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ABSTRACT 

 

 The aim of this dissertation project is to extend the standard Lattice Boltzmann method 

(LBM) for shallow water flows in order to deal with three dimensional flow fields.  

The shallow water and mass transport equations have wide applications in ocean, coastal, 

and hydraulic engineering, which can benefit from the advantages of the LBM. The LBM has 

recently become an attractive numerical method to solve various fluid dynamics phenomena; 

however, it has not been extensively applied to modeling shallow water flow and mass transport. 

Only a few works can be found on improving the LBM for mass transport in shallow water flows 

and even fewer on extending it to model three dimensional shallow water flow fields. The 

application of the LBM to modeling the shallow water and mass transport equations has been 

limited because it is not clearly understood how the LBM solves the shallow water and mass 

transport equations.   

The project first focuses on studying the importance of choosing enhanced collision 

operators such as the multiple-relaxation-time (MRT) and two-relaxation-time (TRT) over the 

standard single-relaxation-time (SRT) in LBM. A (MRT) collision operator is chosen for the 

shallow water equations, while a (TRT) method is used for the advection-dispersion equation. 

Furthermore, two speed-of-sound techniques are introduced to account for heterogeneous and 

anisotropic dispersion coefficients.  

By selecting appropriate equilibrium distribution functions, the standard LBM is 

extended to solve three-dimensional wind-driven and density-driven circulation by introducing a 

multi-layer LB model. A MRT-LBM model is used to solve for each layer coupled by the 

vertical viscosity forcing term. To increase solution stability, an implicit step is suggested to 

obtain stratified flow velocities. Numerical examples are presented to verify the multi-layer LB 
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model against analytical solutions. The model’s capability of calculating lateral and vertical 

distributions of the horizontal velocities is demonstrated for wind- and density- driven circulation 

over non-uniform bathymetry. 

 The parallel performance of the LBM on central processing unit (CPU) based and 

graphics processing unit (GPU) based high performance computing (HPC) architectures is 

investigated showing attractive performance in relation to speedup and scalability. 
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1 INTRODUCTION 
 

Coastal wetlands make up only a small portion of the United States’ land area; however, 

they are very influential to the economic, social and ecological health of the nation. The loss of 

coastal wetlands is area of importance to nation and the state of Louisiana. Annual land loss rates 

in coastal Louisiana have varied over the last 50 years, declining from a maximum of 100 square 

kilometers ( 2
km ) per yr (39 square miles [ 2mi ] per yr) for the period 1956–1978. Cumulative 

loss during this 50-year period in Louisiana represents 80 percent of the coastal land loss in the 

entire United States (Board 2006). Louisiana accounts for 25 percent of the United States’ 

coastal wetlands and 40 percent of its salts mashes making this issue one of great importance for 

the state. During colonial times, the contiguous 48 states contained an estimated 221 million 

acres of wetlands while today about 100 million remain. This loss continues at a rate of 25 miles 

per year since 1930 (Corel 2004).  

 Louisiana wetlands are unique and vital ecological assets. Made more evident by the 

tremendous humanitarian and economic impact of hurricanes Katrina and Rita in 2005, wetlands 

play in important role in the natural protection of the region from such storms. Wetlands act as 

both storm buffers and flood control devices during hurricanes and coastal storms. The wetlands 

also replenish aquifers and purify water by filtering out pollutants and absorbing nutrients as well 

as provide habitat for a variety of wildlife. Coastal areas in Louisiana also play in important role 

in shipping for the state and entire nation. Louisiana wetlands and coastal areas are an influential 

part of the security of the state and the nation. 

Coastal wetlands develop due to a balance of natural geomorphologic and coastal ocean 

processes. These natural processes such as relative sea level rise, wave action, tidal exchange, 

river discharges, sediment deposition, accumulation of organic material, seawater intrusion and 
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hurricanes and coastal storms play important roles in the development and sustainability of the 

wetland. Understanding how these processes interact over time is important to scientist, 

engineers and policy makers and used to make decisions to ensure the sustainability of the 

wetland. The same natural processes that develop the wetland also cause the loss of the wetland 

over centuries. This wetland loss is further complicated human activities. Human activities 

causing wetland loss include the construction of river levees, large water control structures, and 

ship and access canals to name a few. Numerical modeling and simulation serves as a valuable 

tool validate and understand natural processes that affect wetland loss as well as predict and 

study the effects of human activities on the restoration and management of wetlands in the 

future. The current trend of increasing computational capabilities allow for more accurate models 

and more sophisticated management and decision making tools. A major challenge for 

environmental science is to develop dynamic models that can simulate future environmental 

responses to the combined effect of human activities and environmental change (J.A Dearing 

2006). 

This dissertation, though an interdisciplinary and interdepartmental approach, seeks to 

study and develop new numerical, high-performance-computing modeling tools that would 

improve management and decision making on Louisiana wetland and coast protection. 

1.1 Background 

The shallow water equations are used to describe flow in bodies of water where the 

horizontal length scales are much greater than the fluid depth (i.e., long wavelength phenomena). 

The shallow water equations have wide applications in ocean engineering, hydraulic engineering 

(Meselhe et al. 1997; Cao et al. 2004; Zhou et al. 2004; Klar et al. 2008) and coastal engineering 

(Teeter et al. 2001; Al-Barwani and Purnama 2008; Klar et al. 2008). The shallow water 
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equations can be used to study main physical phenomena of interest to scientists and engineers 

such as storm surges (Garcia-Navarro et al. 1992), tidal flows (Banda and Thömmes 2009) and 

fluctuations in estuary and coastal water regions (Huang and Spaulding 1995; García et al. 2002), 

tsunami and bore wave propagation (Keming Hu 2006; Simpson and Castelltort 2006), the 

stationary hydraulic jump, forces acting on off-shore structures, and river, reservoir and open 

channel flows (Meselhe et al. 1997; Ghidaoui et al. 2001). The shallow water equations can also 

be coupled to transport equations to model the transport of various physical quantities such as the 

prediction of pollutant transport in flows (Chertock et al. 2006; Tao and JianHua 2006; 

Benkhaldoun et al. 2007; Cai et al. 2007), salinity and temperature transport (Loose et al. 2005; 

P. Ortiz 2006; Navarrina et al. 2008), and sediment transport (Teeter et al. 2001; Wu 2004; 

Simpson and Castelltort 2006), which are important subjects in many industrial and 

environmental projects.  

