= =

∑ ∑
∑ ∑

 (3.2.9)

Introducing equation (3.2.9) into equations (3.2.7) and (3.2.8), the differential equations for the

first and second order terms become

()

()

1 1

2

1 1 1

: 0i

i

i ji
s

j i

h uh
O

t x

h u uh u
h c

t x x

ε
∂∂

+ =
∂ ∂

∂∂ ∂
+ = −

∂ ∂ ∂

 (3.2.10)

()

()

()

2

2

2

2 1 1

2

1 1

: 0

1

2

1

2 3

i
ij s i j

j

jk i ik j ij k

j k

h
O

t

h u
t h c h u u

t x t

c
t h u h u h u

x x

ε

τ δ

τ δ δ δ

∂
=

∂

 ∂ ∂ ∂ 
= ∆ − +  

∂ ∂ ∂  

  ∂ ∂ 
+ ∆ − + +   

∂ ∂    

 (3.2.11)

Selecting the relaxation time

 30

2 2
0.5 3 0.5 3

t

tc x

ν ν
τ

∆
= + = +

∆ ∆
 (3.2.12)

and the squared speed of sound

2 1

2s
c gh= (3.2.13)

Eequations (3.2.10) and (3.2.11) become

()
1 1

2

1 1 1

: 0

2

i

i

i ji

j i

h uh
O

t x

h u uh u gh

t x x

ε
∂∂

+ =
∂ ∂

∂  ∂ ∂
+ = −  

∂ ∂ ∂  

 (3.2.14)

()2

2

2 2

2
2 1 1 1 1 1

: 0

3

2
i ji i

j j i j

h
O

t

h u uh u h u gh

t x x e t x x

ε

ν ν

∂
=

∂

 ∂ ∂ ∂ ∂ ∂
= + +  

∂ ∂ ∂ ∂ ∂ ∂   
I

1444442444443

 (3.2.15)

The term I represents the numerical error. Substituting the second equation of (3.2.14) into the

term I , it becomes the second derivative of
i

h u with respect to 1t , which is small compared to

the first derivative and is neglected. Combining the first order terms, equation (3.2.14), and

second order terms, equations (3.2.15), the shallow water equations are recovered:

22

0

2

i

i

i ji i

j i j j

h uh

t x

h u uh u h ugh

t x x x x
ν

∂∂
+ =

∂ ∂

∂  ∂ ∂∂
+ + = 

∂ ∂ ∂ ∂ ∂ 

 (3.2.16)

3.3 LBM with MRT Collision Operator

This study introduces a lattice Boltzmann model to solve the shallow water equations

based on the generalized lattice Boltzmann equation (GLBE) with the multiple-relaxation-time

 31

(MRT) collision operator (d'Humieres et al. 2002; Ginzburg 2007; Guo et al. 2008). The

evolution equation using the MRT lattice Boltzmann equation is

() () () ()-1
2

, , M S , ,
6

eq t
t t t t t t

c
α α

∆
 + ∆ + ∆ − = − − + f x c f x m x m x F , (3.3.1)

where { , 0,1,2, ,8}fα α= =f L is a nine-dimensional column vector of particle distribution

functions for D2Q9 lattice. m and eqm are nine-dimensional column vectors of moments and

their equilibria, respectively. M is a 9 9× dimensional transformation matrix that transforms the

particle distribution functions and equilibrium distribution functions (EDFs) from velocity space

to moment space, which makes M=m f and Meq eq=m f . { , 0,1, 2, ,8}eq eq
fα α= =f L is a nine-

dimensional column vector of the EDFs. ()0 1 8S diag , , ,s s s= L is a 9 9× diagonal matrix, where

0sα ≥ are the relaxation rates. { , 0,1,2, ,8}
i ii

c Fα α α= =∑F L is an external force along the α

direction.

Equation (3.3.1) is the evolution equation for the particle distribution functions. The left hand

side represents particle transport by pure advection executed in the streaming velocity space; and

the right hand side represents the collision process modeled by linear relaxation processes

executed in the moment space. The lattice Boltzmann algorithm consists of two steps: streaming

and collision. In each time step, the particle distribution functions arrive to their neighboring

nodes at the same time through prescribed lattice connections. The forcing terms are given by

2
1 3

1
,

2

1
,

2
i j jb

i i b

i
t t

u u uz
F F t t gh gn

x h
α

α

+ ∆

 ∂   = + ∆ = − −   ∂    x c

x c . (3.3.2)

The transformation matrix M in the GLBE is constructed such that TMM is a diagonal

matrix, where the column vectors { }αb of TM are mutually orthogonal (Lallemand and Luo

 32

2000; d'Humieres et al. 2002; Lallemand and Luo 2003). The transformation matrix M for

D2Q9 is given by Lallemand and Luo (Lallemand and Luo 2000):

T
0
T
1
T
2
T
3
T
4
T
5
T
6
T
7
T
8

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

M= 0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

   
   

− − − − −   
   − − − −
   

− − −   
   = − − −
   

− − −   
   − − −
   
  − − 
   − −  

b

b

b

b

b

b

b

b

b

. (3.3.3)

Inserting matrices M and S into equation (3.3.1), the evolution equation in the direction α

becomes [37]

() () () ()
8

2
0

b
, , , ,

6
eq

i i

i

s t
f t t t f t m t m t c F

c

β βα

α α α β β α
β β=

∆
 + ∆ + ∆ − = − − + ∑ ∑x c x x x

b
. (3.3.4)

 The moments for the GLBE applied to the shallow water equations are (Li and Huang

2008)

(), , , , , , , ,
x x y y xx xy

h e j q j q p pε=m , (3.3.5)

where 0m h= is the water depth, 1m e= is related to the total energy, 2m ε= is related to the

energy square, () () ()3 5, , ,
x y x y

m m j j hu hu= = are the flow momenta, () ()4 6, ,
x y

m m q q= are

related to the head flux, and 7 xx
m p= and 8 xy

m p= are related to the diagonal and off-diagonal

components of the stress tensor, respectively. In the application to the shallow water equations,

the conserved moments are the water depth and the flow momenta:

h fαα
=∑ , (3.3.6)

i i
hu c fα αα

=∑ . (3.3.7)

 33

The remaining moments are not conserved quantities. Using equations (4.1.4) and (3.3.3), the

equilibrium moments, Meq eq=m f , are

() ()2 2 2 22 2

1 22 2 2 2

3 33 9
4 , 4

2
x y x yeq eq

h u u h u ugh gh
m h m h

c c c c

+ +
= − + + = − − , (3.3.8)

4 6, yeq eqx
huhu

m m
c c

= − = − , (3.3.9)

()2 2

7 82 2

3
,

x y x yeq eq
h u u hu u

m m
c c

−
= = . (3.3.10)

The equilibria of the conserved moments ()0 3 5, , and m m m are equal to themselves. Therefore,

the relaxation rates, 0s , 3s , and 5s , have no effect on LBM solutions. With the moment

equilibria given by equations (3.3.8)-(3.3.10), the shallow water equations can be recovered with

the shear and bulk viscosities given by Lallemand and Luo (Lallemand and Luo 2000)

7 8

1 1 1 1 1 1

3 s 2 3 s 2
v c x c x

   
= − ∆ = − ∆   

   
, (3.3.11)

1

1 1 1

6 s 2
c xζ

 
= − ∆ 

 
. (3.3.12)

Setting s 1α τ= , the GLBE, equation (3.3.1), reduces to the single relaxation time (SRT)

LBM model, referred to the LBGK model, for shallow water equations (Salmon 1999; Zhou

2002). For the LBGK model in D2Q9, the shear and bulk viscosities become

1 1
2

3 2
v c xζ τ

 
= = − ∆ 

 
. (3.3.13)

The SRT constrains the non-conserved moments (free parameters) and makes the LBGK

particularly prone to numerical instabilities. Insufficient dissipation from non-conserved

moments is unable to eliminate the fluctuations in water depth when τ is close to 1 2 , which is

 34

needed for very small kinematic viscosity of 6 21 10v m s−= × used in this study. One way to

overcome the stability problem is either to use very fine grids or large viscosity values in the

SRT-LBM model. The MRT-LBM model has no such a problem because the relaxation rates

corresponding to non-conserved moments can be selected to attain stable solutions.

3.4 LBM for Anisotropic Advection Dispersion

The two-relaxation-time (TRT) collision operator (Ginzburg 2005; Servan-Camas and

Tsai 2008; Servan-Camas and Tsai 2009) is sufficient for solute transport in shallow water flow.

The TRT collision operator is a particular form of the MRT collision operator with two unique

relaxation rates where 1 2 7 8s s s s 1
a

τ= = = = and 4 6s s 1
s

τ= = in equation (3.3.1). The TRT

collision operator does not have any macroscopic advantage over the MRT collision operator for

the mass transport equation, but does have a computational advantage based on efficiency and

simplicity of analysis and coding (Ginzburg 2007). The TRT-LBM model is

() () () ()()

() ()() ()

1
, , , ,

1
, , ,

s seq

s

a aeq

C

a

f t t t f t f t f t

f t f t tS t

α α α α α

α α α

τ

τ

+ ∆ + ∆ − = − −

− − + ∆

x c x x x

x x x

, (3.4.1)

where s
fα and seq

fα are the symmetric parts of the particle distribution function and equilibrium

distribution function, respectively; a
fα and aeq

fα are the anti-symmetric parts of the particle

distribution function and equilibrium distribution function, respectively;
s

τ and
a

τ are the

symmetric relaxation time and anti-symmetric relaxation time, respectively.
C

S α is an external

force along the α direction. Equation (3.4.1) reduces to the SRT-LBM model when
s a

τ τ= . For

the TRT, the symmetric relaxation time was suggested by Servan-Camas and Tsai (Servan-

Camas and Tsai 2009):

 35

()
1 1

2 12 0.5s

a

τ
τ

= +
−

. (3.4.2)

In the TRT collision operator, particle distribution functions are relaxed to the

equilibrium state by relaxing their symmetric and anti-symmetric parts separately, which are

given by

;
2 2

;
2 2

s a

eq eq eq eq
seq aeq

f f f f
f f

f f f f
f f

α α α α
α α

α α α α
α α

+ −
= =

+ −
= =

, (3.4.3)

where gα and eq
gα are the distribution functions and EDF along opposite direction of α ,

respectively. The zeroth, first, and second moments of the EDFs are

, 0eq seq aeqf f hC fα α αα α α
= = =∑ ∑ ∑ , (3.4.4)

, 0eq aeq seq

i i i i
c f c f hCu c fα α α α α αα α α

= = =∑ ∑ ∑ , (3.4.5)

()
, 0

1/ 2
ijeq seq aeq

i j i j i j i j

a

hD
c c f c c f C hu u c c f

t
α α α α α α α α αα α ατ

 
= = + =  ∆ − 

∑ ∑ ∑ . (3.4.6)

The EDFs applied to the AADE are (Servan-Camas and Tsai 2010)

() ()
()

22 2

2 2 2 4 2

8

1

ˆ 3 1
2 1 2 2 , 0

2 2
eq s s

a a

eq eq

hc c h h
f C

c c c c c

f hC f

αα α α
α α

α α
α

ω τ τ α

=

 ⋅⋅ ⋅
= − + − + + − > 

 
 

= −∑

u cu c u u

, (3.4.7)

where
s

c α is the multispeed of sound (MSS), a numerical parameter related to the coefficients of

anisotropy. The MSS for the eight directions are given as follows:

 36

2
2 2
1 3

2
2 2
2 4

2 2 2
5 7

2 2 2
6 8

3

2
3

2

3

3

sxx sxx syy

s s

syy sxx syy

s s

s s sxy sxx syy

s s sxy sxx syy

c c c
c c

c c c
c c

c c c c c

c c c c c

−
= =

−
= =

= = +

= = − +

, (3.4.8)

where 2
sijc is the anisotropic local squared speed of sound in each lattice grid point. From the

recovery procedure, one can derive 2
sijc relating to the product of the dispersion tensor and the

water depth:

()
() ()

()
2 , ,

,
1 2

ij

sij

a

h t D t
c t

t τ
=

∆ −

x x
x . (3.4.9)

()2ˆ ,sc tα x in equation (3.4.7) is the squared directional speed of sound (DSS) to account for

heterogeneity. ()2ˆ ,sc tα x is calculated as the arithmetic mean of the MSS along the α direction

across adjacent lattice grids:

()
() ()2 2

2 , ,
ˆ ,

2
s s

s

c t c t t
c t

α α α
α

+ + ∆
=

x x c
x . (3.4.10)

The forcing terms are given by

() () () ()

()
0 , , 0.5 , ,

, 0 0

C C C C

C

S t S t S t S t t

S tα α

= + − − ∆  

= >

x x x x

x
. (3.4.11)

To ensure that the TRT-LBM model solves the AADE in shallow water with proper LB

parameters, the recovery of the AADE, equation (2.3.1), up to second order by Chapman-Enskog

multi-scale analysis utilizing the moments in equations (3.4.4)-(3.4.6) can be found in Servan-

Camas and Tsai (Servan-Camas and Tsai 2009; Servan-Camas and Tsai 2010).

 37

3.5 Boundary and Initial Conditions

3.5.1 Introduction

In order to simulate shallow water flow problems, suitable boundary and initial

conditions must be provided. Boundary and initial conditions in the lattice Boltzmann

formulation rely on connecting the macroscopic boundary conditions in the physical problem to

mesoscopic boundary conditions on the distributions functions, fα . Consider the idealized

domain shown in Figure 3.2.

3.5.2 Periodic Boundary Conditions

In some cases, periodic boundary conditions may be necessary. One such case is when a

flow region consists of a number of same sub regions where the flow pattern repeats itself. In this

case, only one sub region is actually required to be modeled using a periodic boundary condition.

Implementing periodic boundary conditions in the lattice Boltzmann formulation is achieved by

setting the unknown distribution functions, 1f , 5f and 8f at the inflow boundary (see Figure 3.2)

to the corresponding known distribution functions at the outflow boundary,

() ()1, , , , , 1,5,8xf i j t f i N j tα α α= = = = (3.4.12)

and the unknown distribution functions, 3f , 6f and 7f at the inflow boundary,

() (), , 1, , , 3,6,7xf i N j t f i j tα α α= = = = (3.4.13)

Similarly, a periodic boundary condition in the y direction can be formulated.

3.5.3 Solid Boundary Conditions

Boundary conditions for solid boundaries such as impermeable boundaries or structures

in the flow region are prescribed by applying no-slip or free-slip at these boundaries to prescribe

zero velocity or zero normal velocity at the boundary, respectively. Implementing no-slip and

free-slip boundary conditions in the lattice Boltzmann formulation is simple using bounce-back

 38

scheme (Chen and Doolen 1998). The basic idea behind the bounce-back scheme is that

unknown distribution functions are a function of the known distribution functions incident on the

boundary, defined by symmetry conditions.

Figure 3.2 Definition sketch lattice nodes for inflow, outflow and south solid boundaries.

A no-slip boundary condition is achieved by setting the unknown distribution functions,

2f , 5f and 6f at the south boundary (see Figure 3.3) to the known distributions, 4f , 7f and 8f

corresponding to the opposite directions,

2 4 5 7 6 8, , .f f f f f f= = = (3.4.14)

This ensures a zero flux across the boundary in both the normal and tangential directions. A free-

slip boundary condition is achieved in a similar way; however, it results in a zero flux across the

normal direction and non-zero flux along the tangential direction. This is achieved by setting the

unknown distribution functions, 2f , 5f and 6f at the south boundary to the known distributions,

Inflow Outflow

unknown

known

6 5

3

7 8

6 5

3

7

6 2 5

3

7 4 8

(),1xN

(),
x y

N N

()1,1

()1,
y

N

 i i + 1 i - 1

X

Y

 j

j - 1

j + 1

 39

4f , 7f and 8f corresponding to the opposite direction along the normal direction and reflected

direction along the tangential direction,

2 4 5 8 6 7, , .f f f f f f= = = (3.4.15)

Following the same bounce back scheme, no-slip and free-slip boundary conditions can be

implemented on the east and west boundaries.

Figure 3.3 Definition sketch lattice nodes the south solid boundaries.