The shallow water equations are obtained by assuming a hydrostatic pressure distribution 

and a uniform velocity profile in the vertical direction. In many cases of practical interests, 

vertical accelerations of flow are small relative to the horizontal. One can integrate the Navier–

Stokes equations along the depth of the fluid body. Then the three-dimensional free boundary 

problem reduces to a two-dimensional fixed boundary problem with the primary variables being 

the vertical averages of the horizontal fluid velocities and the fluid depth (Shinbrot 1970; Cobble 

1973). When vertical effects are important, for example in baroclinic regimes where density 

varies with salinity and temperature, the three-dimensional equations should be used. Tan (1992) 

and Vreugdenhil (1994) provide discussions of shallow water models in both two and three 

dimensions.  
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The numerical solution of the shallow water equations is made challenging by a number 

of factors. The shallow water equations are a system of coupled non-linear partial differential 

equations defined on complex physical domains arising, for example, from irregular land 

boundaries. Furthermore, the bottom sea bed (bathymetry) is also often very irregular. Shallow 

water systems are subjected to a wide variety of external forces, such as the surface wind stress, 

atmospheric pressure gradient, and tidal potential forces. The Coriolis effect accounts for effect 

of the Earth’s rotation on the shallow water system resulting in an apparent deflection of moving 

objects when viewed from a rotating reference frame. The Coriolis effect is not a force, however 

the terms mathematical expression used in the numerical solutions are grouped together with the 

external forces of the shallow water system. In addition to these physical factors, there are 

additional difficulties arising from the mathematical nature of the shallow water equations. A 

major difficulty is the coupling between the fluid depth and the horizontal velocity field which 

could lead to spurious oscillations or errors if the numerical algorithms are not chosen with care. 

Due to the fact that viscosity effects, especially horizontal viscosity, are usually relatively small, 

algorithms that are stable and accurate for smooth to highly advective flows on general 

geometries are of interest for the numerical solution of these problems. 

A substantial literature exists on the application of various finite difference methods, 

finite volume methods, and finite element methods to the three dimensional shallow water 

equations (Johnson et al. 1991; Luettich et al. 1991; Lynch and Werner 1991; Casulli and 

Walters 2000). Each numerical method for shallow water equations has particular advantages 

and disadvantages. The development and improvement of numerical methods is a current area of 

research. 

 



 5 

1.2 Literature Review  

1.2.1 Traditional Numerical Methods 

Most numerical algorithms which have been developed for the shallow water equations 

over the years can be classified into two broad categories. In the first category, the primitive 

form of the shallow water equations that are obtained from the direct vertical integration of the 

three-dimensional incompressible Navier–Stokes equations, are numerically solved. In the 

second category, the primitive shallow water equations are reformulated and the first-order 

hyperbolic form of the primitive continuity equation is replaced with a second-order wave 

equation, see. (Lynch and Gray 1979; Luettich et al. 1991). Within those two broad categories, 

the only difference is the final form of the governing equation. A number of methods have been 

developed to solve both categories of governing equations. Traditional methods such as the finite 

difference method (FDM), the finite volume method (FVM) and the finite element method 

(FEM) are the most used by scientists and engineers. 

Finite difference methods (FDM) are commonly being used, such as the Princeton ocean 

model (POM), the Nearshore Community Model (NearCoM), etc.  When using the primitive 

equation approach to solve the shallow water equations, the use of non-staggered grids in the 

finite difference context can lead to spurious spatial oscillations (Lynch and Gray 1979). This is 

also a problem when a straightforward use of equal-order interpolation spaces in the finite 

element context. Over the years, various researchers have attempted to control these oscillations 

through the use of staggered grids or mixed interpolation spaces, with limited success. For 

example, King and Norton (1978) approximated velocities through piecewise quadratic functions 

and elevations using piecewise linear functions. Johnson et al. (1991) and Blumberg and Mellor 

(1987) utilized logically rectangular grids with velocities defined on the edges of the elements 
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and elevation defined at the element centers. Several numerical methods based on the primitive 

shallow water equations and equal order approximations have also been developed, e.g., 

Kawahara et al.(1982) , Szymkiewicz (1993), and Zienkiewicz and Codina (1995) who utilized 

various techniques for controlling oscillations. Zienkiewicz and Ortiz (1995) used a special 

operator splitting combined with a method of characteristics (MOC). Using these various 

techniques, these models have been shown to be accurate where the solution is smooth, but not 

suitable for hyperbolic equations near discontinuities, e.g., shock waves. The advantage of the 

LBM, shown later, is that it has the ability to be suitable for both. 

The reformulation of the primitive equations into a set of hyperbolic equations is 

necessary to mathematically model discontinuities in the water depth; however, the numerical 

solution of these equations still remains a challenge. The capability to handle discontinuities was 

a great challenge and led to the development of shock-capturing high-resolution schemes, in 

particular, based on the Riemann problem springing between two nodes or elements with a jump 

in the values of the variable. The development provided the FDM the ability to predict the 

discontinuous solutions on Cartesian grids (Toro 1992). Another approach in this category is to 

express the shallow water equations as a system of conservation laws or as advection–diffusion 

equations if diffusive effects such as eddy viscosity are incorporated. This approach is favored 

for the FVM and FEM. Aizinger and Dawson (2002) approximated a non-viscid system using a 

Godunov-type method defined on triangular elements. This approach used discontinuous, 

piecewise constant approximations of elevation and velocity. A similar method defined on 

rectangular elements was described by Alcrudo and Garcia-Navarro (1993) for the shallow water 

equations. In this type of approach, one can make the method ‘‘higher-order’’ through a post-

processing step whereby linear terms are added to the solution on each element. Chippada (1998) 
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tested several different post-processing algorithms and devised a method based on linearizing the 

system on each element and decoupling the resulting equations. Linear terms (x and y ‘‘slopes’’) 

were constructed for the elevation variable. Then these slopes were used to enhance the velocity 

approximation derived from the linearized equations. While this approach gave better accuracy 

and sharper resolution of the solution for some test problems, it was very ad hoc in nature, and 

does not always work well in practice. The LBM is capable of handling shocks without the need 

to solve the Riemann problem of characteristic equations. 

Another challenge in solving the shallow water equations is the ability to handle complex 

geometries. Unstructured meshes are a powerful tool to handle this challenge because they can 

conform to these various boundaries very easily. This leads to the development of many methods 

that extended the shock-capturing scheme to the FVM and the FEM. The FVM is very popular 

due to its simplicity of zero order presentation of elemental unknowns. In order to get a second 

order scheme, reconstruction such as a MUSCL-like interpolation must be applied (Yoon and 

Kang 2004). To seek high order accuracy, the spectral volume method promotes the solution 

order by sub-dividing the spectral cells while keeping the advantages of the normal finite volume 

method (Wang 2002). This leads to so called well balanced schemes. Later, this study will prove 

that the LBM with correct forcing terms is well balanced and capable complex geometry. 

 One extension of the shock-capturing method to the FEM could be the discontinuous 

Galerkin (DG) finite element method, which is getting popular recently. Cockburn (2003) made 

a series studies on the discontinuous Galerkin method on general differential equations. Unlike 

the usual continuous FEM, which usually assembles a global system and solves a huge linear set, 

the DG FEM lies between the FVM and the FEM. It has the advantages of locally enforced mass 

conservation (element by element) and of the ability to capture steep gradients and fronts. The 
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DG FEM does not limit itself on the selection of element basis pairs indicating compatibility of 

velocity and pressure, which is important and troublesome in the continuous FEM. The flux 

continuity through element interfaces can be weakly enforced by the commonly used 

approximate Riemann solvers, which particularly are the Harten Lax and Van leer approach 

(HLL) (Harten et al. 1983), the Roe approximate Riemann solver (Roe and Balsara 1996), etc. It 

has been found that the limiter plays an important role in suppressing the unphysical oscillations 

in high order methods. Most limiters come from the idea in one-dimensional case that no local 

extremer is created during the interpolation (Cockburn 2003). The LBM has been compared to 

DG FEM solutions with favorable results . 

1.2.2 Lattice Boltzmann Method 

The lattice Boltzmann method (LBM) is an alternative numerical scheme for simulating a 

wide range of fluid dynamics and transport phenomena. The LBM was originally created to 

model flows governed by the Navier-Stokes equations (Gunstensen et al. 1991; Alexander et al. 

1992; Chen et al. 1992; Chen and Doolen 1998; He et al. 1998; Inamuro et al. 1999; Lallemand 

and Luo 2000; Wolf-Gladrow 2000). More recently, the LBM has developed into an alternative 

and promising numerical technique for a wide range of computational fluid dynamics (CFD) 

techniques (Dawson et al. 1993; Martinez et al. 1994; He et al. 1998; Kang et al. 2002; Kang et 

al. 2002). This method can be either regarded as an extension of the lattice gas automata or as a 

special discrete form of the Boltzmann equation from the kinetic theory of gases. The method is 

based on statistical physics and models the fluid flow by tracking the evolution of the 

distribution functions of the fluid particles in phase space. The method can be considered in the 

class of kinetic theory approaches. 
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The LBM is based on solving the discrete-velocity Boltzmann equation in statistical 

physics as opposed to conventional numerical schemes based on the discretization of partial 

differential equations describing macroscopic conservation laws. It describes the microscopic 

picture of the movement of particles in an extremely simplified way, while at the macroscopic 

level, it gives a correct average description. The essential idea of the LBM approach lies in the 

recovery of the macroscopic governing equations, e.g., the Navier-Stokes equation, the shallow 

water equation, the diffusion equation, the advection-diffusion equation, etc., from the 

microscopic flow behavior of the particle movement as described by kinetic theory. The 

approach does not use the actual details of the particles but follow a collection of fictitious 

particles whose properties recover the macroscopic behavior. The basic idea is to replace the 

nonlinear differential equations of macroscopic fluid dynamics with a simplified description 

modeled on the kinetic theory of gases. To obtain the hydrodynamic behavior, the Chapman-

Enskog expansion, which is a perturbation expansion in time and space to describe slowly 

varying solutions of the underlying kinetic equations, is undertaken. The advantages of the 

method are its ease in parallelization because of the locality of particle interaction and the 

transport of particle information, and flexibility in geometry because of the easy implementation 

of complex boundary conditions and complex properties of a fluid system. The method has been 

proven to be effective in exploiting these advantages in various applications and implementations 

on different high performance computing architectures. Furthermore, the method has become an 

alternative to conventional numerical methods like FDMs, FEMs, and FVMs in computational 

fluid dynamics. 

The LBM has found a wide range of applications in a variety of fields including the 

shallow water equations. The LBM has been successfully adopted to simulate shallow water 
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equations of wind-driven ocean circulation (Salmon 1999; Zhong et al. 2006), to model three-

dimensional planetary geostrophic equations (Salmon 1999b) and to study atmospheric 

circulation of the northern hemisphere with ideal boundary conditions (Feng et al. 2001).  Many 

free surface flows can be modeled by the shallow water equations with the assumption that the 

vertical scale is much smaller than the horizontal scale. These equations can be derived from the 

depth-averaged incompressible Navier-Stokes equations. The application fields of shallow water 

equations include a wide spectrum of phenomena in environmental and hydraulic engineering, 

including tidal flows in an estuary or coastal regions, rivers, reservoir and open channel flows.  

1.2.3 LBM for Solving Shallow Water Equations 

Modeling of problems in hydrodynamics, hydraulics, and environmental fluid mechanics 

may be undertaken at three different length scales, commonly referred to as the microscopic, 

mesoscopic, and macroscopic levels (Frisch et al. 1986). Microscopic modeling involves the 

application of Newton’s laws to every molecule in the system. It requires knowledge of the 

initial state of each molecule and the quantification for the interactions among all the molecules 

in the system. Because of the level of detail needed, microscopic modeling is computationally 

infeasible except in some cases where the mean free path between molecules is large.  

Mesoscopic modeling (i.e., modeling from statistical perspectives) entails the application of 

Newton’s laws to a probability distribution of molecules. Mesoscopic modeling uses the 

Boltzmann equation as a starting point for system simulation, where the dependent variable is the 

probability distribution of particles (Reitz 1981). Mass, momentum, energy, and entropy are 

computed from the moments of this distribution function. Macroscopic modeling entails the 

application of the basic laws of mechanics and thermodynamics to a continuum. Examples of the 

macroscopic continuum models in hydraulic engineering, hydrodynamics, and environment fluid 
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mechanics include the shallow water equations (Tubbs and Tsai 2008; Tubbs and Tsai 2009), 

Richard’s unsaturated flow equation (Zhang et al. 2002; Ginzburg 2006), the Navier-Stokes 

equations, and the equation of chemical species transport (Chen et al. 1993; Dawson et al. 1993; 

Deng et al. 2001). 

 Until recently, the analyses and solutions of problems in hydraulics, hydrodynamics, and 

environmental fluid mechanics have been based exclusively on macroscopic continuum models, 

which are solved either analytically or numerically. However, over the last three decades 

numerical schemes based on mesoscopic models have been developed and applied to a multitude 

of hydrodynamic problems, including shock waves in compressible flows (Chu 1965; Reitz 

1981; Xu et al. 1995; Xu et al. 1996), multicomponent and multiphase flows (Gunstensen et al. 

1991; Xu 1997; He et al. 1998), flows in complex geometries (Rothman 1988; Chen and Doolen 

1998), turbulent flows (Chen et al. 1992; Martinez et al. 1994), low Mach number flows (Su et 

al. 1999), and heat transfer and reaction diffusion flows (Qian 1993; Xu 1999). Mesoscopic 

models based on the Boltzmann equation can be categorized into two sub-classes: continuous 

Boltzmann models and discrete Boltzmann models such as the LBM. The main difference in the 

two is that the distribution function in is continuous or discrete in particle velocity, respectively.  

Excellent reviews of the LBM and continuous Boltzmann models are provided by Chen and 

Doolen (1998), Xu (1999), and Ghidaoui et al. (2001). 

 In those reviews, the main advantages of mesoscopic Boltzmann based numerical models 

over macroscopic based numerical models are summarized below: 

1. While the advective operator in the macroscopic approach is non-linear, its counterpart in 

the mesoscopic approach is linear (Chen and Doolen 1998). 
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2. A mesoscopic based numerical model can be easily extended to multidimensional flows 

because the distribution function of particles is a scalar (Xu et al. 1996). 

3. In mesoscopic modeling, the implementation of complex boundary conditions is 

straightforward (Reitz 1981; Frisch et al. 1986; Abbott and Minns 1998; Chen and 

Doolen 1998). 

4. In mesoscopic modeling, the incompressible flow solution is obtained in the limit as the 

Mach number tends to zero. This means that the solutions of two and three-dimensional 

non-hydrostatic surface water models do not involve the tedious and difficult solution of 

the Poisson equation for the pressure field (Su et al. 1999). 