3.5.4 Open Boundary Conditions

Boundary conditions for open boundaries such as inflow, outflow and seaward boundary

conditions are prescribed by giving the macroscopic boundary values or functions at the

boundary, i.e., constant water depth, water depth defined by tidal function, discharge, etc. If the

velocity and depth are known, the unknown distribution functions, fα , can be computed using

Equations (3.1.4) and (3.1.5) following the method described by Zou and He (1997). At the

inflow boundary (see Figure 3.2), Equations (3.1.4) and (3.1.5) lead to three equations,

0 1 2 3 4 5 6 7 8f f f f f f f f f h+ + + + + + + + = (3.4.16)

() ()1 5 8 3 6 7 xc f f f c f f f hu+ + − + + = (3.4.17)

() ()2 5 6 4 7 8 yc f f f c f f f hu+ + − + + = (3.4.18)

 1 3

6 2 5

7 4 8

South Solid Boundary
unknown

known
X

Y

 40

If 0
y

u = is assumed, solving the above three equations for the unknown distribution functions,

1f , 5f and 8f results in

1 3

2

3
x

hu
f f

c
= + (3.4.19)

4 2
5 76 2

x
hu f f

f f
c

−
= + + (3.4.20)

2 4
8 66 2

x
hu f f

f f
c

−
= + + (3.4.21)

Following the same procedure, the unknown distribution functions, 3f , 6f and 7f for the outflow

boundary can be determined using

3 1

2

3
x

hu
f f

c
= − (3.4.22)

2 4
6 86 2

x
hu f f

f f
c

−
= − + + (3.4.23)

4 2
7 56 2

x
hu f f

f f
c

−
= − + + (3.4.24)

3.5.5 Initial Conditions

The initial conditions for a physical problem to be modeled are given in form of

macroscopic variables which is normal practice in traditional numerical methods. Since the

lattice Boltzmann formulation is based on solving Equation (3.1.3), the initial conditions must be

written in terms of the distribution function fα . Given the initial macroscopic boundary

conditions, h ,
x

u , and
y

u , the EDF, eq
fα , is computed and used as initial conditions for fα , i.e.

() () ()(), 0 , , 0 , , 0eq

x y
f f h t u t u tα α= = = =x x x .

 41

4 LBM FOR MULTI-LAYER SHALLOW WATER EQUATIONS

4.1 MRT Collision Operator

The LB model is used to solve the shallow water equations for each layer. The LB

equation for describing dynamics of local particle distribution functions in a discrete velocity

field is (Chen and Doolen 1998; Zhou 2004):

() () () () ()() () ()
8

() () ()
2

0

b
, , , , ,

6
eq nn i

i

s tc
f t t t f t m t m t F t

e

β βα α
α α α β β

β β=

∆ + ∆ + ∆ = − − +
 ∑x c x x x x

b

lll l l (4.1.1)

where ()
fα

l is the particle distribution function moving along the α direction for the layer l ,

()eq
fα

l is the equilibrium distribution function (EDF) along the α direction for the layer l . The

second term on the right hand side of equation (4.1.1) is the MRT collision collision operator,

which represents changes in ()
fα

l due to particle collisions.
i

F is the external force per unit mass

in the shallow water equations (Zhou 2004). The external forces are defined in macroscopic

variables and their contribution distributed along the α directions. Equation (4.1.1) consists of a

streaming step and a collision step (Succi 2001; Zhou 2004). Based on equation (4.1.1), a multi-

layer LBGK model is constructed.

The local water height and flow velocity for each layer are calculated as the zeroth and

first moments of the distribution functions:

() ()h fαα
=∑l l (4.1.2)

() () ()
i i

h u c fα αα
=∑l l l (4.1.3)

The EDFs (Chen and Doolen 1998) applied to the multi-layer shallow water equations are

 42

()
2()2 () () ()

() ()
2 2 4 2

8
() () ()

0
1

3 1
, 0

2 2
eq s

eq eq

c
f h

c c c c

f h f

αα
α α

α
α

ω α

=

 ⋅⋅ ⋅ = + + − >
 
 

= −∑

u cu c u u
ll l l

l l

l l l

 (4.1.4)

where 2
s

c is known as the squared speed of sound, which in LBM for shallow water equations is

a numerical parameter that relates to the wave celerity, C gH= , i.e., 2 2 2 2
s

c C gH= = . It is

noted that the weighting coefficients αω remain the same as in monolayer LBGK formulation

since each layer has the same planar discretization. The EDFs for the multi-layer LBGK have the

same form as the monolayer and follow the same constraints on the zeroth, first, second, and

third moments for each layer:

() ()eqf hαα
=∑ l l (4.1.5)

() () ()eq

i i
c f h uα αα

=∑ l l l (4.1.6)

()() () 2 () ()eq

i j ij s i j
c c f h c u uα α αα

δ= +∑ l l l l (4.1.7)

()
2

() () () () ()

3
eq

i j k ik j jk i ij k

c
c c c f h u u uα α α αα

δ δ δ= + +∑ l l l l l (4.1.8)

The forcing term is given as

()

() ()
() ()

() () ()
() ()

() ()

() () () () ()

1 1

1 11 1
2 1 2 1

l

i Wi Pi NCi Ci

i i i i
l i Ml l

i i i i

F F F F F F

u u u u
u

h h h h

ρ

κδ µ δ µ δ
+ −

+ −

= + + + +

− −
− + − − −

− −

ll l l l

l l l l
l

l l l l

 (4.1.9)

The bed friction is now considered in the kappa term and the vertical viscosity forces in the mu

term.

 43

4.2 Recovery of Multi-layer Shallow Water Equations

This section presents the recovery of the multi-layer shallow water equation by multi-

scale analysis. Without loss of generality, the multi layer recovery begins with results of multi-

scale analysis of the LBM for shallow water equations, i.e., equations (3.2.10), (3.2.11) and

(3.2.13), applied to layer l of the multi-layer LBM.

()
() () ()

() () () () ()
()()

1 1

2

1 1 1

: 0i

i

i ji
s

j i

h uh
O

t x

h u uh u
h c

t x x

ε
∂∂

+ =
∂ ∂

∂∂ ∂
+ = −

∂ ∂ ∂

l ll

l l ll l
l

 (4.1.10)

()
()

() ()
() () () ()()

() () () () () ()()

2

2

2

2 1 1

2

1 1

: 0

1

2

1

2 3

i
ij s i j

j

jk i ik j ij k

j k

h
O

t

h u
t h c h u u

t x t

c
t h u h u h u

x x

ε

τ δ

τ δ δ δ

∂
=

∂

 ∂ ∂ ∂ 
= ∆ − +  

∂ ∂ ∂  

  ∂ ∂ 
+ ∆ − + +   

∂ ∂    

l

l l
l l l l

l l l l l l

 (4.1.11)

Selecting the relaxation time

2 2
0.5 3 0.5 3

t

tc x

ν ν
τ

∆
= + = +

∆ ∆
 (4.1.12)

and the squared speed of sound

2 ()

1

1 1

2 2

M
m

s

m

c g h gH
=

= =∑ (4.1.13)

equations (4.2.1) and (4.2.2) become

()
() () ()

() () () () () () ()

1 1

1

1 1 1

: 0

2

i

i

M m

i ji m

j i

h uh
O

t x

gh hh u uh u

t x x

ε

=

∂∂
+ =

∂ ∂

 ∂∂ ∂
 + = −
 ∂ ∂ ∂
 

∑

l ll

ll l ll l
 (4.1.14)

 44

()
()

() () () () () () () () ()

2

2

2
1

2
2 1 1 1 1 1

: 0

3

2

M m

i ji i m

j j i j

h
O

t

gh h h u uh u h u

t x x c t x x

ε

ν ν =

∂
=

∂

   ∂∂ ∂ ∂ ∂  = + +
 ∂ ∂ ∂ ∂ ∂ ∂ 
  

∑

I

l

l l l ll l l l

1444444442444444443

 (4.1.15)

The term I represents the numerical error. Substituting the second equation of (4.2.5) into the

term I , it becomes the second derivative of () ()
i

h u
l l with respect to 1t , which is small compared to

the first derivative and is neglected. Combining the first and second order terms in equations

(4.2.5) and (4.2.6), the multi-layer shallow water equations are recovered:

() () ()

() () () () () () () ()() 2
1

0

2

i

i

M m

i ji m i

j i j j

h uh

t x

gh hh u uh u h u

t x x x x
ν=

∂∂
+ =

∂ ∂

 ∂∂ ∂∂
 + + =
 ∂ ∂ ∂ ∂ ∂
 

∑

l ll

ll l ll l l l
 (4.1.16)

4.3 Boundary and Initial Conditions

4.3.1 Introduction

Concerning the boundary conditions for the multi-layer lattice Boltzmann formulation,

treatments for the boundary conditions for the monolayer shallow water equations are referred to.

Periodic boundary, solid boundary, and initial conditions are straightforward to extend to the

multi-layer lattice Boltzmann formulation as they involve exactly the same techniques presented

in sections 3.3.2, 3.3.3 and 3.3.5 repeated for each layer. Open boundary conditions, however,

need more attention as they involve macroscopic variables defined by the multi-layer shallow

water equations.

4.3.2 Multi-layer Open Boundary Conditions

 Based on the known velocity and depth, the unknown distribution functions in the

monolayer formulation, fα , were calculated based on the conservation constraints on the zero

 45

and first moments in section 3.3.4. The unknown distribution functions in the multi-layer

formulation, ()
fα

l are calculated in a similar manner for each layer, however, the equivalent local

water heights, ()
h

l , and velocities ()
u

l must be determined. The local water height is prescribed

as

() , 1,...,
H

h M
M

= =
l

l . (4.2.1)

For the velocity components, a constant velocity along the vertical direction prescribed as

() , 1,...,
i i

u U M= =
l

l . (4.2.2)

Similar to section 3.3.4, () 0l

yu = is assumed, resulting in the following equations for the

unknown distribution functions, ()
1f
l , ()

5f
l and ()

8f
l :

() ()
() ()

1 3

2

3
x

h u
f f

c
= +

l l
l l (4.2.3)

()
() ()

()
() ()

4 2
5 76 2

x
h u f f

f f
c

−
= + +

l l l l
l l (4.2.4)

()
() ()

()
() ()

2 4
8 66 2

x
h u f f

f f
c

−
= + +

l l l l
l l (4.2.5)

Following the same procedure, the unknown distribution functions, ()
3f
l , ()

6f
l and ()

7f
l for the

outflow boundary are determined using

() ()
() ()

3 1

2

3
x

h u
f f

c
= −

l l
l l (4.2.6)

()
() ()

()
() ()

2 4
6 86 2

x
h u f f

f f
c

−
= − + +

l l l l
l l (4.2.7)

()
() ()

()
() ()

4 2
7 56 2

x
h u f f

f f
c

−
= − + +

l l l l
l l (4.2.8)

 46

4.4 Multi-Layer LB Algorithm

With the solution known at time n , the solution at time 1n + is calculated with an

explicit treatment of quantities local to a layer, i.e., the left hand side of equations (2.2.1)

and(2.2.2), the kinematic viscosity term in equation(2.2.6), the wind-driven forcing term, the bed

slope forcing term, the non-conservative pressure source term, and the forcing term representing

the Coriolis effect. The vertical viscosity forcing term (()
iFµ
l) can be interpreted as a friction term

between layers. To increase the solution stability, this term is treated implicitly. First, equation

(4.1.1) is solved for each layer explicitly to obtain intermediate distribution functions *() 1n
fα

+l ,

velocities *() 1n

i
u

+l , and local water heights ()* 1n
h

+l :

() () () () ()() () ()
8

*() 1 () ()
2

0

b
, ,

6
eq nnn n ni

i

s tc
f t f m t m t F

c

β βα α
α α α β β

β β

+

=

∆ + ∆ = − − +
 ∑x c x x x x

b

lll l l (4.2.9)

*() 1 *() 1n nh fαα

+ +=∑l l (4.2.10)

*() 1 *() 1 *() 1n n n

i i
u c f hα αα

+ + +=∑l l l (4.2.11)

Then, an implicit step is solved for macroscopic variables given as:

()

()()

()

() ()

1 * 1

() 11 * 1

0n n

nn n
i

i i

h h

Fhu huµ

+ +

++ +

    
   + = 
       

l l

ll l
 (4.2.12)

where the right hand side represents the intermediate solution given by the explicit LB step

(equations (4.2.9)-(4.2.11)) and is known. The first row in equation (4.2.12) relates to mass

conservation, which is not affected by the vertical viscosity forcing. The second row in equation

(4.2.12) relates to momentum that needs to account for the vertical viscosity forcing. The

updating of flow velocities () 1n

i
u

+l at time 1n + based on the second row in equation (4.2.12)

leads to an M M× tridiagonal linear system (Audusse 2005):

 47

()

()

()

()

*(1) 1
(1) 1

1 1
*(2) 1(2) 1

2 2 2

(3) 1 *(3) 1
3 3

1

() 1 *() 1

0 0

0 0

0 0

n
n

i
i

nn
ii

n n

i i

M

M n
M n

M M i
i

hua b u

huc a b u

c a u hu

b

c a u hu

+
+

++

+ +

−

+
+

 
    
    
    
   =  
    
    
       

 

L

O M

O

M O O O M M

L

 (4.2.13)

where the matrix elements are

()
() ()

()
() () () ()

()
() ()

1 1
1 1 1 2 1

1

1 1 1 1 1 1

1

1 1 1

2

1 1
2 , 2, , 1

2

n

n n

n

n n n n

M n

M M n M n

t
a h t

h h

a h t M
h h h h

t
a h

h h

µ
κ

µ

µ

+

+ +

+

+ + + + − +

+

+ − +

∆
= + + ∆

+

 
= + ∆ + = −  + + 

∆
= +

+

l

l l l l l
l K (4.2.14)

()
() ()

1

1 1 1

2
, 1, , 1n

n n

t
b h M

h h

µ+

+ + +

∆
= + = −

+

l

l l l
l K (4.2.15)

()
() ()

1

1 1 1

2
, 2, ,n

n n

t
c h M

h h

µ+

+ − +

∆
= + =

+

l

l l l
l K (4.2.16)

The above numerical procedure to advance the solutions of the multi-layer LB algorithm

from time n to time 1n + can be summarized in the following steps:

Step 1. Use the local water heights, ()n
h

l , total water depth, nH and velocities, ()n

i
u

l at time n

to compute the EDFs, ()eq
fα

l , from equation (4.1.4).

Step 2. Calculate the distribution functions, ()
fα

l , using equation (4.2.9) and impose bounce-back

boundary conditions for each layer to ensure conservation of mass and momentum at the

impermeable walls.

Step 3. Calculate intermediate local water heights, *() 1n
h

+l , total water depth, * 1nH + and

velocities, *() 1n

i
u

+l using equations (4.2.10) and (4.2.11).

 48

Step 4. Update velocities () 1n

i
u

+l at time 1n + by solving the linear system in equation (4.2.13).

Step 5. Repeat Step 1 to Step 4 for next time step.

 49

5 HPC LBM FOR SHALLOW WATER EQUATIONS VIA OPENMP

5.1 Introduction

To demonstrate the inherent parallelism feature of the LB model for higher performance

computing, this study introduces OpenMP in a shared memory environment to test the scalability

of the multi-layer LB code. OpenMP parallelization is a straightforward extension of serial

coding, based on the simple recipe: i) add work distribution directives; ii) carefully control

variable scoping; iii) if needed, choose the most suitable parallel loop scheduling; and iv) if

needed, take care of false sharing of variables among threads. Although this approach works with

some very simple codes, most programs parallelized in this way do not scale beyond a small

number of processors (Massaioli and Amati 2002). A computational advantage of the LBM is

that implementing streaming and colliding steps leads to a computational algorithm that is very

suitable for parallelization in both shared and distributed memory environments. Massaioli and

Amati (Massaioli and Amati 2002) implemented a two-dimensional LB algorithm using standard

OpenMP directives and showed linear speedup to eight processors. The standard OpenMP

directive uses an implicit control of the loop variable. In this study, implicit and explicit loop

control approaches are compared in OpenMP for our multi-layer LB algorithm. The latter allows

for cache optimization by dividing the computational domain of each processor into sub-

domains.

5.2 Basic Code and Basic Parallelization

As mentioned above, the LBM implementation comprises two steps: streaming and

collision. The collision step is completely local as there are essentially no spatial dependencies

among variables and lends itself very favorably to parallelization. The streaming step, however

has spatial dependencies of magnitude 1 and is the most critical part of the solution procedure as

 50

far as the parallelization is concerned. Moreover, it takes up to approximately 25% of the total

running time which would yield a theoretical limit for the speedup (Wellein et al. 2006). The

basic code to be parallelized using OpenMP is written in FORTRAN 90 and follows the

traditional practice of explicitly separating the collision and streaming operations in different

subroutines so that the whole simulation can be pseudocoded as:

do from first time step to last time step

call collision

call streaming

enddo

5.3 Basic Parallelization

The pseudocode of the collision subroutine is given as:

sub collision

 for each grid point (),i j

 compute () ()(), ,eqf i j f i jα α αω − for every direction α

 update (),f i jα

end for each

The outermost loop, corresponding to the rightmost array index (i.e. to the y space coordinate)

can be elected for parallelization, to reduce the overhead caused by entering/exiting work sharing

constructs. A PARALLEL DO construct, with proper privatization of variables holding

intermediate results, is enough. Each iteration has the same computational cost so that static

scheduling can be used. No false sharing effect is present for non trivial grids. The non-locality

of the streaming step requires more attention. To reduce memory occupancy, the streaming step

is performed in place. As the pseudocode

sub streaming

for each direction α

for each grid point (),i j

move (),f i jα to (),
i j

f i c j cα α α+ +

end for each

 51

end for each

shows, different distribution functions move independently, but care must be taken depending on

the length and direction of movement, so that the destination array element can be safely

overwritten. Thus, every non zero component of cα introduces a data dependency in the loop on

the corresponding spatial index (loops are nested from greater to smaller stride, for cache

efficiency reasons):

do j = nyf,nyi,-1 do j = nyi,nyf

do i = nxi,nxf do i = nxf,nxi,-1

() ()2 2, , 1f i j f i j= − () ()4 4, , 1f i j f i j= +

() ()6 6, 1, 1f i j f i j= + − () ()8 8, 1, 1f i j f i j= − +

enddo enddo

enddo enddo

do j = nyf,nyi,-1 do j = nyi,nyf

do i = nxf,nxi,-1 do i = nxi,nxf

() ()1 1, 1,f i j f i j= − () ()3 3, 1,f i j f i j= +

() ()5 5, 1, 1f i j f i j= − − () ()7 7, 1, 1f i j f i j= + +

enddo enddo

enddo endd

5.4 Code Optimization and Parallelization

The streaming step is the obvious target for improving parallelization because it’s data

dependencies and memory access patterns. The streaming step may be attacked by noting that it

contains a number of dependencies that prevent an efficient parallelization in its form; however,

most of these difficulties may be overcome by alternating among two copies of distribution

functions which alternate as source and destination on odd and even time steps. This approach is

commonly accepted as good approach on both serial and parallel implementation. Furthermore,

the approach allows one simple loop that can be iterated over for both streaming and collision.