5. The scalar nature of the Boltzmann distribution function and the fact that the Boltzmann 

equation is only the first-order ordinary differential equation (ODE) give mesoscopic 

modeling the intrinsic features required for parallel computation (Abbott and Minns 

1998; Chen and Doolen 1998). This is highly beneficial for direct numerical simulation 

(DNS) and large eddy simulation (LES) of turbulent open channel flows. 

6. The diffusion and viscous terms that appear as second derivative terms in macroscopic 

modeling are represented by a simple algebraic difference term in mesoscopic modeling.  

Thus, the need for separate treatment of the advection and diffusion terms is eliminated. 

7. The collision function in mesoscopic models eliminates the need for numerical entropy 

fixes to ensure that the second law of thermodynamics is not violated by the solution (Xu 

et al. 1995). In contrast, macroscopic numerical models require ad hoc entropy fixes in 

order to satisfy the entropy condition (Reitz 1981; Xu et al. 1995). 

The fact that mesoscopic numerical models satisfy the entropy condition was exploited by 

Prendergast and Xu (1993) and Xu et al. (1995) to model shock waves in compressible flows and 
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by Gunstensen et al. (1991), Shan and Doolen (1995), Xu (1997), and He et al. (1998) to model 

interfaces in multiphase and multi-component flows. Ghidaoui et al. (2001) reports that these 

applications revealed that the mesoscopic approach both accurately resolves shocks and 

discontinuities, and does not suffer from the failures associated with the Riemann solution of 

macroscopic hydrodynamics equations. The failures of Riemann solvers are well documented in 

Roberts (1990), Einfeldt et al. (1991) and Quirk (1998). 

The many attributes of mesoscopic modeling, particularly its success in resolving shocks in 

compressible flows and resolving interfacial discontinuities in multiphase flow, suggest that 

mesoscopic modeling may be useful in simulating fluid flows in shallow water regimes. In these 

problems, hydraulic jumps may occur, requiring a method that is flexible to resolve both the flow 

regimes and the shocks. The LBM approach is applied to one and two-dimensional shallow 

water flows and extended to three-dimensional shallow water flows through a multi-layer 

approach. Numerical experiments show that the LBM based shallow water model produces 

accurate results for rapidly and gradually varied open channel flow problems and does not suffer 

from non physical oscillations as encountered when applying Riemann solvers to the 

macroscopic equations. This finding is consistent with conclusions reported by researchers using 

Boltzmann theory to model shock waves in compressible flows (Pullin 1980; Reitz 1981; Xu et 

al. 1995; Xu et al. 1996) and shallow water flows (Salmon 1999; Salmon 1999b; Zhou 2002; 

Zhong et al. 2006; Zhou 2007). Moreover, mesoscopic based numerical models are simpler to 

formulate, apply, and implement, including high performance computing environments, than 

Riemann solvers since they do not require characteristic decomposition. 
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1.2.4 LBM on HPC Environments 

The LBM has achieved success in the world of computational physics and has also been 

used in graphics and visualization for simulating a variety of fluid phenomena with complex 

boundary conditions (Thurey and Rude 2004; Wei et al. 2004; Chu and Tai 2005; Han et al. 

2007; Zhao et al. 2007). These areas have been dominated by the traditional FDM, FVM and 

FEM, which have their advantages and disadvantages. All are capable of being implemented on 

high performance computing architectures with different performance benefits and limitations. 

Comparing the performance of different computational methods is always a difficult task. Since 

the established FDM, FVM and FEM are the result of an evolution over many decades, one 

might expect that the simple LBM cannot compete. The accuracy and performance of the lattice-

Boltzmann method have been compared to those of FDM (Noble et al. 1996; Sankaranarayanan 

et al. 2003), FVM (Bernsdorf et al. 1999; Breuer et al. 2000; Geller et al. 2006) and FEM (Chen 

et al. 1992; Martinez et al. 1994; Kandhai et al. 1999; Geller et al. 2006). These various studies 

have confirmed that the lattice Boltzmann method is competitive with other approaches. Indeed, 

it is faster in situations where a specified accuracy is required, in particular in the context of the 

time-dependent simulation of large, complex systems by means of parallel implementations. 

However, a comparison between different fluid solvers is prone to ambiguity since their 

accuracy, intrinsic speed and convergence behavior all depend on the chosen parameters and 

specific details of the implementation. Implementation of LBM on CPU-based systems is a 

current source of research and numerous improvements are possible starting from standard LBM 

implementations (Succi 2001; Wilke et al. 2003; Pohl et al. 2004; Wellein et al. 2006). The 

implementation of LBM on CPU-based architectures is achieved on both distributed and shared 

memory systems. LUDWIG (Desplat et al. 2001) is a parallel LBM code for fluids, 
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implementing message passing interface (MPI) to achieve full portability and good efficiency on 

both massively parallel processors (MPP) and symmetric multiprocessing (SMP) systems. With 

OpenMP (Board 2008), the LBM has been optimized to implement on multiple CPUs with 

shared-memory parallel programming (Bella et al. 2002). 

More recently, the LBM has been seen as a good candidate for implementation on 

hardware accelerated systems using Graphics Processing Units (GPU). It has been accelerated on 

a single GPU (Li et al. 2005; Zhao 2008; Tubbs and Tsai 2009; Tubbs and Tsai 2010) or a GPU 

cluster (Fan et al. 2004) with MPI. Moreover, the LBM for the Navier-Stokes equations was 

implemented in two dimensions using the Compute Unified Device Architecture (CUDA™) 

interface developed by NVIDIA®. Nevertheless, all these applications use a programming style 

close to the hardware especially developed for graphics applications. 

1.3 Objectives of the Study 

The numerical simulating of large systems leads to the necessity of largely increasing the 

computational capability available. Currently, the main trend to increment this computational 

capability is based on clustering CPUs to operate in parallel rather than on increasing CPUs 

processing speeds. Hence the suitability of a numerical scheme to be parallelized is becoming an 

important feature to be considered. In this framework LBM offers a great capability to be 

parallelized based on its explicit nature and locality, which results in high scalability 

performance.  

On one hand, LBM is still under development and the reason is because LBM is barely 

two decades old, which makes it a relatively new numerical method in comparison with 

traditional methods like FDM, FEM and FVM. First developed to model the Navier-Stokes 

equation, the majority of literature on LBM has been focused on purpose. Recently, LBM is 
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gaining attention to model various partial differential equations with applications in a wide range 

of engineering and science disciplines. Only over the past decade, LBM has become an attractive 

alternative for modeling hydrodynamic and transport problems in many areas such as ocean, 

hydraulic and coastal engineering (e.g. shallow water flows). Since LBM is still at a 

disadvantage with respect to its competitors regarding solving complex problems, more research 

has to be put on developing the theoretical basis and implementation techniques to make LBM 

capable of coping with complicated problems and become a practical tool in modeling shallow 

water equations.  

1. This study aims to investigate the use of the LBM for shallow water equations and the 

anisotropic advection-dispersion equation with velocity-dependent dispersion coefficients 

on HPC environments. The choice of collision operator in both the shallow water and 

advection-dispersion equation play an important role in the stability and accuracy of the 

method.  