The resulting pseudo-code is given as:

do j=nyi,nyf

 52

do i=nxi,nxf

 () ()1 1, 1,odd even
f i j f i j= −

 () ()2 2, , 1odd even
f i j f i j= −

 () ()3 3, 1,odd even
f i j f i j= +

 () ()4 4, , 1odd even
f i j f i j= +

 () ()5 5, 1, 1odd even
f i j f i j= − −

 () ()6 6, 1, 1odd even
f i j f i j= + −

 () ()7 7, 1, 1odd even
f i j f i j= + +

 () ()8 8, 1, 1odd even
f i j f i j= − +

enddo

enddo

A simple schedule achieves a good parallelization. Despite the increase in memory

occupancy, there is a substantial benefit in the cache usage pattern providing an overall 15%

serial speedup. The other technique used in this application has been to combine all phases, i.e.

streaming, density and collision operators, into a single computational loop, so as to achieve

maximal data reuse. With this modification, the code structure becomes:

do j=nyi,nyf

do i=nxi,nxf

 () ()1 1, 1,odd even
f i j f i j= −

 () ()2 2, , 1odd even
f i j f i j= −

 () ()3 3, 1,odd even
f i j f i j= +

 () ()4 4, , 1odd even
f i j f i j= +

 () ()5 5, 1, 1odd even
f i j f i j= − −

 () ()6 6, 1, 1odd even
f i j f i j= + −

 () ()7 7, 1, 1odd even
f i j f i j= + +

 () ()8 8, 1, 1odd even
f i j f i j= − +

compute () ()()1 , ,eq oddf i j f i jα ατ − for every α

 update (),odd
f i jα

enddo

enddo

 53

Massaioli and Amati (2002) found that a simple STATIC schedule for the PARALLEL

DO directive was favorable and reported that runs with the basic LBM code structure with

DYNAMIC and GUIDED schedules were not very satisfactory. Bella et al. (2002) suggested

strategies to improve performance and efficiency based on implementing a fused approach using

two copies of distribution function arrays and a static schedule alternating the source and

destination arrays. This approach has been shown to improved parallelism by removing the

spatial dependencies and has been proven to increase efficiency on both serial and parallel

implementations. Bella et al. (2002) reported increased speedup and efficiency but only reported

up to 6 processors. They also failed to report on how the size of the domain affects the parallel

performance.

5.5 Cache Optimization

Obtaining data from the main memory in every computational cycle is time-consuming

and the CPU remains idle during this process. If the data were being accessed from cache in

every computational cycle, time consumed by data transfer would be much less. To obtain good

performance on cache-based computer architectures, the computational algorithms are required

to divide the data (computational domain) into blocks (sub-domains) that can fit into cache and

then be utilized repeatedly. Not all algorithms are amenable to this kind of cache optimization

since data dependencies disallow updating sub-domains separately. The lattice Boltzmann

algorithm has only nearest neighbor data dependencies and is highly amenable to cache

optimization.

5.6 Cache Optimization for LBM Using OpenMP

 To implement the LBM algorithm efficiently with optimal use of cache, the grids need to

be divided into subsections that fit in cache. Performing computations separately for each

 54

subsection, for several time steps, achieves cache optimization. A standard approach of

implementing the LBM algorithm is based on the OpenMP’s PARALLEL region directive. The

OpenMP PARALLEL DO directive uses an implicit loop control. Although simple to

implement, the OpenMP PARALLEL DO directive has overhead caused by opening and closing

of fork/join parallel regions each time step. It also has the disadvantage of not being able to

control cache asscess. An explicit loop control technique is implemented to reduce the over

head. This also has the added benefit of ensuring the same processor assignment in the parallel

region and allows cache optimizations to be applied. This approach also is straightforward to

extend to MPI programs for distributed memory systems. The domain is partitioned evenly over

the i direction using an explicit loop schedule. This approach also keeps the same processor for

each partition. Loop blocking is applied for cache optimization on each processor. This results in

the final pseudo code shown below. The parallelization is load balanced for the periodic and

simply boundary conditions considered in this study. OpenMP PARALLEL SECTIONS

directive is used to ensure the processors stay synchronized inside a time step.

do jj=1,ny,jblksize

do ii=ibeg,iend,iblksize

do j=jj,min(ny, jj+jblksize-1)

do i=ii,min(iNx, ii+iblksize-1)

 () ()1 1, 1,odd even
f i j f i j= −

 () ()2 2, , 1odd even
f i j f i j= −

 () ()3 3, 1,odd even
f i j f i j= +

 () ()4 4, , 1odd even
f i j f i j= +

 () ()5 5, 1, 1odd even
f i j f i j= − −

 () ()6 6, 1, 1odd even
f i j f i j= + −

 () ()7 7, 1, 1odd even
f i j f i j= + +

 () ()8 8, 1, 1odd even
f i j f i j= − +

compute () ()()1 , ,eq oddf i j f i jα ατ − for every α

 55

 update (),odd
f i jα

enddo

enddo

enddo

enddo

There is more than one choice of domain decomposition for three dimensional data. The

current parallel LB algorithm is implemented by decomposing the entire flow domain into

several computational domains divided along one horizontal flow direction, i.e., the lateral flow

direction, according to the number of processors. The choice of one horizontal flow direction is

made to restrict data communication in one direction. This decomposition allows the LB

equation to be calculated with minimal communication across processor domains to retain the

parallel benefits of the LBM. The main key is that the domain is not decomposed in the vertical

(layer) direction. This allows the LB equation and the implicit step to remain completely local in

layers to each processor and does not require the tridiagonal solver for equation (4.2.13) to be

parallelized. An added benefit is that the computational domain of each processor is further

divided into sub-domains to allow for cache optimization.

5.7 Parallel Speedup and Efficiency

Parallel performance is often evaluated by two factors: parallel speedup and efficiency.

The parallel speedup is the ratio of computation times for one thread to the total number of

threads (processors) used. The efficiency is the average speedup over the total number of threads.

These two factors are used to evaluate the HPC in the following numerical simulations of wind-

driven circulation in a square lake of dimensions 64000 64000m m× with a flat bottom. The

multi-layer LB method was implemented on a shared memory HPC system, an AIX v5.3

constellation from IBM with 1.9 GHz IBM POWER5+ processors. The initial water depth is 10

 56

m. The lake is discretized into a grid of size 1024 1024 10× × corresponding to 10 layers and

62.5x y m∆ = ∆ = . The initial local water height is 1 m for each layer and the initial flow

velocity is zero. The LBM parameters are 0.501τ = , 8 st∆ = , and 7.8125 /e m s= . The

physical parameters are 20.1W

iz
N mτ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = ,

20.01 m sµ = , 0.001 m sκ = , and 10
c

f s
−= . The wind direction is along positive x direction.

Therefore, the wind velocity is 7.4536
Wx

U m s= and 0
Wy

U m s= . The initial condition for the

distribution functions are the EDFs in equation (4.1.4) with the static water (() 0=u
l) and the

initial local water heights. Free-slip bounce-back boundary conditions are applied to the four

vertical side walls of the lake. The simulations were run for 1000 time steps.

Table 5.1 shows the execution time, speedup and efficiency for the implicit and explicit

loop controls that were tested up to 16 processors. It demonstrates the importance of cache

optimization in LBM. Optimizing cache-use on each thread based on dividing the processor

domains into sub-domains improves the speedup and efficiency. The explicit loop control

implementation takes slightly longer than the implicit approach; however, the parallel

performance of the implicit approach starts to break down past 12 processors. The speed up and

efficiency of the implicit approach begins to decline after 8 threads while the explicit approach

continues to scale up to 16 threads.

 57

Table 5.1: Execution Time (min), Speedup, and Efficiency for Implicit and Explicit Loop
Control Implementations on a 1024 1024 10× × grid.

Implicit Loop Control Explicit Loop Control

Threads Execution

Time (min)

Speedup Efficiency

Execution

Time (min)

Speedup Efficiency

1 40.408 1.00 1.00 45.978 1.00 1.00

2 20.260 1.99 0.99 22.156 2.00 1.00

4 10.096 4.00 1.00 11.698 3.99 0.98

8 5.468 7.39 0.92 6.005 7.54 0.94

12 4.335 9.32 0.78 3.946 11.65 0.97

16 6.306 6.40 0.40 3.076 14.94 0.93

 58

6 HPC LBM FOR SHALLOW WATER EQUATIONS VIA GPU

ACCELERATION

6.1 Introduction

The computational advantage of the LBM is that implementing streaming and colliding

steps leads to a computational algorithm that is very suitable for parallelization on both GPU and

CPU based architectures. However, the implementation details and techniques on these two

architectures for code optimization are completely different. Increasing CPU parallel

performance relies on optimal data caching (Tubbs and Tsai 2009) when increasing parallel

performance on GPUs relies on memory access patterns and latency (Tolke and Krafczyk 2008;

Walsh et al. 2009).

The GPU is specialized for graphics rendering tasks, which require computationally-

intensive, highly parallel computations with much more transistors devoted to data processing

compared to traditional CPUs. More specifically, the GPU is especially well-suited to address

problems that can be expressed as data-parallel computations with high arithmetic intensity

(NVIDIA 2008). The data-parallel computations require the same program instructions to

execute on many data elements in parallel. The arithmetic intensity is the ratio of arithmetic

operations to memory operations.

Modern GPUs contain hundreds of arithmetic units (stream processors) to provide

tremendous acceleration for numerically intensive scientific applications. The latest generation

of high-end video cards offer considerable computing power using their 100-200 on-card

processors, 0.3-1.0 plus GB of RAM and fast inter-processor communications. Recently, the use

of the GPU to accelerate non-graphics computations has drawn much attention (Bolz et al. 2003;

Kruger and Westermann 2003; Buck 2005). This is due to the fact that the computational power

of GPU’s has exceeded that of PC-based CPUs by more than one order of magnitude while being

 59

available for a comparable price. Furthermore, GPU’s have become a low cost high-performance

computing (HPC) solution as GPU video cards have become standard in most desktop and laptop

computers, and can eliminate the cost of expensive cluster computing alternatives for HPC tasks.

 One promising application of this GPU computing capability is through MATLAB and

MATLAB mex functions. With a properly developed mex function, the MATLAB user friendly

interface can be used to perform behind the scenes parallel computations on the GPU. The GPU

becomes a co-processor for the personal computer. While the MPI implements a means of

parallel computing on a cluster of PC’s, NVIDIAs’s “Compute Unified Device Architecture”

(CUDA) implements a means of computing on the large number of processors of a GPU. MPI is

employed for complicated computations, but is often limited by inter-computer communications,

while CUDA is employed for massive number of simple computations using the fast

communication between many processors. Both approaches have their strengths and weaknesses.

The LBM and MATLAB performance on vectorized codes appear to be ideally suited for GPU

computation.

Computation on a GPU is basically a three step process: (1) Copy data to the GPU

memory, (2) Execute code (the “kernel) to process that data, and (3) Copy the results back from

the GPU memory. In general, code should be designed to minimize steps (1) and (3), which

frequently limit the overall speed of the calculations. CUDA calculations usually start to

outperform ordinary CPU calculations for large-size problems. GPU development is still in its

infancy and the techniques and approaches may be still raw but promising. As interest continues

to peak, more tools and functionality should become available.

To investigate the LBM code performance on GPU architectures for shallow water flow

and mass transport, this study uses the Jacket GPU engine for MATLAB® on a single GPU

 60

workstation. The Jacket GPU engine for MATLAB® is built on the Compute Unified Device

Architecture (CUDA), which is a hardware and software architecture for issuing and managing

computations on the GPU as a data-parallel computing device without the need of understanding

and programming graphics rendering languages (NVIDIA 2008). CUDA technology enables the

GPU to solve computationally intensive numerical modeling applications in a simplified

programming interface, making it more accessible to computational scientists. Jacket is a GPU

engine for MATLAB® built on NVIDIA’s® CUDA technology. It enables standard MATLAB®

code to run on the GPU. Jacket is a complete and transparent system, automatically making

memory transfer and execution optimization decisions (Accelereyes 2009). Jacket GPU

parallelization is a straightforward extension of serial CPU coding in MATLAB®, based on the

simple recipe: i) vectorize MATLAB® code; ii) minimize memory transfers between host (CPU)

and device (GPU); and iii) identify and use the appropriate processor for serial (host) vs. parallel

(device) computations (Accelereyes 2009). In this study, the parallel performance of our LB

algorithm and how it scales with increasing problem size is demonstrated using Jacket. This

study specifically implements LBM on NVIDIA GPU architectures.

6.2 NVIDIA GPU Platform

The simulations conducted in this study are performed using a single workstation 3.0

GHz Intel® Core™2 Extreme quad core with an NVIDIA® Tesla™ C1060 Computing

Processor. The NVIDIA® Tesla™ C1060 Computing Processor contains 240 stream processors

running at 1.3 GHz, which has a peak performance of 933 GFLOPs. While the memory clock is

800 MHz and the memory size is 4 GB, the memory interface is 512 bit and the memory

bandwidth is 102 GB/sec. The operating system used is Microsoft Windows XP. MATLAB®

 61

version 7.7.0.471 (R2008b) is used along with Jacket version 1.2. This version of Jacket uses

NVIDIA’s CUDA version 2.3.

The internal structure of a Tesla™ C1060 Computing Processor consists of 30

multiprocessors (NVIDIA 2008), with eight stream processors per multiprocessor. Each

multiprocessor has 16 KB of shared memory accessible by the eight stream processors.

Computations on the GPU are organized into kernels (GPU programs) to be executed by multiple

threads in parallel. Threads are organized into groups called thread blocks. All threads within a

thread block execute the same kernel and communicate with each other through local

multiprocessor shared memory. They synchronize their computation with built-in

synchronization instructions. Usually, multiple thread blocks are employed because the hardware

places constraints on the maximum number of threads in one single block. Thread blocks cannot

synchronize executions as easily as threads within a single block can, nor do thread blocks

communicate between their local shared memories. To communicate, the thread blocks must

access global device memory on the GPU card. This constraint limits thread-to-thread

communication and restrains the amount of work that can be done in one kernel invocation.

Although the GPU architecture places constraints on inter-thread communication, it is

specifically designed to optimize the throughput of a single set of instructions operating

simultaneously on a large number of data sources. To obtain good performance on GPU-based

computer architectures, the computational algorithms based on structured grids or data are

required to divide the data (computational domain) into blocks (sub-domains) that can fit into

thread blocks and maximize memory access patterns to achieve high throughput. The LB

algorithm has only nearest neighbor data dependencies and is highly amenable to GPU

architectures.

 62

6.3 NVIDIA CUDA

The NVIDIA CUDA technology is a fundamentally new computing architecture that

enables the GPU to solve complex computational problems. CUDA (Compute Unified Device

Architecture) technology gives computationally intensive applications access to the processing

power of NVIDIA graphics processing units (GPU’s) through a new programming interface.

Software development is strongly simplified by using the standard C language. The CUDA

Toolkit is a complete software development solution for programming CUDA-enabled GPU’s.

The Toolkit includes standard FFT and BLAS libraries, a C-compiler for the NVIDIA GPU and

a runtime driver. CUDA technology is currently supported on the Linux and Microsoft Windows

XP operating systems.

6.4 AccelerEye’s Jacket

Jacket is a GPU engine for MATLAB that enables standard MATLAB code to run on the

GPU, connecting the user-friendliness of MATLAB directly to the speed and visual computing

capability of the GPU (Accelereyes 2008). MATLAB GPU computing with Jacket starts at the

most basic level through the replacement of low-level MATLAB data structures which normally

reside on the CPU with data structures that reside on the GPU. This replaces the lowest level of

MATLAB’s CPU-bound computation engine, moving the work MATLAB would normally do

on the CPU to the GPU. Jacket is built on NVIDIA's CUDA technology. Jacket Beta version 0.3-

20080710 on a 32 bit Windows XP with MATLAB R2007b is used. Jacket is run on the 2.0 beta

version of the CUDA toolkit for Windows XP, which uses version 1.1 compute capabilities.

Jacket-enabled MATLAB scripts achieve speed improvements in the range of 2x - 10x

improvements, and in some cases up to 100x improvements, over equivalent CPU versions.

While Jacket accelerates MATLAB functions and computations at a lower level, the overall

 63

speedup of an algorithm depends on the nature of the algorithm. The LBM has a very simple

implementation consisting of only local calculations (collisions) and nearest neighbor memory

transfers (streaming), which makes it a great candidate to be implemented both on the GPU and

in MATLAB.

6.5 Optimizing MATLAB GPU Performance

Implementing algorithms on the GPU using Jacket requires certain considerations to

optimized performance. Both MATLAB and Jacket perform best on vectorized code. A

vectorized code can make it easy to determine which parts of an algorithm is inherently serial

and parallel. Both MATLAB and Jacket take advantage of the inherent parallelism of the

MATLAB’s scripting M-language which is extremely powerful when utilized wisely. A good

understanding of the memory dependencies of an algorithm is necessary as CPU’s are inherently

serial computing devices and GPU’s are inherently parallel computing devices. For small or

serial operations, computations on the CPU are likely to outperform computations on the GPU.

For large or parallel operations, the GPU is likely to outperform the GPU. In a program, one can

control which segments of code are run on each device through the casting operations. Each

casting operation to and from the GPU pushes or pulls data back and forth from CPU memory to

GPU memory. Excessive memory transfers should be avoided as it will reduce the performance

of an application. The Jacket software minimizes these memory transfers automatically in

normal operation. However, care must be taken in implementing an algorithm. Fortunately, the

LBM can be completely vectorized and therefore all computations can be carried out on the

GPU. Transfers to CPU memory are only necessary for outputting solutions at desired intervals.

Currently a transfer to CPU is necessary for MATLAB plotting routines, however, due to the

nature of the GPU plots can be created through OpenGL.

 64

6.6 Computational Aspects

The basic code to be parallelized on the GPU using Jacket is written in MATLAB’s M-

Language and follows the same traditional practice of explicitly separating the collision and

streaming operations. The solution algorithm has not changed. However, in order to take

advantage of the GPU and MATLAB, the codes must be vectorized. Due to vectorization, the

solution procedure focuses on three main steps: the calculation of local macroscopic variables

from distribution functions, the collision step and the streaming step. Two copies of the

distribution functions are necessary to allow the code to be vectorized. Other than that, the

computations and procedures remain the same as the FORTRAN 90 code. Again, the whole

simulation can be pseudo-coded as:

For time =first time step: last time step

Compute Macroscopic Variables

Collision Step

Streaming Step

End

The vectorized version of the code is straightforward and very simple. The Jacket GPU engine

makes translating the code on the GPU as simple as casting the variables to the GPU. From

there, all calculations are performed on the GPU. Since the LBM is inherently parallel, there is

no need to cast variables back to the CPU until the end of the simulation or when variables are

written to file.

6.7 Parallel Performance

The parallel performance on the GPU is investigated in this section. Parallel speedup is

used to evaluate the HPC in the following numerical simulations of wind-driven circulation in a

rectangular lake of dimensions 170 60km km× with a flat bottom. The parallel performance of

the GPU is based on arithmetic intensity and data access patterns (NVIDIA 2008); therefore, the

 65

parallel performance is investigated based on how the speed up scales with increasing problems

size. The multi-layer LB method was implemented on a single workstation in MATLAB. The

initial water depth is 10 m. The lake is discretized into a grids of size 10 171 61× × ,

10 341 121× × , 10 681 241× × , and 10 1361 481× × corresponding to 10 layers and

=1000 m, 500 m, 250 m, and 125 mx y∆ = ∆ , respectively. The initial local water height is 1 m

for each layer and the initial flow velocity is zero. The LBM parameters are 0.501τ = and

20 /c m s= , with t∆ calculated as t c x∆ = ∆ . The physical parameters are

20.1W

iz
N mτ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 20.01 m sµ = , 0.001 m sκ = ,

and 10
c

f s
−= . The wind direction is along positive x direction. Therefore, the wind velocity is

7.4536
Wx

U m s= and 0
Wy

U m s= . The initial condition for the distribution functions are the

EDFs in equation (4.1.4) with the static water (() 0=u
l) and the initial local water heights. Free-

slip bounce-back boundary conditions are applied to the four vertical side walls of the lake. The

simulations were run for a simulation time of 30 hours where steady state has been achieved. The

average time per time step is investigated to make a fair comparison on computational effort.

Table 6.1 shows the grid size, execution time per time step and speedup for the GPU over

a single core of the CPU in MATLAB. It demonstrates the importance arithmetic intensity in

LBM performance on the GPU. If the number of lattice nodes is sufficiently high, the

computations will out weigh the data access and communication yielding a high arithmetic

intensity. The multi-layer LB algorithm yields approximately 2X speed up on the smallest

number of lattice nodes with the maximum speedup of approximately 22X on the largest number

of lattice nodes.

 66

Table 6.1: The grid size, execution time per time step and speedup for the GPU over a single
core of the CPU in MATLAB

CPU GPU Grid

Size Execution Time per time step(s) Execution Time per time step (s)

Speedup

1 0.44 0.19 2.23

2 3.04 0.30 10.13

4 14.19 0.95 14.92

8 56.60 2.57 22.00

 67

7 NUMERICAL EXAMPLES

7.1 Dam Break Flow Over A Forward Facing Step

A two-dimensional dam-break problem over a forward facing step is considered

(Benkhaldoun et al. 2007). The computational domain is a rectangular channel that is 12 m long

and 6 m wide. The dam site and the step are located at distance 6=l m from the upstream

boundary. The bottom bed is assumed to be frictionless. The bed elevation is 0 m for x ≤ l and 1

m for x > l . The initial water depth is 5 m for x ≤ l and 1 m for x > l . The initial velocity is

zero everywhere.

This test example is interesting since it includes most of flow structures such as shocks,

rarefaction waves and contact discontinuities. The present study is limited to subcritical flow.

This problem is formulated using the shallow water equations with no viscosity terms included

(Benkhaldoun et al. 2007). Therefore, the viscosity terms, which can be viewed in the case as

numerical viscosity, should approach zero in order not to smear the solution near the shock. This

requires the relaxation time parameter, τ , to be close to the limit of 0.5 in the SRT-LBM and

requires the relaxation rates 7s and 8s approaching 2.0 due to equation (3.3.11) in the MRT-

LBM. This test aims to compare the performance and stability of the proposed GLBE and LBGK

for solving the shallow water equations with very small kinematic viscosity.

 To investigate the stability and accuracy for different grid size, the domain is discretized

into grids of 201 101× , 401 201× , 801 401× , 1601 801× , 2001 1001× , 2401 1201× , and

2801 1401× lattices. The corresponding lattice size for the first three grids is ∆x = ∆y = 0.06 m ,

∆x = ∆y = 0.03 m , and ∆x = ∆y = 0.015 m , respectively. The last four fine grids have the same

grid size ∆x = ∆y = 0.0075 m . Therefore, the domain is increased to keep the constant grid

spacing. A constant lattice speed = 16 m sc is used. To achieve a kinematic viscosity of

 68

6 21 10v m s−= × , the relaxation time parameter in the SRT-LBM is calculated using equation

(3.3.13): τ = 0.500003125, τ =0.50000625, τ = 0.5000125, and τ = 0.500025 for the four

different x∆ . The relaxation rates s 1α τ= were used for the BGK and 4 6 7 8s s s s 1 τ= = = = ,

and 1 2 7s s s 0.6= = − for the MRT.

The shallow water equations were run up to time t = 0.5 s. The total execution time and

speedup for CPU and GPU implementations of the MRT-LBM are shown in Table 7.1. For the

smallest grid (201 101×), the GPU code takes longer time than the CPU code. This is due to

communication overhead between grid blocks on the GPU that is larger than the actual

computational cost for small grids. As the grid size increases, the computational cost becomes

larger than the communication overhead which results in larger speed up. For the largest grid

(2801 1401×), the CPU code executed in 2164.1 s while the GPU code executed in 91.11 s ,

resulting in 23.75 times speed up.

The water free surface along the center of the channel at time t = 0.5 s is illustrated in

Figure 7.1. The results are compared for the BGK and MRT collision operators for grid spacing

∆x = ∆y = 0.06 m and∆x = ∆y = 0.03 m . The exact solution is calculated using the procedure

from (Alcrudo and Benkhaldoun 2001). It is clear that BGK solutions are unstable due to τ very

close to the linear stability limit of 0.5 (Servan-Camas and Tsai 2009). Using MRT gives the

ability to tune the relaxation rates, 1s and 2s , corresponding to the non-conserved energy and

energy squared moments. The spurious oscillations are suppressed in the MRT. In Figure 7.2, the

water free surface (
b

h z+), the water head (
2

2
u

b g
h z+ +), the Froude number (Fr), and the water

discharge (hu) of the MRT results are compared well to the exact solution. The results shown

here compare favorably with several studies in the literature (see for example, (Benkhaldoun et

 69

al. 2007), (Tseng 2004)). It is noted that errors in the discharge near the discontinuity are

expected since the correct capturing of the water discharge is more difficult than the water height

in this class of test cases (Benkhaldoun et al. 2007). Nevertheless, the MRT-LBM for shallow

water is inherently a well-balanced scheme with correct forcing terms and does not exhibit large

errors near the discontinuity.

Table 7.1: Total Execution Time (s) and Speedup for CPU and GPU Implementations of the
MRT-LBM, Example 7.1.

Execution Time (s)

Grid Size
CPU GPU

Speedup

201 101× 1.71 3.72 0.46

401 201× 10.15 7.88 1.29

801 401× 80.54 16.55 4.87

1601 801× 640.69 45.24 14.16

2001 1001× 1005.50 54.18 18.56

2401 1201× 1430.20 70.29 20.35

2801 1401× 2164.10 91.11 23.75

7.2 Flow of Partial Dam Break

Dam break problems present an important flow phenomenon in civil engineering. The dam

break problem is an important benchmark to validating shallow water solvers ability to correctly

model shocks or hydraulic jumps that show occur in shallow water flows (Alcrudo and Garcia-

Navarro 1993; Chaudry 1993; Ambrosi 1995; Fagherazzi et al. 2004). A partial dam break

problem first presented in (Fennema and Chaudhry 1990) is considered. The partial dam-break

presents rapid opening of a sluice gate with non-symmetric breach. The computational domain is

 70

X
0 2 4 6 8 10 12

2

3

4

5 Exact solution
MRT-LBM
BGK-LBM

F
re

e
S

u
rf

ac
e

(a)

12
X

0 2 4 6 8 10 12

2

3

4

5 Exact solution
MRT-LBM
BGK-LBM

F
re

e
S

u
rf

ac
e

(b)

Figure 7.1: Free surface comparisons of subcritical flow over a forward facing step at time t =
0.5 s using the BGK and MRT collision operators for grid spacing (a)∆x = ∆y = 0.06 m, and

(b)∆x = ∆y = 0.03 m.

 71

X
0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1

F
re

e
S

u
rf

ac
e

Exact solution
MRT-LBM

(a)

10

X
0 2 4 6 8 10 12

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

H
ea

d

Exact solution
MRT-LBM

(b)

Figure 7.2: Comparisons of MRT-LBM simulation results to the exact solutions for subcritical
flow over a forward facing step at time t = 0.5 s for (a) free surface, (b) water head.

 72

X
0 2 4 6 8 10 12

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ro

u
d

e
N

u
m

b
er

Exact solution
MRT-LBM

(c)

X
0 2 4 6 8 10 12

0

2

4

6

8

10

D
is

ch
ar

g
e

Exact solution
MRT-LBM

(d)

Figure 7.2: Comparisons of MRT-LBM simulation results to the exact solutions for subcritical
flow over a forward facing step at time t = 0.5 s for (c) Froude number, and (d) discharge.

 73

200 m × 200 m , with a horizontal bottom. A dam, with 10m in thickness, is located in the

middle of the domain. The initial upstream and downstream water depth is 7.5 m and 5 m ,

respectively. The breach is 75 m in length, which has distances of 30 m from the left bank and

95 m from the right.

The domain is discretized into a grid of size 201 201× lattices corresponding to

x = y = 1 m∆ ∆ . A constant lattice speed 50 m sc = is used. The single relaxation time

parameter is 80.5 3 10τ −= + × and the corresponding relaxation rate is 7
7 2.0 1.2 10s

−= − × . To

ensure stability and accuracy, the remaining relaxation rates are 1 2 4 6 1.8s s s s= = = = and

8 7s s= . Free slip (tangential) bounce back boundary conditions are applied to the walls. At

0t = s, the flow is at rest and the dam fails. Water is released through the non-symmetric breach.

The MRT-LBM results at 7.2t = s are shown in Figure 7.3. A bore wave is formed that

propagates downstream while spreading laterally. A depression wave moves upstream. Both

waves are well resolved. The water depth and
x

u profiles at 130 mY = are shown in Figures

7.3a and 7.3b, respectively. The flow separates from the truncated dam walls downstream of the

breach creating rotating eddies as shown in Figure 7.3c. The initial discontinuous condition

presents challenges to numerical methods and is widely used to test its capability for

discontinuous flows. The use of an asymmetric dam break problem will be able to validate that

the correctly interacts with boundaries. This is important for shallow water flow problems with

discontinuities when complex and irregular boundary conditions are encountered. Often, a high-

resolution Riemann-solver based method is required to produce an accurate solution to the

problem. Fagherazzi et al. (2004) used a discontinuous Galerkin (DG) FEM to model the partial

dam break problem. There is no analytical reference solution for this test case, but in the

literature, numerical results of various studies are available ((Fennema and Chaudhry 1990),

 74

(Duan and Liu 2007)). Computed water surface elevation and flow filed compare favorably with

the computed results of these studies. The results demonstrate the LBM ability to solve for the

flow velocity field and discontinuous water surface without the need for a Riemann solver.

To illustrate the GPU performance on this problem, the grid resolution was increased 10

times in each direction to a grid size of 2001 2001× and run on the CPU and GPU. The average

computing time per time step for grid size 201 201× was 0.022 s on the CPU and 0.037 s on the

GPU. The average computing time per time step for grid size 2001 2001× was 2.49 s and

0.12 s on the CPU and GPU, respectively, resulting in a speedup of 21.63.

7.3 Mass Transport of Point Continuous Injection

The TRT-LBM code is verified on the two-dimensional mass transport in an infinite pool

under uniform flow and depth with velocity-dependent dispersion coefficients. The concentration

is continuously injected at a single point with a constant rate throughout the entire depth of the

water column. The analytical solution for the concentration is (Fetter 1998):

2 2
0

0

(U)
(, ,) exp

4 44

t

xx yyxx yy

xM y d
C x y t

D DD D

θ

θ

θ θ

θ θ θπ

=

=

 −
= − −  

 
∫ , (8.1.1)

where M is the mass injection rate. 0U is the uniform flow velocity in x -direction.

xx LD h κ= u and yy TD h κ= u are obtained given
z

C g= and 0
m

D = .

In the numerical experiments, water depth is 1 mh = , the mass injection rate is

215 kg m sM = , and the uniform velocity is 0U 0.45 m s= . The simulation domain was

3000 m × 1000 m . Given 2.22
L

κ = , the experiments were run for anisotropic dispersion ratios

xx yy
D D = 5, 10, and 25. Six different grid sizes are considered: 451 151× , 901 301× , 1801 601× ,

 75

Figure 7.3: Two-dimensional partial dam break simulation results for = 7.2 st . (a) water depth
profile at 130Y = m, (b)

x
u profile at 130Y = m.

 76

Figure 7.3: Two-dimensional partial dam break simulation results for = 7.2 st . (c) water
surface, and (d) velocity field.

 77

2401 801× , 3001 1001× , and 3601 1201× . The anti-symmetric relaxation time 0.85
a

τ = is

selected with the symmetric relaxation time parameter fixed to 0.7381
s

τ = .

Figure 7.4 shows the comparison of the TRT-LBM solutions along the x-axis and

contours against the analytical solutions for grid size 3601 1201× . The results show excellent

agreement. Table 7.2 lists the average execution times per 1000 time steps for the TRT-LBM.

The performance exhibits the same behavior with the speedup less than one for smaller grids and

maximum speed up on the largest grid size. The average execution time per time step was 1.91 s

and 0.11 s on the CPU and GPU, respectively, resulting in a speedup of 17.74 . The speed up is

smaller for the TRT-LBM for mass transport compared to the MRT-LBM for shallow water

because the computational intensity is lower for the TRT-LBM.

Table 7.2: Average Execution Time (s) per 1000 Time Steps and Speedup for CPU and GPU
Implementations of TRT-LBM, Example 7.2.