2. This study aims to compare the MRT collision operator to the SRT (BGK) collision 

operator for the shallow water equations at the situation that the relaxation time 

parameter is close to the stability limit of 0.5. The MRT collision operator is selected in 

order to increase stability and accuracy and eliminate spurious oscillations when the BGK 

model fails.  

3. This study aims to demonstrate that the speed-of-sound techniques are capable of account 

for the heterogeneity and anisotropy in the dispersion coefficient in mass transport in 

shallow water. Specifically, the speed-of-sound techniques are capable of coping with the 

discontinuous free surface water depth in the transport problem. 
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4. This study aims to extend the standard LB model for the simulation of three-dimensional 

shallow water flows using a multi-layer LB model. A MRT-LBM is used to solve each 

layer coupled by the vertical viscosity forcing term. To increase solution stability, an 

implicit step is suggested to obtain flow velocities.   

5. This study aims to demonstrate the proposed multi-layer LB model by testing the 

influence of wind stress, vertical viscosity forcing, bottom friction and bathymetry. The 

numerical results of flow velocities for wind-driven and density-driven circulation in a 

rectangular lake with flat bottom and non-uniform bathymetry are investigated. 

6. This study aims to investigate the parallel performance of the multi-layer LB model using 

OpenMP. The parallel decomposition along only on the horizontal flow directions has 

two advantages: 1.) It retains the inherent parallelism of the LBM for each layer; and 2.) 

It retains the locality of the tridiagonal solver over layers with respect to threads.  The 

study has shown that the use of explicit loop control is important in maintaining linear 

speedup as the number of processors increase.  

7. This study aims to investigate the parallel performance of the LBM on GPU-based HPC 

environments using MATLAB code and the Jacket GPU engine. Moreover, the study 

aims to investigate how the parallel performance scales with the problem size. Due to the 

architecture of the GPU, the performance increases with increasing computational 

intensity and decreasing need for communications between sub-domains. 

1.4 Goal of the Dissertation  

This dissertation aims to investigate the implementation of the LBM formulation for the 

shallow water flow and mass transport equations on both CPU based and GPU based 

architectures. Optimization of the LBM formulation on CPU-based systems exhibits promising 



 18 

performance by exploiting the inherent parallelism of LBM and selecting a good memory access 

pattern that uses CPU cache efficiently. A hardware-accelerated LBM shallow water formulation 

is promising because of the easy coding of LBM and straightforward GPU mapping, allowing it 

to achieve excellent computation efficiency up for large data sets. The current trend in high 

performance computing is the use of heterogeneous computer systems which will require 

methods that perform well on CPU-based systems and accelerators like GPU-based systems. Due 

to the features of the LBM, it has the potential to increase the performance of various 

applications in fluid flow and transport in shallow water systems using CPU-based or GPU-

based systems. 

The main purpose of this dissertation is to extended the standard to lattice Boltzmann 

method (LBM) for shallow water flows to deal with three dimensional flow fields coupled to 

mass transport, investigate the stability and accuracy of the method, and investigate its 

performance on high performance computing (HPC) environments. 
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2 GOVERNING EQUATIONS 

 
2.1 Shallow Water Equations 

Consider a shallow water flow regime shown in Figure 2.1. Due to the fact that the 

horizontal length scale is much greater than the vertical length scale, the shallow water equations 

are derived by depth-integrating the continuity equation and the Navier-Stokes equations. The 

depth integration of the mass transport equation leads to the shallow water transport equation. 

The shallow water equations with forcing terms of wind, bottom friction, bed slope  and the term 

representing the Coriolis effect are given as (Zhou 2004):  

Continuity Equation: 

( )
0i

i

huh

t x

∂∂
+ =

∂ ∂
  (2.1.1) 

Momentum Equations: 

( ) ( ) ( )22
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where i  and j  are Cartesian indices and the Einstein summation convention is used, h  is the 

water depth, 
i

u  is the depth-averaged velocity component in the i  direction, t  is the time. The 

forcing terms are given as: 

i Pi bi Wi Ci
F F F F F= + + +   (2.1.3) 
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where 
b

z  is the bed elevation, 29.81 /g m s= is the gravitational acceleration , ν  is the kinematic 

viscosity and 
i

F , is the external force acting on the shallow water flow consisting of the 

hydrostatic pressure approximation,
Pi

F , the bed shear stress, 
bi

F , the wind shear stress, 
wi

F , and 

the forcing term representing the Coriolis effect, 
Ci

F . 2 sin
c

f ϖ ϕ=  is the Coriolis parameter and 

ϖ is rotation rate of the earth and ϕ  is the latitude, 
b

z is the bed elevation, 2
b z

C g C=  is the bed 

friction coefficient and 1 6
z b

C h n=  is the Chezy coefficient given with the Manning coefficient 

at the bed, 
b

n , 1 3[ ]L T− . 
w

ρ  is the density of water, 
a

ρ  is the density of air, 

3(0.63 0.66 ) 10W Wi WiC u u
−= + ⋅ ×  is the wind coefficient, and 

Wi
u  is the wind velocity in the 

i direction. 

 

Figure 2.1: Shallow water flow regime 
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2.2  Multi-layer Shallow Water Equations 

Although flows in coastal and estuarine areas are usually classified as shallow water 

flows, details of the vertical structure of the flow is necessary for better modeling. There is a 

need to simulate three-dimensional free surface flows. This would require the solution of a 

system of equations coupling the Navier-Stokes equation to a moving free surface boundary. 

This approach is computationally expensive and may have difficulties handling the 

discontinuities in the free surface. Consider the multi-layer discretization of shallow water flow 

illustrated in Figure 2.2. The multi-layer shallow water equations under the hydrostatic 

assumption present an alternative solution to the free surface Navier-Stokes system and lead to a 

precise description of the vertical profile of the horizontal velocity while preserving the 

robustness and computational efficiency of the shallow water equations. Based on the multi-layer 

Saint-Venant system (Audusse 2005; Audusse et al. 2006), the governing equations are similar to 

the traditional shallow water equations with additional terms for transferring momentum between 

the layers:  

( )( ) ( )( )
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h uh
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+ =
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l ll
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where ( )
h

l  is the local water height in layer l , ( )
i

u
l  is the local velocity component in the i  

direction in layer l , ( )
i

F
l  is the external force acting on layer l , g  is the gravitational 

acceleration, ν  is the kinematic viscosity, 
i

x  is the Cartesian coordinate, and t  is time. M  is the 

total number of layers. The external force consists of the wind-driven forcing term ( ( )
Wi

F
l ) (only 
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for the top layer), the bed slope forcing term ( ( )
Pi

F
l ), the vertical kinematic eddy viscosity term 

( ( )
iFµ
l ), the non-conservative pressure source term ( ( )

NCi
F

l ) (Audusse 2005; Audusse et al. 2006; 

Audusse and Bristeau 2007; Audusse et al. 2008), the density gradient forcing term, 

( )( )Fρ

l (Shankar et al. 1997), and the forcing term representing the Coriolis effect ( ( )
Ci

F
l ) as 

follows  
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where 1δ l  and 
M

δ l  are Kronecker delta functions; 2 sin
c

f ϖ ϕ=  is the Coriolis parameter and ϖ  

is the rotation rate of the Earth and ϕ  is the latitude; 
( )

( )
1

12
m

m

h
z h

−

=

= +∑
l l

 is the location of the 

center of a layer, 
b

z  is the bed elevation, W

iz
τ , is the wind stress in the i  direction, ρ  is the fluid 

density, 
a

ρ  is the air density, 
W

C  is the wind stress coefficient, 
Wi

U  is the wind velocity 
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components in the i  direction, s WiW U=  is the wind speed measured 10 m  above the water 

surface, κ  is the bottom friction coefficient, and µ  is the vertical (kinematic) eddy viscosity. 