Execution Time (s)

Grid Size
CPU GPU

Speedup

451 151× 27.43 45.22 0.61

901 301× 115.32 44.10 2.62

1801 601× 481.12 48.45 9.93

2401 801× 837.46 62.24 13.46

3001 1001× 1300.43 83.50 15.57

3601 1201× 1910.64 107.71 17.74

 78

x

y

-100 0 100 200 300 400 500
-60

-40

-20

0

20

40

60
C

0

2

4

6

8

10

X
-200 0 200 400 600 800

y

-60

-40

-20

0

20

40

60

y

-60

-40

-20

0

20

40

60

x
-100 0 100 200 300 400 500

x
-100 0 100 200 300 400 500

X

C

-200 0 200 400 600 800
0

2

4

6

8

10
Exact solution
TRT-LBM

Exact solution
TRT-LBM

(a) (b)

(c) (d)

C

0

2

4

6

8

10

X
-200 0 200 400 600 800

Exact solution
TRT-LBM

(e) (f)

Figure 7.4: Concentration breakthrough curves and contours for anisotropy ratios: /

L T
κ κ = 5 for

(a) and (b), /
L T

κ κ = 10 for (c) and (d), and /
L T

κ κ = 25 for (e) and (f).

 79

7.4 Mass Transport in Partial Dam Break

The hypothetical partial dam break problem presented in section 7.2 is extended to

include solute transport. The computational domain is 800 m × 200 m with a horizontal bottom.

The dam site is at x = 100 m . The initial upstream and downstream water depths are 10 m and

5 m , respectively. The initial upstream and downstream concentrations are 1 and 0 ,

respectively. The breach is located in the same position as in section 7.2.

The domain is discretized into a grid of size 1601 401× lattices corresponding to grid

spacing, x = y = 0.5 m∆ ∆ . A lattice speed 200 m sc = is used. For the shallow water solver, a

relaxation time parameter of 80.5 3 10τ −= + × and the corresponding relaxation rate

7
7 2.0 1.2 10s

−= − × are used. To ensure stability and accuracy, the remaining relaxation rates are

1 2 4 6 1.8s s s s= = = = and 8 7s s= . For the transport solver, the anti-symmetric relaxation time

parameter 0.8
a

τ = and the symmetric relaxation time parameter 0.7778
s

τ = are used. The

longitudinal and transverse coefficients are 5.93
L

k = and 0.23
T

k = (Elder 1959). Free slip

(tangential) bounce back boundary conditions for the flow problem and impermeable bounce

back boundary conditions for the transport problem are applied to the walls. The initial flow is at

rest.

The MRT-LBM results for water depths with grid spacing, x = y = 0.5 m∆ ∆ , at 10 st = ,

30 st = , 60 st = , and 90 st = are shown in Figure 7.5. The maximum Peclet number is

max max / 50
yy

Pe U x D= ∆ = . Again, a bore wave is formed that propagates downstream while

spreading laterally; and a depression wave moves upstream. The bore is allowed to propagate out

of the domain with no reflection. The separated flow and rotating eddies propagate at a much

slower rate than the bore. The TRT-LBM results for concentration with grid spacing,

 80

x = y = 0.5 m∆ ∆ , at 10 st = , 30 st = , 60 st = , and 90 st = are shown in Figure 7.6. A

plume is formed that propagates downstream while spreading laterally. In the early stages, up to

 30 st = , the plume is transported due to the initial surge where the flow is yet dominated by

downstream velocities. In the latter stages, after 30 st = , the downstream velocities due to the

surge begin to subside and the circulation velocities become dominated. At this point, the solute

ceases to advect downstream and begins to mix in the lateral directions.

To investigate the GPU performance on the extended partial dam break problem, the

domain was discretized into different grids: 401 101× , 801 201× , 1601 401× , 2401 601× ,

3201 801× , and 3601 901× lattices with aforementioned grid spacing, lattice speed and

relaxation time parameters. Table 7.3 shows the execution time per 1000 times steps and speed

up for combined MRT-LBE for shallow water and TRT-LBM for transport.

Table 7.3: Execution Time (s) per 1000 Times Steps and Speedup for CPU and GPU
Implementations of MRT-LBM for Shallow Water and TRT-LBM for Transport, Example 7.3.

Execution Time (s)

Grid Size
CPU GPU

Speedup

401 101× 82 144 0.57

801 201× 355 146 2.38

1601 401× 1422 149 9.54

2401 601× 3188 160 19.93

3201 801× 5168 247 21.00

3601 901× 6607 305 21.66

 81

The performance exhibits the same behavior with speedup less than one for largest grid spacing

and maximum speed up on the smallest grid spacing. For the smallest grid spacing,

x = y = 0.222 m∆ ∆ , corresponding to the largest grid size 3601 901× , the average execution

time per time step was 6.61 s on the CPU and 0.31 s on the GPU, resulting in a speedup of

21.66 . The entire simulation took 32.66 hours on the CPU and 1.55 hours on the GPU for time

up to 90 s.

7.5 Circulation in Rectangular Lake

The multi-layer LB model is verified using wind-driven, density-driven and a combination of

wind- and density-driven circulation in a rectangular lake of dimensions 3400 1400m m× with

and a flat bottom. The initial water depth is 65 m, where an analytical solution for the horizontal

velocity profile in depth is available (Shankar et al. 1997). The rectangular lake is discretized

into 501 206× lattices in the planar direction corresponding to 6.8x m∆ = and 6.8y m∆ = . The

vertical direction is discretized into five, ten and twenty layers for each test case corresponding

to an initial local water height of 8 m , 4 m , and 2 m respectively. The LBM parameters are

0.17 st∆ = and 40 /c m s= . To achieve a kinematic viscosity of 6 21 10v m s−= × , the relaxation

time parameter in the SRT-LBM is calculated using equation (3.3.13): -7
τ 0.5= 3.8147 10− × .

The relaxation rates 4 6 7 8s s s s 1 τ= = = = , and 1 2 7s s s 0.6= = − were used. The bed friction is

based on a linear friction law. The initial conditions are applied by initializing the distribution

functions to an EDF with the static water depth and local water heights, i.e. () ()eq
f fα α=

l l , where

() inith H M=
l and () 0=u

l . Free-slip bounce-back boundary conditions are applied to the four

vertical side walls of the lake. The numerical simulation was carried out up to the establishment

of a steady state two-dimensional circulation. The
x

u velocity profile at the center of the lake,

 82

(a) (b)

(c) (d)

Figure 7.5: Water depth for extended partial dam break simulations at (a) t = 10 s, (b) t = 30 s,
(c) t = 60 s, and (d) t = 90 s.

 83

Figure 7.6: Concentration distributions for extended partial dam break simulations at (a) t = 10 s,
(b) t = 30 s, (c) t = 60 s, and (d) t = 90 s.

 84

 = 1700 m, = 700 mx y , was compared against the analytical solution of Navier-Stokes

equations assuming the surface slope and the horizontal velocity are constant in the longitudinal

direction (Shankar et al. 1997). The vertical eddy viscosity is also assumed to be constant in the

vertical direction.

The wind-driven circulation validation is performed for two different wind stress values,

20.03W

iz
N mτ = and 20.3W

iz
N mτ = . The physical parameters for this case are, 0xρ∂ ∂ = ,

0yρ∂ ∂ = , 31025 kg mρ = , 31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = ,

The wind direction is along the positive x direction. The wind velocities are 0.7071
Wx

U m s=

and 7.071
Wx

U m s= , respectively, with 0
Wy

U m s= . The multi-layer LB solutions compare

well to the analytical solutions of
x

u profile for uniform wind stresses of 20.03 /N m and

20.3 /N m , as shown in figures 7.7a and 7.7b.

The density-driven circulation validation is performed for two different horizontal density

gradients, 75 10x kg mρ −∂ ∂ = − × and 55 10x kg mρ −∂ ∂ = − × . The physical parameters for this

case are 0W

iz
τ = , 0yρ∂ ∂ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 20.004 cm sµ = ,

0.005 m sκ = . The multi-layer LB solutions compare well to the analytical solutions of
x

u

profile for constant horizontal density gradients 75 10x kg mρ −∂ ∂ = − × and

55 10x kg mρ −∂ ∂ = − × as shown in figures 7.8a and 7.8b.

The multi-layer LB algorithm is also validated using a combination of wind- and density-

driven circulation with 20.03W

iz
N mτ = , 55 10x kg mρ −∂ ∂ = − × and 20.3W

iz
N mτ = ,

45 10x kg mρ −∂ ∂ = − × . The physical parameters for this case are, 0yρ∂ ∂ = , 31025 kg mρ = ,

31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = , The wind direction is along

 85

the positive x direction. The multi-layer LB solutions compare well to the analytical solutions of

x
u profile for the combined effects of wind- and density-driven circulation, as shown in figures

7.9a and 7.9b.

These examples demonstrate that the multi-layer LB model was capable of simulating

wind-driven currents, density-driven current and the combination of wind- and density-driven

flows.

7.6 Wind-driven Circulation in Rotating and Non-rotating Basins

In this example, the multi-layer LB model is demonstrated by simulating the wind-driven

circulation with and without rotation over laterally varied bathymetric cross sections. A

triangular bathymetry (see Figure 7.10) and two Gaussian bathymetry profiles are considered.

The initial water depth for the triangular bathymetry has a minimum of 3 m and maximum of

20 m . The Gaussian bathymetry profiles have initial water depths given by

()
2

0 8 12exp
2000

y
H y

  
= + −  

   
 (7.1.2)

and

()
2 2

0

3 10 3 10
8 8exp 12exp

2000 2000

y D y D
H y

   − +   
= + − + −      

         
 (7.1.3)

where D is the width of the basin. As shown in Figure 7.10, the x axis coincided with the

southern lateral wall of the basin and pointed toward the head of the system. The y axis is laid

along the closed boundary at 0x = . For each numerical example, the numerical domain consists

of a longitudinally uniform basin 100 km long and 10 km wide for triangular and 15 km wide for

Gaussian bathymetry profiles. Grid size is 250 m along the x and y directions. Ten vertical

layers are used.

 86

Figure 7.7: Comparisons of numerical model prediction with analytical solution for: (a)
20.03 /W

iz
N mτ = , and (b) 20.3 /W

iz
N mτ = .

−2 0 2 4 6

x 10
−3

−60

−50

−40

−30

−20

−10

0

U
x
 (m/s)

Z
 (

m
)

Analytical

5 layers

10 layers

20 layers

−0.02 0 0.02 0.04 0.06

−60

−50

−40

−30

−20

−10

0

U
x
 (m/s)

Z
 (

m
)

Analytical

5 layers

10 layers

20 layers

 87

Figure 7.8: Comparisons of numerical model prediction with analytical solution for: (a)
75 10x kg mρ −∂ ∂ = − × and (b) 55 10x kg mρ −∂ ∂ = − × .

−2 −1 0 1 2

x 10
−5

−60

−50

−40

−30

−20

−10

0

U
x
 (m/s)

Z
 (

m
)

Analytical

5 layers

10 layers

20 layers

−2 −1 0 1 2

x 10
−3

−60

−50

−40

−30

−20

−10

0

U
x
 (m/s)

Z
 (

m
)

Analytical

5 layers

10 layers

20 layers

 88

Figure 7.9: Comparisons of numerical model prediction with analytical solution for: (a)
20.03W

iz
N mτ = , 55 10x kg mρ −∂ ∂ = − × , and (b) 20.3W

iz
N mτ = , 45 10x kg mρ −∂ ∂ = − × .

−0.4 −0.2 0 0.2 0.4

−60

−50

−40

−30

−20

−10

0

U
x
 (m/s)

Z
 (

m
)

Analytical

5 layers

10 layers

20 layers

−0.04 −0.02 0 0.02 0.04

−60

−50

−40

−30

−20

−10

0

U
x
 (m/s)

Z
 (

m
)

Analytical

5 layers

10 layers

20 layers

 89

 In the LBM formulation, the computational domain is covered by 401 41 10× × lattices

for the triangular bathymetry profile and 401 61 10× × lattices for the Gaussian bathymetry

profiles with 250x m∆ = , 12.5t s∆ = , and 20 /c m s= . To achieve a kinematic viscosity of

6 21 10v m s−= × , the relaxation time parameter in the SRT-LBM is calculated using equation

(3.3.13): -10
τ 0.5= 6 10− × . The relaxation rates 4 6 7 8s s s s 1 τ= = = = , and 1 2 7s s s 0.6= = −

were used. The free-slip condition was used for all closed boundaries. The initial water in the

basin was static and a wind stress was increased linearly during the first six simulated hours.

After six hours, the wind was constant. The wind stress acted along the positive x direction and

blew uniformly throughout the domain. The numerical simulations were run up to 2 days after

the wind stress was constant with the establishment of a steady state velocity field occurring after

about 1 day. The numerical simulations were run on a single workstation with a 3.0 GHz Intel®

Core™2 Extreme quad core processor.

x
y

z

Figure 7.10: Computation domain with triangular bathymetry profile.

 90

The first example is for the non-rotating case, in which the bathymetric profile was

triangular with minimum depth of 3 m , maximum depth of 20 m . The physical parameters are

20.03W

iz
N mτ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 20.004 cm sµ = ,

0.0025 m sκ = , and 10
c

f s
−= . The wind stress was applied in the positive x direction. The

wind velocity is 4.0825
Wx

U m s= and 0
Wy

U m s= . The bed friction is formulated using a

linear friction law. Figure 7.11 shows the
x

u and
y

u distributions at 50x km= and 98x km=

planes. In the shallow region along the transverse boundaries in Figures 7.11a and 7.11b,
x

u

flows in the direction of the wind at all depths. The
x

u flows in the opposite direction of the

wind in the central part of the channel. The magnitude of the flow is highest near the surface and

decreases with depth as expected from the bottom friction. Figures 7.11c and 7.11d show a

divide of the transverse flow,
y

u at 0y = . The symmetric distributions are due to neglecting

Coriolis effect (non-rotating).

To further demonstrate the current method, the effect of the Earth’s rotation with Coriolis

parameter, 4 110
c

f s
− −= is added to the first experiment. The

x
u distributions in Figures 7.12a

and 7.12b show similar lateral variability to those in the non-rotating case. The difference is seen

at 98x km= plane where
x

u is symmetric for the non-rotating case, but asymmetric for the

rotating case. The spatial distributions of
x

u at 50x km= and 98x km= planes for both cases

were consistent with those obtained by (Sanay and Valle-Levinson 2005). Due the Coriolis

effect, the
y

u distributions in Figures 7.12c and 7.12d are not symmetric.

The simulation time for both cases was 20.67 min on a single core and 5.07 min on

four cores of a single workstation, demonstrating the expected 4 times speedup.

 91

An important feature of the solution caused by the inclusion of the Earth’s rotation is the

free surface elevation distribution in the domain as shown in Figure 7.13. In the non-rotating

case, the surface elevation distribution was only a function of along-channel direction. The

across-channel barotropic pressure gradient expected in wind-driven flow over flat-bottom

rotating systems is nearly a linear function of y location (Sanay and Valle-Levinson 2005). The

combination of Coriolis effect and laterally varying bathymetry produced surface elevation

contours with stronger lateral variability compared to the non-rotating case. This is due to the

spatial variability in the longitudinal flow and vertical mixing dictated by the laterally varying

bathymetry. The spatial distribution of the simulated surface elevation was consistent with that

obtained by (Sanay and Valle-Levinson 2005) and (Glorioso and Davies 1995).

The second numerical example in the rotating case considers a Gaussian bathymetric

profile with initial water depth given by equation (7.1.2). The initial water depth has a minimum

of 8 m and a maximum of 20 m located at the center of basin. The physical parameter values

remain the same, but the Coriolis parameter is 4 110
c

f s
− −= . The Gaussian profile produces a

channel-shoal combination resulting in the flow patterns shown in Figure 7.14. The
x

u flows in

the direction of the wind for shallow regions along the transverse boundaries and in the opposite

direction of the wind in the central part of the channel as shown in Figures 7.14a and 7.14b. The

asymmetry near the closed boundary is more prevalent for this bathymetry profile (see Figure

7.14b). The
y

u distributions shown in Figures 7.14c and 7.14d are asymmetric because of the

Coriolis effect. The magnitude of
y

u at 98x km= plane is much larger than at 50x km= plane.

The third numerical example of the rotating case considers a bathymetric profile with two

Gaussians and initial water depth given by equation (7.1.3) with a minimum of 8 m . The

 92

maximum depth is 20 m located at 3 10y D km= − , and local maximum depth is 16 m located

at 3 10y D km= . Using the same physical parameter values as in the previous Gaussian

bathymetric case, the flow patterns are shown in Figure 7.15. Similarly, the
x

u flows in the

direction of the wind in the shallow regions and flows in the opposite direction of the wind in

both deeper channels as shown in Figure 7.15a and 7.15b. The
y

u is very small at 50x km=

plane (Figure 7.15c) while it is very strong at 98x km= plane (Figure 7.15d).

The simulation time for the second and third numerical examples was 32.89 min on a

single core and 8.12 min on four cores of a single workstation, which also demonstrates the

expected 4 times speedup.

7.7 Wind- and Density-driven Circulation in Rotating Basins

In this example, the multi-layer LB model is demonstrated on GPU-based HPC by

simulating wind-driven, density-driven, and combined wind- and density-driven circulation over

a Gaussian bathymetry profile. The Gaussian bathymetry profile has initial water depth given by

equation 7.1.3. Again, the x axis coincides with the southern lateral wall of the basin and

pointed toward the head of the system. The y axis is laid along the closed boundary at 0x = .