The water depth is the sum of local water heights of all layers, i.e. ( )

1

M m

m
H h

=
=∑ .  The free 

surface elevation above the datum 0z = , is the water depth minus the still water depth, 0H , i.e. 

0H Hζ = − . 

 

H0

 

 
Figure 2.2. Multi-layer shallow water flow. 
 
2.3 Depth-averaged Transport Equation 

The two-dimensional depth averaged anisotropic advection dispersion equation (AADE) 

are (Tao and JianHua 2006). 
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where 
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C  is the concentration, K  is an attenuation coefficient, 0S  is the concentration source term, 
ij

δ  

is the Kronecker delta, and 
ij

D  is the eddy dispersion tensor. As the principal directions of 

anisotropic eddy dispersion do not align with the flow directions, a distinct dispersion coefficient 

is defined for each Cartesian direction. Furthermore, the flow direction may not align with one 

Cartesian direction and therefore a general eddy dispersion tensor must be used and  is defined in 

equation (2.3.10) (Elder 1959; Tao and JianHua 2006), where 
L

k  and 
T

k  are the longitudinal and 

transverse coefficients, which are dimensionless.  
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3  LBM FOR SHALLOW WATER EQUATIONS 
 
3.1 LBM with BGK Collision Operator 

The LBM was first developed to solve the equations of hydrodynamics governed by the 

Navier-Stokes equation based on the kinetic theory of gases described by the Boltzmann 

equation (McNamara and Zanetti 1988). The discrete Boltzmann equation for describing 

dynamics of local particle distribution functions in a discrete velocity field is 
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  (3.1.1) 

where fα is the particle distribution function moving along α  direction; eq
fα  is the equilibrium 

distribution function (EDF), λ  is the relaxation time, { }icα α=c  is the streaming velocity along 

α  direction,  ( )eqf fα α α λΩ = − −  is the Bhatnagar-Gross-Krook (BGK) collision operator 

(Bhatnagar et al. 1954) which represents changes in fα due to particle collisions.  

The lattice Boltzmann equation is obtained by integrating Eq. (3.1.1) in time along the α  

direction. In each time step, the particle distribution functions arrive to their neighboring nodes at 

the same time through prescribed lattice connections. Therefore, the streaming velocity αc  along 

α  direction is not arbitrary and is determined by the lattice connection and size. Figure 3.1 gives 

a diagram of the two dimensional lattice with nine discrete velocities, known as the D2Q9 lattice.  

The streaming velocity for D2Q9 is 
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Figure 3.1. D2Q9 lattice. D stands for the number of dimensions and Q stands for the number of 
lattice velocities. 

 

The lattice Boltzmann equation with BGK collision operator (LBGK) on a D2Q9 lattice 

for shallow water is given as follows (Salmon 1999; Zhou 2002; Zhou 2007): 

( ) ( ) ( ) ( )( ) ( )2

1
, , , , ,

6
eq i

i

tc
f t t t f t f t f t F t

c

α
α α α α α

τ

∆
+ ∆ + ∆ = − − +x c x x x x  (3.1.3) 

where, tτ λ= ∆  is the relaxation time parameter, /c x t= ∆ ∆  is the lattice speed, x∆  is the 

lattice size, t∆  is the time step and the third term in equation (3.1.3) is the forcing term 

representing the external forces in equation (2.1.3). The choice of discretization of the forcing 

term is determined in the recovery of the shallow water equations presented in section 3.2. The 

macroscopic variables of water depth and flow velocity are calculated as the zeroth and first 

moments of the distribution functions, respectively: 
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h fαα
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The EDFs are given by 
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where 2 / 2
s

c gh=  is the squared speed of sound, and αω  are the weighting factors that depend on 

lattice directions and the type of lattice to be used. For D2Q9, 1/ 3 , 1,2,3, 4αω α= =  and 

1/12 , 5,6,7,8αω α= = . The EDFs are derived to satisfy the following constraints on the 

zeroth, first, second and third moments: 
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Equation (3.1.6) can be also derived as a Taylor expansion of the Maxwell-Boltzmann 

distribution up to second order in the Mach number (Chen and Doolen 1998) or as a Taylor 

expansion up to second order in Mach number around the kinetic states that minimize an H 

function (Karlin et al. 1999). 

The viscosity, v , in the LBM for shallow water is recovered as follows  

2 1

3 2

c
tν τ
 

= ∆ − 
 

 (3.1.11) 
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For the monolayer shallow water equations, the forcing term in the LBM is as follows 
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3.2  Recovery of Shallow Water Equations in D2Q9 

To ensure that the LBGK model solves the shallow water equations with proper LB 

parameters, the moments in equations (3.1.7) – (3.1.10) are used to show the recovery of the 

shallow water equations (2.1.1) – (2.1.2).up to second order by Chapman-Enskog multi-scale 

analysis. Similar recovery work for single-layer shallow water equations can be found in (Zhou 

2004). To recover the multi-layer shallow water equations without the forcing term, 

( ),f t t tα α+ ∆ + ∆x c  is expanded around ( ), tx  using the Taylor series expansion: 
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where 
t t i

d = ∂ + ⋅∇c  is the total derivative with respect to time. For multi-scale analysis, the 

Chapman-Enskog expansion is adopted as follows:  
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Furthermore, the particle distribution functions, fα , are perturbed around eq
fα  in terms of 

Knudsen number ε  (Takashi 1997): 

(1) 2 (2) 3 (3) 4( )eq
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where ( )k
fα  are the perturbation terms. Introducing equations (3.2.1)-(3.2.4) into equation (3.1.3) 

and grouping terms of the same order in ε , the differential equations up to second order are   
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 (3.2.8) 

where 
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 (3.2.9) 

Introducing equation (3.2.9) into equations (3.2.7) and (3.2.8), the differential equations for the 

first and second order terms become 

( )

( )

1 1

2

1 1 1

: 0i

i

i ji
s

j i

h uh
O

t x

h u uh u
h c

t x x

ε
∂∂

+ =
∂ ∂

∂∂ ∂
+ = −

∂ ∂ ∂

  (3.2.10) 
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  ∂ ∂ 
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∂ ∂    

 (3.2.11) 

Selecting the relaxation time  
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2 2
0.5 3 0.5 3

t

tc x

ν ν
τ

∆
= + = +

∆ ∆
  (3.2.12) 

and the squared speed of sound  

2 1

2s
c gh=   (3.2.13) 