The numerical domain consists of a longitudinally uniform basin 100 km long and 10 15 km

wide. The Grid spacing is 125 m along the x and y directions. Ten vertical layers are used. The

maximum depth is 27 m located at 3 10y D km= − , and local maximum depth is 11 m located at

3 10y D km= .

For each case, the LBM formulation consists of the computational domain covered by

801 121 10× × lattices with LBM parameters, 125x m∆ = , 6.25t s∆ = , and 20 /c m s= . To

achieve a kinematic viscosity of 6 21 10v m s−= × , the relaxation time parameter in the SRT-

 93

0.01

0.02

0.03

0.04
0.05 0.05

0.01

0.02

0.03

0.04

-0
.0

1

-0.02

-0.03

-0.04

-0.06

-0
.0

8

0 0

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

(a)

0

-5

0.01

0.02

0.03

0.04

0.01

0.02
0.03
0.04

-0
.0

1

-0
.0

2

-0
.0

3

-0.04

-0.06

-0.08

0

0

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

(b)

Figure 7.11: Contours of
x

u velocity (m s) at (a) 50x km= , and (b) 98x km= for a non-

rotating system with the triangular bathymetry profile. The dark areas represent negative
velocities

 94

-0.002

-0.005

-0.01

-0.015

0.
00

2

0.0
05

0.01
0.015

0

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

(c)

0.2

0.4

0.6

0.8

1

1.2

-0
.2

-0
.4

-0.6
-0.8
-1

-1.2

0

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

-5

(d)

Figure 7.11: Contours of
y

u velocity ()210m s −× at (c) 50x km= , and (d) 98x km= for a

non-rotating system with the triangular bathymetry profile. The dark areas represent negative
velocities.

 95

0.01

0.02

0.03

0.04

0.05

0.01
0.02
0.03
0.04

0.05

0

0

-0
.0

1

-0
.0

2

-0
.0

3

-0.05

-0.07

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

(a)

-5

0.03

0.02

0.01

0.01

0.02

0.03

0.04

0.05

-0
.0

1

-0
.0

2
-0

.0
3-0
.0

4-0
.0

5
-0

.0
7

0

0

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

(b)

Figure 7.12: Contours of the
x

u velocity (m s) at (a) 50x km= , and (b) 98x km= for a

rotating system with the triangular bathymetry profile. The dark areas represent negative
velocities.

 96

0.005

0.01

0.01

0.02

0.03
0.04

0.0
05

-0
.0

0
5

-0
.0

1
-0

.0
2

-0
.0

3

-0
.0

5

-0
.04

00

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

(c)

-0.2

-0.4

-0.6

-0.8

-1

-1.2

-1.4
0.4

0.2

0

Y (km)

Z
 (

m
)

-5-4-3-2-1012345
-20

-15

-10

-5

0

-5

(d)

Figure 7.12: Contours of the
y

u velocity ()210m s −× at (c) 50x km= , and (d) 98x km= for a

rotating system with the triangular bathymetry profile. The dark areas represent negative
velocities.

 97

-0
.0

5

-0
.0

4

-0
.0

2

0

0
.0

2

0
.0

3

0
.0

4

0
.0

1

-0
.0

3

0
.0

5

-0
.0

1

X (km)

Y
 (

k
m

)

0 10 20 30 40 50 60 70 80 90 100
-5

-2.5

0

2.5

5

-0
.0

5

-0
.0

4

-0
.0

3

-0
.0

2

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

-0
.0

1

X (km)

Y
 (

k
m

)

0 10 20 30 40 50 60 70 80 90 100
-5

-2.5

0

2.5

5

(a)

(b)

Figure 7.13: Contours of the water surface elevation (m) for (a) non-rotating, and (b) rotating
cases for the triangular bathymetry profile.

 98

0.01

0.02

0.03
0.04

0.05

0.01

0.02
0.03

0.040.05

0

0
-0

.0
1

-0
.0

2
5

-0
.0

5

-0
.0

7
5

-0
.1

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(a)

0.005

0.01

0.02

0.03
0.04

0.06

0.005
0.01

0.02

-0
.0

1-0
.0

2
5

-0
.0

5

-0
.0

7
5

-0
.1

0

0

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(b)

Figure 7.14: Contours of
x

u velocity ()m s at (a) 50x km= , and (b) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.2). The dark areas represent negative
velocities.

 99

0

0.0
1

0.0
2

0.040.06

-0
.0

2
-0

.0
4

-0
.0

6

-0
.0

8

-0
.1

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(a)

(c)

-0.5

-1

-2-3

0

0.5
1

1.5
2 2.5
3

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(b)

(d)

Figure 7.14: Contours of
y

u velocity ()210m s −× at (c) 50x km= , and (d) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.2). The dark areas represent negative
velocities.

 100

0

0
0.01

0.02
0.03
0.04

0
.0

1

0
.0

20.
03

0.04

0.01

0.02

0.03

0.04

-0
.0

1

0 0

-0
.0

1
-0

.0
2

5
-0.05

-0
.0

7
5

-0
.1

0.050.05

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(a)

0.01

0.02

0.03
0.05

0.04

0
.0

1
0

.0
20.

03

0.04

0 0

0
-0

.0
1

-0
.0

2
5

-0
.0

5
-0

.0
7

5

0.01

0.02

0.03

-0
.0

1

-0
.0

2
5

0

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(b)

Figure 7.15: Contours of
x

u velocity ()m s at (a) 50x km= , and (b) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities.

 101

-0.02

-0.04

-0.06

-0.08

-0.12

0
.0

0
1

0
.0

0
5

-0.1

0

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(c)

0.1

0

0

0

0
.1

0.5

1

1.5 2
2.5

3 3.5

-0
.1

-0
.2

5

-0
.5

-0
.7

5

-0
.2

5

-0
.1

Y (km)

Z
 (

m
)

-7-6-5-4-3-2-101234567
-20

-15

-10

-5

0

(d)

Figure 7.15: Contours of y
u

 velocity ()210m s −×
 at (c) 50x km= , and (d) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities.

 102

LBM is calculated using equation (3.3.13): -9
τ 0.5= 1.2 10− × . The relaxation rates

4 6 7 8s s s s 1 τ= = = = , and 1 2 7s s s 0.6= = − were used. The free-slip condition was used for all

closed boundaries. The initial water in the basin was static, the horizontal density gradient was

constant, and a wind stress was increased linearly during the first six simulated hours. After six

hours, the wind was constant. The wind stress acted along the positive x direction and blew

uniformly throughout the domain. The numerical simulations were run up to 2 days after the

wind stress was constant with the establishment of a steady state velocity field occurring after

about 1 day. The numerical simulations were run in MATLAB on a single workstation with a 3.0

GHz Intel® Core™2 Extreme quad core processor and an NVIDIA® Tesla™ C1060 Computing

Processor. The parallel performance of a single core of the quad core processor and the Tesla are

compared.

For the wind-driven case, the physical parameters are 20.04W

iz
N mτ = , 0xρ∂ ∂ = ,

0yρ∂ ∂ = , 31025 kg mρ = , 31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.0025 m sκ = ,

and 4 11 10
c

f s
− −= × . The wind stress was applied in the positive x direction. The wind velocity

is 4.0825
Wx

U m s= and 0
Wy

U m s= . The bed friction is formulated using a linear friction law.

Figure 7.16 shows the
x

u and
y

u distributions at 50x km= and 98x km= planes. Similar to

previous results, the
x

u flows in the direction of the wind at all depths in the shallow regions

along the transverse boundaries and center of the channel as shown in Figures 7.16a and 7.16b,.

The
x

u flows in the opposite direction of the wind in the deep parts of the channel. Figures 7.16c

and 7.16d show the contours of the transverse flow,
y

u at 50x km= and 98x km= planes.

 103

For the density-driven case, the physical parameters are 0W

iz
τ = , 85 10x kg mρ −∂ ∂ = − × ,

0yρ∂ ∂ = , 31025 kg mρ = , 31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = ,

and 4 11 10
c

f s
− −= × . Figure 7.17 shows the

x
u and

y
u distributions at 50x km= and 98x km=

planes. In the case of the density-driven flow, the
x

u flows in the direction of the horizontal

gradient at all depths in the shallow regions along the transverse boundaries and center of the

channel in Figures 7.17a and 7.17b,. The
x

u flows in the opposite direction of the horizontal

gradient in the deep parts of the channel. These flow features are the opposite of those found for

the pure wind driven case. The magnitude of the flow is highest near the surface and decreases

with depth as expected from the bottom friction. Figures 7.17c and 7.17d show the contours of

the transverse flow,
y

u at 50x km= and 98x km= planes. Although the flow field is reversed

for this case, the effect of the Earth’s rotation is consistent with the earlier examples producing

surface elevation contours with strong lateral variability, which is to be expected. The transverse

velocities exhibit similar behavior as the wind driven case with stronger magnitude near the

98x km= plane. However, along the 50x km= plane, the velocities are small yet exhibit a

vertical distribution of positive and negative flow.

For the combined wind- and density-driven case, the physical parameters are

20.04W

iz
N mτ = , 85 10x kg mρ −∂ ∂ = − × , 0yρ∂ ∂ = , 31025 kg mρ = , 31.2

a
kg mρ = ,

0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = , and 4 11 10
c

f s
− −= × . The wind stress was

applied in the positive x direction. Figure 7.18 shows the
x

u and
y

u distributions at 50x km=

and 98x km= planes. For the combined of wind- and density-driven case, the
x

u distribution is

similar to the density driven case in terms of direction of the flow in shallow and deep regions as

shown in Figures 7.18a and 7.18b. Figures 7.18c and 7.18d show the contours of the transverse

 104

flow,
y

u at 50x km= and 98x km= planes. The flow features with respect to bottom friction,

Earth’s rotation, and bathymetry are all consistent with previous results. The main difference in

the combined case is that the magnitude of the flow is smallest near bed, increases in the positive

z-direction then decreases again near the surface. This is expected due to the bottom friction and

the wind stress occurring in the opposite direction of the density-gradient. The density gradient

accounts for the direction of the flow, while the wind stress accounts for the smaller magnitude

velocities near the surface.

The simulation time for each case was 47.3 hours on a single core of the CPU and 1.68

hours on the Tesla GPU demonstrating 28.16 times speedup.

 105

-0.06

-0.04

-0.02

-0.02

-0.01

-0.01

-0.01
0

0
0 0

0.02

0.02

.04

0.04
0

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(a)

-0.1

-0.08-0.06

-0.04

-0.02

-0.02

-0.02
-0.01

-0.01
-0.01

-0.01

-0.01

0

0

0
0.02 0.02

0.04

0.04

0.06 0.08

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(b)

Figure 7.16: Contours of

x
u velocity ()m s at (a) 50x km= , and (b) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities

 106

-0.1
-0.1

-0.05
-0.05

-0.025

-0.025

-0.025

-0.01

-0.01

0

0

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(c)

-0.25

-0.1

-0.1 -0.1

0

0

0

0

0.1

0.1

0.1

0.10.5

1

23

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(d)

Figure 7.16: Contours of
y

u velocity ()210m s −× at (c) 50x km= , and (d) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities.

 107

-0.09

-0.075

-0.05

-0.05

-0.05

-0.025
-0.025-0.025

-0.015

-0.015

0
0 0

0.015

0.015

0.015
0.025

0.025

0.025
0.05

0.05

0.05

0.075

0.075

0.1

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(a)

-0.08

-0.06

-0.04

-0.04

-0.04

0

0

0

0

0.03

0.03
0.03

0.03

0.03
0.05

0.05

0.075

0.075

0.09

0.09

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(b)

Figure 7.17: Contours of

x
u velocity ()m s at (a) 50x km= , and (b) for the Gaussian

bathymetry profile given in equation (7.1.3). The dark areas represent negative velocities.

 108

0.025 0.025 0.025

0.05

0.05

0.05

0.075

0.075

0.1 0.1
0.125

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(c)

-4
-3

-3-2

-2

-1

-1

0

0

0
0

0.15

0.15

0.15

0.1

0.2

0.2

0.2

0.5
0.5

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(d)

Figure 7.17: Contours of
y

u velocity ()210m s −× at (c) 50x km= , and (d) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities.

 109

-0.045

-0.04

-0.04
-0.02

-0.02

-0.02

-0.02

-0.01 -0.01

-0.01

-0.01

0

0

0

0

00.01

0.01

0.01

0.01

0.01

0.02

0.02

0.02

0.02

0.04

0.04

0.06

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(a)

-0.04

-0.03

-0.01 -0.01

-0.01

-0.01

0

0 0
0

0.01 0.01

0.01

0.01

0.02

0.02

0.02

0.03

0.03

0.04

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(b)

Figure 7.18: Contours of

x
u velocity ()m s at (a) 50x km= , and (b) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities.

 110

-0.001

0

0
0

0.01

0.01

0.01

0.01

0.01

0.015

0.015

0.015

0.015

0.02

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(c)

-2.5

-2

-1

-1

-1

-0.5

-0.5

-0.25

-0.25

-0.25

-0.25 -0.25

0

0

0

0

0.1

0.1

0.1
0.1

Y (km)

Z
(m

)

7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7
-20

-15

-10

-5

0

(d)

Figure 7.18: Contours of
y

u velocity ()210m s −× at (c) 50x km= , and (d) 98x km= for the

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative
velocities

 111

8 CONCLUSIONS

Coastal wetland restoration and management is an area of high impact socially,

economically and ecologically. Understanding the physical processes involved as well as

understanding and managing how human activities affect these processes is of great importance.

Numerical modelling and simulation serves as a tool to both validate mathematical models used

to understand these physical processes and how they interact and predict and analyze the affects

of human activities. Ultimately, improved modelling capabilities and the ability to simulate

multiple scenarios while studying how they interact with each other leads to more sophisticated

decision making and management tools. This dissertation focused on study, validation, and

demonstration of the lattice Boltzmann method as a numerical modelling and simulation tool for

two- and three- dimensional flows in the shallow water regime in high performance computing

environments. The concluding remarks for the dissertation are the following:

For the two-dimensional shallow water equations, the MRT collision operator out performs

the SRT (BGK) collision operator for the shallow water equations at the situation that the

relaxation time parameter, τ , is close to the stability limit of 0.5. The MRT collision operator

was able to increase stability and accuracy and eliminate spurious oscillations when the SRT

model fails. The dam break problem demonstrates that the MRT-LBM is able to handle complex

flow structures such as shocks, rarefaction waves and contact discontinuities. For the two-

dimensional anisotropic advection dispersion equation, the TRT-LBM with speed-of-sound

techniques was able to account for the heterogeneity and anisotropy in the velocity dependent

dispersion coefficient. Specifically, the speed-of-sound techniques are able to cope with the

discontinuous free surface water depth in the transport problem. Excellent agreement is obtained

between numerical predictions and analytical solutions for both the hydrodynamic and transport

 112

equations. The combination of MRT-LBM and TRT-LBM to predict mass transport with

velocity-dependent dispersion in shallow water flow due to partial dam breaks is demonstrated

with the numerical results indicating that the present method is promising for modeling transport

phenomena in shallow water flows

The two-dimensional LBM for shallow water equation has been extended to solve three-

dimensional wind-driven and density-driven circulation by introducing a multi-layer LB model.

The advantage of the multi-layer LB model is that it avoids the computationally expensive

solution of the Navier-Stokes equations and obtains stratified horizontal flow velocities as

vertical velocities are relatively small and the flow is still within the shallow water regime. A

MRT-LBM model is used to solve for each layer coupled by the vertical viscosity forcing term.

To increase solution stability, an implicit step is chosen to obtain stratified velocities

distributions. The main advantage of using the LBM is that after selecting appropriate EDFs, the

LB algorithm is only slightly modified for each layer and retains all the simplicities in the LBM

within the high performance computing (HPC) environment.

The multi-layer LB model has been implemented to simulation three dimensional wind-

and density-driven circulation. The influence of wind stress, horizontal density gradient, vertical

viscosity forcing, bottom friction and bathymetry were tested. The numerical results of flow

velocities for wind-driven circulation in a rectangular lake with a flat bottom agree well with the

analytical solutions (Shankar et al. 1997). Moreover, the multi-layer LB model was tested over

non-uniform bathymetry with and without the effects of the Earth’s rotation to calculate lateral

and vertical distributions of the velocities. The simulated wind-driven circulation patterns,

consisting of downwind flow over the shallow regions and upwind flow in the deep region along

the entire domain, were consistent with other studies (Glorioso and Davies 1995; Sanay and

 113

Valle-Levinson 2005). The simulated density-driven and combined wind- and density-driven

circulation patterns were consistent with the wind-driven results.

The parallel performance of the shallow water LBM and multi-layer LB model has been

investigated on central processing unit (CPU) based and graphics processing unit (GPU) based

high performance computing (HPC) architectures. A key point to understand in the

implementation of the parallel LBM is that the two step solution procedure, (stream and collide),

involves only a data shift to nearest neighbor nodes and local computations. This inherent

parallelism is efficient on both CPU based on GPU based architectures; however, the

performance must be optimized for each architecture. For the two dimensional LBM, the parallel

domain decomposition and data access patterns should be selected to take advantage of cache

optimization using explicit loop control on the CPU and shared memory optimization on the

GPU. The parallel performance on the CPU was improved with the explicit loop control and

depends on the block size chosen. The parallel performance on the GPU increases with problem

size due to increasing computational intensity and decreasing need for communication sub-

domains of the data. The parallel performance of the multi-layer LB model shared the same

characteristics on the CPU and GPU; however the parallel decomposition along only on the

horizontal flow directions has two advantages: 1.) It retains the inherent parallelism of the LBM

for each layer; and 2.) It retains the locality of the tridiagonal solver over layers with respect to

threads.

Future Work

The work presented in this dissertation provides a foundation for an interdisciplinary study

focused on improving numerical modeling and simulation tools for coastal modeling, restoration

and management. The aim of this dissertation will be to extend the capabilities of the LBM for

 114

coastal modeling and implement the LB models in a computational framework capable of taking

advantage of heterogeneous HPC systems. The future work can include:

1. Performing a higher order recovery of the multi-layer shallow water equations using

the MRT collision operator in order to perform a stability analysis to provide a

systematic basis for choosing MRT parameters.

2. Implementing and characterizing the parallel performance of the parallel two-

dimensional and multi-layer LB models in a high level language such as C using

hybrid shared memory (OpenMP), distributed memory (MPI) techniques for CPU-

based HPC systems.

3. Implementing and characterizing the parallel performance of the parallel two-

dimensional and multi-layer LB modes in a high level language such as Open

Computing Language (OpenCL) for GPU-based HPC systems.

Performing the higher order Chapman Enskog recovery of the multi-layer shallow water

equations and stability analysis will improve the understanding of the MRT collision operator

while providing a guide for parameter selection. Implementing the parallel LB solvers using

hybrid OpenMP / MPI techniques on the CPU and OpenCL on the GPU will allow the parallel

features of the algorithm to be well understood leading to efficient implementation on different

architectures. The future of high performance computing will rely on a combination of

distributed and shared memory systems based on traditional CPU-based architectures as well as

accelerators such as GPU-based architectures. The over arching theme is that the parallel features

of the algorithm must be well studied and designed to be flexible enough for heterogeneous HPC

systems. The research into the hybrid OpenMP / MPI implementations on the CPU and OpenCL

implementation on the GPU will provide the foundation for LB solver that is flexible and

 115

efficient on various heterogeneous HPC systems. The outcome of the project is a more mature

parallel LB solver for two and three dimensional shallow water modeling providing a better tool

to research computational techniques for computational efficiency and coupling between various

models on heterogeneous HPC systems. The parallel LB solver can then be used to study the

natural processes affecting coastal wetland loss running scenarios in the Lake Ponchartrain

Basin.

 116

REFERENCES

Abbott, M. and A. Minns (1998). Computational Hydraulics, Ashgate Publishing.

Accelereyes, L. (2008). "MATLAB GPU Computing." from http://www.accelereyes.com/.

Accelereyes, L. (2009). "Accelereyes Jacket User Guide Version 1.2.1." Retrieved 01

December 2009, from http://www.accelereyes.com/doc/JacketUserGuide.pdf.

Aizinger, V. and C. Dawson (2002). "A discontinuous Galerkin method for two-dimensional

flow and transport in shallow water." Advances in Water Resources 25(1): 67-84

Al-Barwani, H. H. and A. Purnama (2008). "Simulating brine plumes discharged into the

seawaters." Desalination 221(1-3): 608-613.

Alcrudo, F. and F. Benkhaldoun (2001). "Exact solutions to the Riemann problem of the shallow

water equations with a bottom step." Computers & Fluids 30(6): 643-671.

Alcrudo, F. and P. Garcia-Navarro (1993). A high-resolution Godunov-type scheme in finite

volumes for the 2D shallow-water equations. 16: 489-505.

Alexander, F. J., H. Chen, S. Chen and G. D. Doolen (1992). "Lattice Boltzmann Model for

Compressible Fluids." Physical Review A 46(4): 1967-1970.

Ambrosi, D. (1995). "Approximation of shallow water equations by Roe's Riemann solver."

International Journal for Numerical Methods in Fluids 20(2): 157-168.

Audusse, E. (2005). "A multilayer Sainte-Venant model." Discrete and Continuous Dynamical

Systems, Series B 5(2): 189-214.

Audusse, E. and M.-O. Bristeau (2007). "Finite-Volume Solvers for a Multilayer Saint-Venant

System." International Journal of Applied Mathematics and Computer Science 17(3):
311-320.

Audusse, E., M. O. Bristeau and A. Decoene (2006). 3D Free Surface Flows Simulations Using a

Multilayer Saint-Venant Model. Comparisons with Navier-Stokes Solutions. Numerical
Mathematics and Advanced Applications: 181-189.

Audusse, E., M. O. Bristeau and A. Decoene (2008). "Numerical simulations of 3D free surface

flows by a multilayer Saint-Venant model." International Journal for Numerical Methods
in Fluids 56(3): 331-350.

Banda, M. K. and M. S. G. Thömmes (2009). "Lattice Boltzmann simulation of dispersion in

two-dimensional tidal flows." International Journal for Numerical Methods in
Engineering 77(6): 878-900.

 117

Bella, G., S. Filippone, N. Rossi and S. Ubertini (2002). Using openMP on a hydrodynamic
lattice-Boltzmann code. Fourth European Workshop on OpenMP, Roma.

Benkhaldoun, F., I. Elmahi and M. SeaI¨d (2007). "Well-balanced finite volume schemes for

pollutant transport by shallow water equations on unstructured meshes." Journal of
Computational Physics 226(1): 180-203.

Bernsdorf, J., F. Durst and M. Schäfer (1999). "Comparison of cellular automata and finite

volume techniques for simulation of incompressible flows in complex geometries."
International Journal for Numerical Methods in Fluids 29(3): 251-264.

Bhatnagar, P. L., E. P. Gross and M. Krook (1954). "A Model for Collision Processes in Gases.

I. Small Amplitude Processes in Charged and Neutral One-Component Systems."
Physical Review 94(3): 511-525.

Blumberg, A. F. and G. L. Mellor (1987). A description of a three-dimenstional coastal ocean

circulation model. Three-Dimensional Coastal Ocean Models. N. S. Heaps. Washington,
DC, American Geophysical Union.

Board, O. S. (2006). Drawing Louisiana's New Map: Addressing Land Loss in Coastal

Louisiana, National Academies Press.

Board, O. A. R. (2008). 2008, from http://www.openMP.org.

Bolz, J., I. Farmer, E. Grinspun and P. Schroder (2003). "Sparse matrix solvers on the GPU:

conjugate gradients and multigrid." ACM Trans. Graph. 22(3): 917-924.

Breuer, M., J. Bernsdorf, T. Zeiser and F. Durst (2000). "Accurate computations of the laminar

flow past a square cylinder based on two different methods: Lattice-Boltzmann and
finite-volume." International Journal of Heat and Fluid Flow 21(2): 186-96.

Buck, I. (2005). Stream computing on graphics hardware, Stanford University: 117.

Cai, L., W.-X. Xie, J.-H. Feng and J. Zhou (2007). "Computations of transport of pollutant in

shallow water." Applied Mathematical Modelling 31(3): 490-498.

Cao, Z., G. Pender, S. Wallis and P. Carling (2004). "Computational Dam-Break Hydraulics over

Erodible Sediment Bed." Journal of Hydraulic Engineering 130(7): 689-703.

Casulli, V. and R. Walters (2000). "An unstructured grid, three-dimensional model based on the

shallow water equations." International Journal for Numerical Methods in Fluids 32(3):
331-348.

Chaudry, M. H. (1993). Open Channel Flow. Englewood Cliffs, New Jersey, Prentice Hall.

 118

Chen, H., S. Chen and W. H. Matthaeus (1992). "Recovery of the Navier-Stokes equations using
a lattice-gas Boltzmann method." Physical Review A 45(8): R5339.

Chen, S., S. P. Dawson, G. D. Doolen, D. R. Janecky and A. Lawniczak (1993). Lattice Methods

and Their Applications To Reacting Systems.

Chen, S. and G. D. Doolen (1998). "Lattice Boltzmann method for fluid flows." Annual Review

of Fluid Mechanics 30: 329-364.

Chen, S. Y., Z. Wang, X. W. Shan and G. D. Doolen (1992). "Lattice Boltzmann Computational

Fluid-Dynamics in 3 Dimensions." Journal of Statistical Physics 68(3-4): 379-400.

Chertock, A., A. Kurganov and G. Petrova (2006). "Finite-Volume-Particle Methods for Models

of Transport of Pollutant in Shallow Water." Journal of Scientific Computing 27(1): 189-
199.

Chippada, S., C. N. Dawson, M. L. Martinez and M. F. Wheeler (1998). "A Godunov-type finite

volume method for the system of Shallow Water Equations." Computer Methods in
Applied Mechanics and Engineering 151(1): 105-129.

Chu, N. and C. Tai (2005). "Moxi: real-time ink dispersion in absorbent paper." ACM

Transactions on Graphics 24(3): 504-511.

Cobble, M. H. (1973). "Non-Linear Shallow Water Theory." International Journal of Non-Linear

Mechanics 8(6): 513-522.

Cockburn, B. (2003). Discontinuous Galerkin methods. 83: 731-754.

d'Humieres, D., I. Ginzburg, M. Krafczyk, P. Lallemand and L. S. Luo (2002). "Multiple-

relaxation-time lattice Boltzmann models in three dimensions." Philosophical
Transactions of the Royal Society of London Series a-Mathematical Physical and
Engineering Sciences 360(1792): 437-451.

Corel, P. (2004). Wetland Functions and Values.

Dawson, S. P., S. Chen and G. D. Doolen (1993). "Lattice Boltzmann Computations for

Reaction-Diffusion Equations." Journal of Chemical Physics 98(2): 1514-1523.

Dearing, J.A, N. R., A.J Plater, J Wolf, D Prandle, T.J Coulthard (2006). "Modelling approaches

for coastal simulation based on cellular automata: the need and potential." Philosophical
Transactions of the Royal Society of London Series a-Mathematical Physical and
Engineering Sciences 364: 1051-1071.

Deng, J. Q., M. S. Ghidaoui, W. G. Gray and K. Xu (2001). "A Boltzmann-based mesoscopic

model for contaminant transport in flow systems." Advances in Water Resources 24(5):
531-550.

 119

Desplat, J. C., I. Paonabarraga and P. Bladon (2001). "LUDWIG: A parallel Lattice-Boltzmann
code for complex fluids." Computer Physics Communications 134: 273-290.

Duan, Y.-l. and R.-X. Liu (2007). "Lattice Boltzmann simulations of triagular cavity flow and

free-surface problems." Journal of Hydrodynamics, Ser. B 19(2): 127-134.

Einfeldt, B., C. D. Munz, P. L. Roe, B. Sjögreen (1991). On Godunov-type methods near low

densities, Academic Press Professional, Inc. 92: 273-295.

Elder, J. W. (1959). "The dispersion of marked fluid in turbulent shear flow." Journal of Fluid

Mechanics Digital Archive 5: 544-560.

Fagherazzi, S., P. Rasetarinera, M. Y. Hussaini and D. J. Furbish (2004). "Numerical Solution of

the Dam-Break Problem with a Discontinuous Galerkin Method." Journal of Hydraulic
Engineering 130(6): 532-539.

Fan, Z., F. Qiu, A. Kaufman and S. Yoakum-Stover (2004). GPU Cluster for High Performance

Computing. Proceedings of the 2004 ACM/IEEE conference on Supercomputing, IEEE
Computer Society.

Feng, S. D., J. Y. Mao and Q. Zhang (2001). "Lattice Boltzmann equation model in the Coriolis

field." Chinese Physics 10(12): 1103-1105.

Fennema, R. J. and M. H. Chaudhry (1990). "Explicit Methods for 2-D Transient Free Surface

Flows." Journal of Hydraulic Engineering 116(8): 1013-1034.

Fetter, C. W. (1998). Contaminant Hydrology, Prentice Hall.

Frisch, U., B. Hasslacher and Y. Pomeau (1986). "Lattice-Gas Automata for the Navier-Stokes

Equation." Physical Review Letters 56(14): 1505.

Garcia-Navarro, P., F. Alcrudo and J. M. Saviron (1992). "1-D Open-Channel Flow Simulation

Using TVD-McCormack Scheme." Journal of Hydraulic Engineering 118(10): 1359-
1372.

García, A., J. A. Revilla, R. Medina, C. Álvarez and J. A. Juanes (2002). "A model for predicting

the temporal evolution of dissolved oxygen concentration in shallow estuaries."
Hydrobiologia 475-476(1): 205-211.

Geller, S., M. Krafzyk, J. Tolke, S. Turek and J. Hron (2006). "Benchmark computations based

on lattice-Boltzmann, finite element and finite volume methods for laminar flows."
Computers and Fluids 35(8-9): 888-97.

Ghidaoui, M. S., J. Q. Deng, W. G. Gray and K. Xu (2001). "A Boltzmann based model for open

channel flows." International Journal for Numerical Methods in Fluids 35(4): 449-494.

 120

Ginzburg, I. (2005). "Equilibrium-type and link-type lattice Boltzmann models for generic
advection and anisotropic-dispersion equation." Advances in Water Resources 28(11):
1171-1195.

Ginzburg, I. (2006). "Variably saturated flow described with the anisotropic Lattice Boltzmann

methods." Computers & Fluids 35(8-9): 831-848.

Ginzburg, I. (2007). "Lattice Boltzmann modeling with discontinuous collision components:

Hydrodynamic and advection-diffusion equations." Journal of Statistical Physics 126(1):
157-206.

Glorioso, P. D. and A. M. Davies (1995). "The Influence of Eddy Viscosity Formulation, Bottom
Topography, and Wind Wave Effects upon the Circulation of a Shallow Bay." Journal of
Physical Oceanography 25(6): 1243-1264.

Gunstensen, A. K., D. H. Rothman, S. Zaleski and G. Zanetti (1991). "Lattice Boltzmann model

of immiscible fluids." Physical Review A 43(8): 4320.

Guo, Z., H. Liu, L.-S. Luo and K. Xu (2008). "A comparative study of the LBE and GKS

methods for 2D near incompressible laminar flows." Journal of Computational Physics
227(10): 4955-4976.

Han, S.-L., P. Zhu and Z.-Q. Lin (2007). "Two-dimensional interpolation-supplemented and

Taylor-series expansion-based lattice Boltzmann method and its application."
Communications in Nonlinear Science and Numerical Simulation 12(7): 1162-1171.

Han, Y., Z. Fan, F. Qiu and Y.-C. Kuo (2007). "Visual Simulation of Heat Shimmering and

Mirage." IEEE Transactions on Visualization and Computer Graphics 13(1): 179-189.

Harten, A., P. D. Lax and B. Van Leer (1983). "On Upstream Differencing and Godunov-Type

Schemes for Hyperbolic Conservation Laws." SIAM Review 25(1): 35-61.

He, X., S. Chen and G. D. Doolen (1998). A novel thermal model for the lattice Boltzmann

method in incompressible limit, Academic Press Professional, Inc. 146: 282-300.

He, X., X. Shan and G. D. Doolen (1998). "Discrete Boltzmann equation model for nonideal

gases." Physical Review E 57(1): R13-R16.

Huang, W. and M. Spaulding (1995). "3D Model of Estuarine Circulation and Water Quality

Induced by Surface Discharges." Journal of Hydraulic Engineering 121(4): 300-311.

Inamuro, T., M. Yoshino and F. Ogino (1999). "Lattice Boltzmann simulation of flows in a

three-dimensional porous structure." International Journal for Numerical Methods in
Fluids 29(7): 737-748.

Johnson, B. H., K. W. Kim, R. E. Heath, B. B. Hsieh and H. L. Butler (1991). Development and

verification of a three-dimensional numerical hydrodynamic, salinity and temperature

 121

model of Chesapeake Bay, U. S. Army Engineer Waterways Experiment Station,
Vicksburg, MS.

Kandhai, D., D. J. E. Vidal, A. G. Hoekstra, H. Hoefsloot, P. Iedema and P. M. A. Sloot (1999).

"Lattice-Boltzmann and finite element simulations of fluid flow in a SMRX Static Mixer
Reactor." International Journal for Numerical Methods in Fluids 31(6): 1019-1033.

Kang, Q. H., D. X. Zhang and S. Y. Chen (2002). "Unified lattice Boltzmann method for flow in

multiscale porous media." Physical Review E 66(5)

Kang, Q. J., D. X. Zhang, S. Y. Chen and X. Y. He (2002). "Lattice Boltzmann simulation of

chemical dissolution in porous media." Physical Review E 65(3):

Karlin, I. V., A. Ferrante and H. C. ttinger (1999). "Perfect entropy functions of the Lattice

Boltzmann method." EPL (Europhysics Letters) 47(2): 182-188.