Eequations (3.2.10) and (3.2.11) become 
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 (3.2.15) 

The term I  represents the numerical error. Substituting the second equation of (3.2.14) into the 

term I , it becomes the second derivative of 
i

h u with respect to 1t , which is small compared to 

the first derivative and is neglected. Combining the first order terms, equation (3.2.14), and 

second order terms, equations (3.2.15), the shallow water equations are recovered: 
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i ji i

j i j j
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h u uh u h ugh

t x x x x
ν

∂∂
+ =

∂ ∂

∂  ∂ ∂∂
+ + = 

∂ ∂ ∂ ∂ ∂ 

  (3.2.16) 

3.3 LBM with MRT Collision Operator 

This study introduces a lattice Boltzmann model to solve the shallow water equations 

based on the generalized lattice Boltzmann equation (GLBE) with the multiple-relaxation-time 
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(MRT) collision operator (d'Humieres et al. 2002; Ginzburg 2007; Guo et al. 2008). The 

evolution equation using the MRT lattice Boltzmann equation is  

( ) ( ) ( ) ( )-1
2

, , M S , ,
6

eq t
t t t t t t

c
α α

∆
 + ∆ + ∆ − = − − + f x c f x m x m x F , (3.3.1) 

where { , 0,1,2, ,8}fα α= =f L  is a nine-dimensional column vector of particle distribution 

functions for D2Q9 lattice. m  and eqm  are nine-dimensional column vectors of moments and 

their equilibria, respectively. M  is a 9 9×  dimensional transformation matrix that transforms the 

particle distribution functions and equilibrium distribution functions (EDFs) from velocity space 

to moment space, which makes M=m f  and Meq eq=m f . { , 0,1, 2, ,8}eq eq
fα α= =f L  is a nine-

dimensional column vector of the EDFs. ( )0 1 8S diag , , ,s s s= L  is a 9 9×  diagonal matrix, where 

0sα ≥  are the relaxation rates. { , 0,1,2, ,8}
i ii

c Fα α α= =∑F L  is an external force along the α  

direction. 

Equation (3.3.1) is the evolution equation for the particle distribution functions. The left hand 

side represents particle transport by pure advection executed in the streaming velocity space; and 

the right hand side represents the collision process modeled by linear relaxation processes 

executed in the moment space. The lattice Boltzmann algorithm consists of two steps: streaming 

and collision. In each time step, the particle distribution functions arrive to their neighboring 

nodes at the same time through prescribed lattice connections. The forcing terms are given by 

2
1 3

1
,

2

1
,

2
i j jb

i i b

i
t t

u u uz
F F t t gh gn

x h
α

α

+ ∆

 ∂   = + ∆ = − −   ∂    x c

x c . (3.3.2) 

The transformation matrix M  in the GLBE is constructed such that TMM  is a diagonal 

matrix, where the column vectors { }αb  of TM  are mutually orthogonal (Lallemand and Luo 
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2000; d'Humieres et al. 2002; Lallemand and Luo 2003). The transformation matrix M  for 

D2Q9 is given by Lallemand and Luo (Lallemand and Luo 2000): 

T
0
T
1
T
2
T
3
T
4
T
5
T
6
T
7
T
8

1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

M= 0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

   
   

− − − − −   
   − − − −
   

− − −   
   = − − −
   

− − −   
   − − −
   
  − − 
   − −  

b

b

b

b

b

b

b

b

b

. (3.3.3) 

Inserting matrices M and S into equation (3.3.1), the evolution equation in the direction α  

becomes [37] 

( ) ( ) ( ) ( )
8

2
0

b
, , , ,

6
eq

i i

i

s t
f t t t f t m t m t c F

c

β βα

α α α β β α
β β=

∆
 + ∆ + ∆ − = − − + ∑ ∑x c x x x

b
. (3.3.4) 

 The moments for the GLBE applied to the shallow water equations are (Li and Huang 

2008) 

( ), , , , , , , ,
x x y y xx xy

h e j q j q p pε=m ,  (3.3.5) 

where 0m h=  is the water depth, 1m e=  is related to the total energy, 2m ε=  is related to the 

energy square, ( ) ( ) ( )3 5, , ,
x y x y

m m j j hu hu= =  are the flow momenta, ( ) ( )4 6, ,
x y

m m q q=  are 

related to the head flux, and 7 xx
m p=  and 8 xy

m p=  are related to the diagonal and off-diagonal 

components of the stress tensor, respectively. In the application to the shallow water equations, 

the conserved moments are the water depth and the flow momenta: 

h fαα
=∑ ,  (3.3.6) 

i i
hu c fα αα

=∑ .  (3.3.7) 
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The remaining moments are not conserved quantities. Using equations (4.1.4) and (3.3.3), the 

equilibrium moments, Meq eq=m f , are  

( ) ( )2 2 2 22 2

1 22 2 2 2

3 33 9
4 , 4

2
x y x yeq eq

h u u h u ugh gh
m h m h

c c c c

+ +
= − + + = − − , (3.3.8) 

4 6, yeq eqx
huhu

m m
c c

= − = − ,  (3.3.9) 

( )2 2

7 82 2

3
,

x y x yeq eq
h u u hu u

m m
c c

−
= = .  (3.3.10) 

The equilibria of the conserved moments ( )0 3 5, , and m m m  are equal to themselves. Therefore, 

the relaxation rates, 0s , 3s , and 5s , have no effect on LBM solutions. With the moment 

equilibria given by equations (3.3.8)-(3.3.10), the shallow water equations can be recovered with 

the shear and bulk viscosities given by Lallemand and Luo (Lallemand and Luo 2000) 

7 8

1 1 1 1 1 1

3 s 2 3 s 2
v c x c x

   
= − ∆ = − ∆   

   
,  (3.3.11) 

1

1 1 1

6 s 2
c xζ

 
= − ∆ 

 
.  (3.3.12) 

Setting s 1α τ= , the GLBE, equation (3.3.1), reduces to the single relaxation time (SRT) 

LBM model, referred to the LBGK model, for shallow water equations (Salmon 1999; Zhou 

2002). For the LBGK model in D2Q9, the shear and bulk viscosities become  

1 1
2

3 2
v c xζ τ

 
= = − ∆ 

 
. (3.3.13) 

The SRT constrains the non-conserved moments (free parameters) and makes the LBGK 

particularly prone to numerical instabilities. Insufficient dissipation from non-conserved 

moments is unable to eliminate the fluctuations in water depth when τ  is close to 1 2 , which is 
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needed for very small kinematic viscosity of 6 21 10v m s−= ×  used in this study. One way to 

overcome the stability problem is either to use very fine grids or large viscosity values in the 

SRT-LBM model. The MRT-LBM model has no such a problem because the relaxation rates 

corresponding to non-conserved moments can be selected to attain stable solutions. 

3.4 LBM for Anisotropic Advection Dispersion  

The two-relaxation-time (TRT) collision operator (Ginzburg 2005; Servan-Camas and 

Tsai 2008; Servan-Camas and Tsai 2009) is sufficient for solute transport in shallow water flow. 