Kawahara, M., H. Hirano, K. Tsubota and K. Inagaki (1982). "Selective lumping finite element

method for shallow water flow." International Journal for Numerical Methods in Fluids
2(1): 89-112.

Keming Hu, C. G. M. D. M. C. (2006). "A mesh patching method for finite volume modelling of

shallow water flow." International Journal for Numerical Methods in Fluids 50(12):
1381-1404.

King, I. and W. Norton (1978). Recent application of RMA's finite element models for two-

dimensional hydrodynamics and water quality. Finte elements in water resources II. C.
Brebbia, W. Gray and G. F. Pinder. London, Pentech Press.

Klar, A., M. Seaid and G. Thommes (2008). "Lattice Boltzmann simulation of depth-averaged

models in flow hydraulics." International Journal of Computational Fluid Dynamics
22(7): 507-522.

Kruger, J. and R. Westermann (2003). "Linear algebra operators for GPU implementation of

numerical algorithms." ACM Trans. Graph. 22(3): 908-916.

Lallemand, P. and L.-S. Luo (2003). "Theory of the lattice Boltzmann method: Acoustic and

thermal properties in two and three dimensions." Physical Review E 68(3): 036706-
036730.

Lallemand, P. and L. S. Luo (2000). "Theory of the lattice Boltzmann method: Dispersion,

dissipation, isotropy, Galilean invariance, and stability." Physical Review E 61(6): 6546-
6562.

Li, W., Z. Fan, X. Wei and A. Kaufman (2005). Flow Simulation with Complex Boundaries.

GPU Gems II: Programming Techiniques for High-Performance Graphics and General-
Purpose Computaiton. M. Pharr, Addison-Wesley: 747-764.

 122

Li, Y. and P. Huang (2008). "A coupled lattice Boltzmann model for advection and anisotropic

dispersion problem in shallow water." Advances in Water Resources 31(12): 1719-1730.

Loose, B., Y. Nino and C. Escauriaza (2005). "Finite volume modeling of variable density

shallow-water flow equations for a well-mixed estuary: application to the Río Maipo
estuary in central Chile." Journal of Hydraulic Research 43(4): 339-50.

Luettich, R. J., J. J. Westerink and N. W. Scheffner (1991). ADCIRC: An Advanced Three

Dimensional Circulation Model for Shelves, Coasts and Estuaries, U.S. Army Corps of
Engineers, Washington D.C. 20314-1000.

Lynch, D. R. and W. Gray (1979). "A wave equation model for finite element tidal

computations." Computatoinal Fluids 7: 207-28.

Lynch, D. R. and F. E. Werner (1991). "Three-dimensional hydrodynamics on finite elements.

Part II: Non-linear time-stepping model." International Journal for Numerical Methods in
Fluids 12: 27.

Martinez, D. O., S. Chen and W. H. Matthaeus (1994). "Lattice Boltzmann

magnetohydrodynamics." Physics of Plasmas 1(6): 1850-1867.

Martinez, D. O., W. H. Matthaeus, S. Chen and D. C. Montgomery (1994). "Comparison of

spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics."
Physics of Fluids 6(3): 1285-1298.

Massaioli, F. and G. Amati (2002). Achieving high performance in a LBM code using OpenMP.

Fourth European Workshop on OpenMP, Roma.

McNamara, G. R. and G. Zanetti (1988). "Use of the Boltzmann Equation to Simulate Lattice-

Gas Automata." Physical Review Letters 61(20): 2332-2335.

Meselhe, E. A., F. Sotiropoulos and F. M. Holly Jr (1997). "Numerical Simulation of

Transcritical Flow in Open Channels." Journal of Hydraulic Engineering 123(9): 774-
783.

Navarrina, F., I. Colominas, M. Casteleiro, L. Cueto-Felgueroso, H. Gómez and J. F. A. Soage

(2008). "A numerical model for the transport of salinity in estuaries." International
Journal for Numerical Methods in Fluids 56(5): 507-523.

Noble, D. R., J. G. Georgiadis and R. O. Buckius (1996). "Comparison of accuracy and

performance for lattice Boltzmann and finite difference simulations of steady viscous
flow." International Journal for Numerical Methods in Fluids 23(1): 1-18.

 123

NVIDIA. (2008). "NVIDIA CUDA Programming Guide 2.0." Retrieved 01 December 2009,
from http://developer.download.nvidia.com/compute/cuda/2_0/docs/NVIDIA_CUDA_
Programming_Guide_2.0.pdf.

P. Ortiz, O. C. Z. J. S. (2006). "Hydrodynamics and transport in estuaries and rivers by the CBS

finite element method." International Journal for Numerical Methods in Engineering
66(10): 1569-1586.

Pohl, T., F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein and T. Zeiser (2004).

Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on
Three Supercomputing Architectures. Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, IEEE Computer Society.

Prendergast, K. H. and K. Xu (1993). Numerical hydrodynamics from gas-kinetic theory,

Academic Press Professional, Inc. 109: 53-66.

Pullin, D. I. (1980). "Direct simulation methods for compressible inviscid ideal-gas flow."

Journal of Computational Physics 34: 231-244.

Qian, Y. H. (1993). Simulating thermohydrodynamics with lattice BGK models, Plenum Press.

8: 231-242.

Quirk, J. J. (1998). A Contribution to the Great Riemann Solver Debate.

Reitz, R. D. (1981). One-dimensional compressible gas dynamics calculations using the

Boltzmann equation. J. Comput. Phys. ; Vol/Issue: 40:2. United States: Pages: 108-123.

Roberts, T. W. (1990). The behavior of flux difference splitting schemes near slowly moving

shock waves, Academic Press Professional, Inc. 90: 141-160.

Roe, P. L. and D. S. Balsara (1996). "Notes on the eigensystem of magnetohydrodynamics."

SIAM J. Appl. Math. 56(1): 57-67.

Rothman, D. H. (1988). "Cellular-automaton fluids: A model for flow in porous media."

Geophysics 53(4): 509-518.

Salmon, R. (1999). "The Lattice Boltzmann method as a basis for ocean circulation modeling."

Journal of Marine Research 57: 503-35.

Salmon, R. (1999b). "The Lattice Boltzmann solutions of the three dimensional planetary

geostrophic equations." Journal of Marine Research 57: 847-84.

Sanay, R. and A. Valle-Levinson (2005). "Wind-Induced Circulation in Semienclosed

Homogeneous, Rotating Basins." Journal of Physical Oceanography 35(12): 2520-2531.

 124

Sankaranarayanan, K., I. G. Kevrekidis, S. Sundaresan, J. Lu and G. Tryggvason (2003). "A
comparative study of lattice Boltzmann and front-tracking finite-difference methods for
bubble simulations." International Journal for Multiphase Flow 29: 109-116.

Servan-Camas, B. and F. T.-C. Tsai (2010). "Two-Relaxation-Time Lattice Boltzmann Method

for Anisotropic Dispersive Henry Problem." Water Resources Research.

Servan-Camas, B. and F. T.-C. Tsai (2008). "Lattice Boltzmann method with two relaxation

times for advection-diffusion equation: Third order analysis and stability analysis."
Advances in Water Resources 31(8): 1113-1126.

Servan-Camas, B. and F. T.-C. Tsai (2009). "Non-negativity and stability analyses of lattice

Boltzmann method for advection-diffusion equation." Journal of Computational Physics
228(1): 236-256.

Servan-Camas, B. and F. T.-C. Tsai (2009). "Saltwater intrusion modeling in heterogeneous

confined aquifers using two-relaxation-time lattice Boltzmann method." Advances in
Water Resources 32(4): 620-631.

Shan, X. and G. Doolen (1995). Multi-component lattice-Boltzmann model with interparticle

interaction.

Shankar, N. J., H. F. Cheong and S. Sankaranarayanan (1997). "Multilevel finite-difference

model for three-dimensional hydrodynamic circulation." Ocean Engineering 24(9): 785-
816.

Shinbrot, M. (1970). "Shallow Water Equations." Journal of Engineering Math 4(4): 293-304.

Simpson, G. and S. Castelltort (2006). "Coupled model of surface water flow, sediment transport

and morphological evolution." Computers & Geosciences 32(10): 1600-1614.

Su, M., K. Xu and M. S. Ghidaoui (1999). Low-speed flow simulation by the gas-kinetic

scheme, Academic Press Professional, Inc. 150: 17-39.

Succi, S. (2001). The Lattice Boltzmann Equation For Fluid Dynamics and Beyond. Oxford,

Oxford University Press.

Szymkiewicz, R. (1993). "Oscillation-Free Solution of Shallow Water Equations for

Nonstaggered Grid." Journal of Hydraulic Engineering 119(10): 1118-1137.

Tadeusz, L. (1984). "An interpolation method for an irregular net of nodes." International Journal

for Numerical Methods in Engineering 20(9): 1599-1612.

Takashi, A. (1997). "Derivation of the lattice Boltzmann method by means of the discrete

ordinate method for the Boltzmann equation." J. Comput. Phys. 131(1): 241-246.

 125

Tan, W.-Y. (1992). Shallow Water Hydrodynamics. Amsterdam, Elsevier.

Tao, S. and T. JianHua (2006). "Numerical simulation of pollutant transport acted by wave for a

shallow water sea bay." International Journal for Numerical Methods in Fluids 51(5):
469-487.

Teeter, A. M., B. H. Johnson, C. Berger, G. Stelling, N. W. Scheffner, M. H. Garcia and T. M.

Parchure (2001). "Hydrodynamic and sediment transport modeling with emphasis on
shallow-water, vegetated areas (lakes, reservoirs, estuaries and lagoons)." Hydrobiologia
444(1): 1-23.

Thurey, N. and U. Rude (2004). Free surface lattic-Boltzmann fluid simulations with and without

level sets. Proceeddings of Workshop on Vision, Modeling, and Visualization. (Stanford,
CA), IOS Press, Amsterdam: 199-208.

Tolke, J. and M. Krafczyk (2008). "TeraFLOP computing on a desktop PC with GPUs for 3D

CFD." International Journal Computational Fluid Dynamics 22(7): 443-456.

Toro, E. F. (1992). "Riemann Problems and the WAF Method for Solving the Two-Dimensional

Shallow Water Equations." Philosophical Transactions of the Royal Society of London
Series a-Mathematical Physical and Engineering Sciences 338(1649): 43-68.

Tseng, M.-H. (2004). "Improved treatment of source terms in TVD scheme for shallow water

equations." Advances in Water Resources 27(6): 617-629.

Tubbs, K. R. and F. T.-C. Tsai (2008). Lattice Boltzmann Modeling Using High Performance

Computing for Shallow Water Fluid Flow and Mass Transport. American Geophysical
Union 2008 Fall Meeting, San Francisco, CA.

Tubbs, K. R. and F. T.-C. Tsai (2009). A GPU Accelerated Lattice Boltzmann Model for

Shallow Water Flow and Mass Transport. Sixth International Conference for Mesoscopic
Methods in Engineering and Science (ICMMES), Guangzhou City, Guangdong Province,
China.

Tubbs, K. R. and F. T.-C. Tsai (2009). Simulation of Multilayer Shallow Water Fluid Flow

Using Lattice Boltzmann Modeling and High Performance Computing, Kansas City,
Missouri, ASCE.

Tubbs, K. R. and F. T.-C. Tsai (2009). "Multilayer shallow water flow using lattice Boltzmann

method with high performance computing." Advances in Water Resources 32(12): 1767-
1776.

Tubbs, K. R. and F. T.-C. Tsai (2010). "GPU Accelerated Lattice Boltzmann Model for Shallow

Water Flow and Mass Transport." International Journal Numerical Methods in
Engineering (under review).

 126

Vreugdenhil, C. B. (1994). Numerical Methods for Shallow-Water Flow. Dordrecht, Kluwer
Academic Publishers.

Walsh, S. D. C., M. O. Saar, P. Bailey and D. J. Lilja (2009). "Accelerating geoscience and

engineering system simulations on graphics hardware." Computers & Geosciences
35(12): 2353-2364.

Wang, Z. J. (2002). Spectral (finite) volume method for conservation laws on unstructured grids:
basic formulation, Academic Press Professional, Inc. 178: 210-251.

Wei, X., Y. Zhao, Z. Fan, W. Li, F. Qiu, S. Yoakum-stover and A. Kaufman (2004). "Lattice-

based flow field modeling." IEEE Transactions on Visualization and Computer Graphics
10: 719-29.

Wellein, G., T. Zeiser, G. Hager and S. Donath (2006). "On the single processor performance of

simple lattice Boltzmann kernels." Computers & Fluids 35(8-9): 910-19.

Wilke, J., T. Pohl, M. Kowarschik and U. Rude (2003). Cache Performance Optimizations for

Parallel Lattice Boltzmann Codes. Euro-Par 2003 Parallel Processing: 441-450.

Wolf-Gladrow, D. A. (2000). Lattice Gas Cellular Automata and Lattice Boltzmann Models: an

introduction. Berlin, Springer.

Wu, W. (2004). "Depth-Averaged Two-Dimensional Numerical Modeling of Unsteady Flow and

Nonuniform Sediment Transport in Open Channels." Journal of Hydraulic Engineering
130(10): 1013-1024.

Xu, K. (1997). BGK-based scheme for multicomponent flow calculations, Academic Press

Professional, Inc. 134: 122-133.

Xu, K. (1999). A Gas-Kinetic Scheme for the Euler Equations with Heat Transfer, Society for

Industrial and Applied Mathematics. 20: 1317-1335.

Xu, K., C. Kim, L. Martinelli and A. Jameson (1996). BGK-Based Schemes for the Simulation

of Compressible Flow, Taylor & Francis. 7: 213 - 235.

Xu, K., L. Martinelli and A. Jameson (1995). "Gas-kinetic finite volume methods, flux-vector

splitting, and artificial diffusion." J. Comput. Phys. 120(1): 48-65.

Yoon, T. H. and S. K. Kang (2004). "Finite Volume Model for Two-Dimensional Shallow Water

Flows on Unstructured Grids." Journal of Hydraulic Engineering 130(7): 678-688.

Zhang, X., A. G. Bengough, L. K. Deeks, J. W. Crawford and I. M. Young (2002). "A novel

three-dimensional lattice Boltzmann model for solute transport in variably saturated
porous media." Water Resour. Res. 38.

 127

Zhao, Y. (2008). "Lattice Boltzmann based PDE solver on the GPU." The Visual Computer
24(5): 323-333.

Zhao, Y., F. Qiu, Z. Fan and A. Kaufman (2007). Flow simulation with locally-refined LBM.

Proceedings of the 2007 symposium on Interactive 3D graphics and games. Seattle,
Washington, ACM.

Zhong, L., S. Feng, D. Lou and S. Gao (2006). "Wind-driven, double-gyre, ocean circulation in a

reduced-gravity, 2.5-layer, lattice boltzmann model." Advances in Atmospheric Sciences
23(4): 561-78.

Zhou, J. G. (2002). "A lattice Boltzmann model for the shallow water equations." Computer

Methods in Applied Mechanics and Engineering 191(32): 3527-3539.

Zhou, J. G. (2002). "A Lattice Boltzmann Model for the Shallow Water Equations with

Turbulence Modeling." International Journal of Modern Physics C: Computational
Physics & Physical Computation 13(8): 1135.

Zhou, J. G. (2004). Lattice Boltzmann Methods for Shallow Water Flows, Springer.

Zhou, J. G. (2007). "Lattice Boltzmann Simulations of Discontinuous Flows." International

Journal of Modern Physics C: Computational Physics & Physical Computation 18(1): 1-
14.

Zhou, J. G., D. M. Causon, C. G. Mingham and D. M. Ingram (2004). "Numerical Prediction of

Dam-Break Flows in General Geometries with Complex Bed Topography." Journal of
Hydraulic Engineering 130(4): 332-340.

Zienkiewicz, O. C. and R. Codina (1995). "A general algorithm for compressible and

incompressible flow Part I. the split, characteristic-based scheme." International Journal
for Numerical Methods in Fluids 20: 869-885.

Zienkiewicz, O. C. and P. Ortiz (1995). "A split-characteristic based finite element model for the

shallow water equations." International Journal for Numerical Methods in Fluids 20(8-9):
1061-1080.

Zou, Q. and X. He (1997). "On pressure and velocity boundary conditions for the lattice

Boltzmann BGK model." Physics of Fluids 9(6): 1591-1598.

 128

VITA

Kevin Tubbs was born in Baton Rouge, Louisiana, in April, 1979, to John and Veronica

Tubbs. He pursued his high school education at Southern University Laboratory School. He

received his bachelor’s of science degree in physics for Southern University, Baton Rouge, in

May 2001. In May 2004, He received his master of science degree in physics from Louisiana

State University. He then entered the doctoral program in the Donald W. Clayton Engineering

Science program. Under the advice of Dr. Frank T.-C. Tsai, he conducted research in the field of

hydrodynamics and high performance computing, focusing on numerical modeling using lattice

Boltzmann techniques.

	Lattice Boltzmann modeling for shallow water equations using high performance computing
	Recommended Citation

	Microsoft Word - TubbsK_Dissertation_Final.doc