The TRT collision operator is a particular form of the MRT collision operator with two unique 

relaxation rates where 1 2 7 8s s s s 1
a

τ= = = =  and 4 6s s 1
s

τ= =  in equation (3.3.1). The TRT 

collision operator does not have any macroscopic advantage over the MRT collision operator for 

the mass transport equation, but does have a computational advantage based on efficiency and 

simplicity of analysis and coding (Ginzburg 2007). The TRT-LBM model is 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

1
, , , ,

1
, , ,

s seq

s

a aeq

C

a

f t t t f t f t f t

f t f t tS t

α α α α α

α α α

τ

τ

+ ∆ + ∆ − = − −

− − + ∆

x c x x x

x x x

, (3.4.1) 

where s
fα  and seq

fα  are the symmetric parts of the particle distribution function and equilibrium 

distribution function, respectively; a
fα  and aeq

fα  are the anti-symmetric parts of the particle 

distribution function and equilibrium distribution function, respectively; 
s

τ  and 
a

τ  are the 

symmetric relaxation time and anti-symmetric relaxation time, respectively. 
C

S α  is an external 

force along the α  direction. Equation (3.4.1) reduces to the SRT-LBM model when 
s a

τ τ= . For 

the TRT, the symmetric relaxation time was suggested by Servan-Camas and Tsai (Servan-

Camas and Tsai 2009): 
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( )
1 1

2 12 0.5s

a

τ
τ

= +
−

. (3.4.2) 

In the TRT collision operator, particle distribution functions are relaxed to the 

equilibrium state by relaxing their symmetric and anti-symmetric parts separately, which are 

given by 

;
2 2

;
2 2

s a

eq eq eq eq
seq aeq

f f f f
f f

f f f f
f f

α α α α
α α

α α α α
α α

+ −
= =

+ −
= =

,  (3.4.3) 

where gα  and eq
gα  are the distribution functions and EDF along opposite direction of α , 

respectively. The zeroth, first, and second moments of the EDFs are 

, 0eq seq aeqf f hC fα α αα α α
= = =∑ ∑ ∑ ,  (3.4.4) 

, 0eq aeq seq

i i i i
c f c f hCu c fα α α α α αα α α

= = =∑ ∑ ∑ , (3.4.5) 

( )
, 0

1/ 2
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α α α α α α α α αα α ατ
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= = + =  ∆ − 

∑ ∑ ∑ . (3.4.6) 

The EDFs applied to the AADE are (Servan-Camas and Tsai 2010) 
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2 1 2 2 , 0

2 2
eq s s
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f hC f

αα α α
α α

α α
α

ω τ τ α

=

 ⋅⋅ ⋅
= − + − + + − > 

 
 

= −∑

u cu c u u

, (3.4.7) 

where 
s

c α  is the multispeed of sound (MSS), a numerical parameter related to the coefficients of 

anisotropy. The MSS for the eight directions are given as follows:    
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where 2
sijc  is the anisotropic local squared speed of sound in each lattice grid point. From the 

recovery procedure, one can derive 2
sijc  relating to the product of the dispersion tensor and the 

water depth:  

( )
( ) ( )

( )
2 , ,

,
1 2

ij

sij

a

h t D t
c t

t τ
=

∆ −

x x
x .  (3.4.9) 

( )2ˆ ,sc tα x  in equation (3.4.7) is the squared directional speed of sound (DSS) to account for 

heterogeneity. ( )2ˆ ,sc tα x  is calculated as the arithmetic mean of the MSS along the α direction 

across adjacent lattice grids: 

( )
( ) ( )2 2

2 , ,
ˆ ,

2
s s

s

c t c t t
c t

α α α
α

+ + ∆
=

x x c
x .  (3.4.10) 

The forcing terms are given by 

( ) ( ) ( ) ( )

( )
0 , , 0.5 , ,

, 0 0

C C C C

C

S t S t S t S t t

S tα α

= + − − ∆  

= >

x x x x

x
. (3.4.11) 

To ensure that the TRT-LBM model solves the AADE in shallow water with proper LB 

parameters, the recovery of the AADE, equation (2.3.1), up to second order by Chapman-Enskog 

multi-scale analysis utilizing the moments in equations (3.4.4)-(3.4.6) can be found in Servan-

Camas and Tsai (Servan-Camas and Tsai 2009; Servan-Camas and Tsai 2010). 
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3.5 Boundary and Initial Conditions 

3.5.1 Introduction 

In order to simulate shallow water flow problems, suitable boundary and initial 

conditions must be provided. Boundary and initial conditions in the lattice Boltzmann 

formulation rely on connecting the macroscopic boundary conditions in the physical problem to 

mesoscopic boundary conditions on the distributions functions, fα . Consider the idealized 

domain shown in Figure 3.2.  

3.5.2 Periodic Boundary Conditions 

In some cases, periodic boundary conditions may be necessary. One such case is when a 

flow region consists of a number of same sub regions where the flow pattern repeats itself. In this 

case, only one sub region is actually required to be modeled using a periodic boundary condition. 

Implementing periodic boundary conditions in the lattice Boltzmann formulation is achieved by 

setting the unknown distribution functions, 1f , 5f  and 8f  at the inflow boundary (see Figure 3.2) 

to the corresponding known distribution functions at the outflow boundary, 

( ) ( )1, , , , , 1,5,8xf i j t f i N j tα α α= = = =  (3.4.12) 

and the unknown distribution functions, 3f , 6f  and 7f  at the inflow boundary, 

( ) ( ), , 1, , , 3,6,7xf i N j t f i j tα α α= = = =  (3.4.13) 

Similarly, a periodic boundary condition in the y direction can be formulated. 

3.5.3 Solid Boundary Conditions 

Boundary conditions for solid boundaries such as impermeable boundaries or structures 

in the flow region are prescribed by applying no-slip or free-slip at these boundaries to prescribe 

zero velocity or zero normal velocity at the boundary, respectively. Implementing no-slip and 

free-slip boundary conditions in the lattice Boltzmann formulation is simple using bounce-back 
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scheme (Chen and Doolen 1998). The basic idea behind the bounce-back scheme is that 

unknown distribution functions are a function of the known distribution functions incident on the 

boundary, defined by symmetry conditions. 

 

Figure 3.2 Definition sketch lattice nodes for inflow, outflow and south solid boundaries. 

A no-slip boundary condition is achieved by setting the unknown distribution functions, 

2f , 5f  and 6f  at the south boundary (see Figure 3.3) to the known distributions, 4f , 7f  and 8f  

corresponding to the opposite directions, 

2 4 5 7 6 8, , .f f f f f f= = =   (3.4.14) 

This ensures a zero flux across the boundary in both the normal and tangential directions. A free-

slip boundary condition is achieved in a similar way; however, it results in a zero flux across the 

normal direction and non-zero flux along the tangential direction. This is achieved by setting the 

unknown distribution functions, 2f , 5f  and 6f  at the south boundary to the known distributions, 
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4f , 7f  and 8f  corresponding to the opposite direction along the normal direction and reflected 

direction along the tangential direction, 

2 4 5 8 6 7, , .f f f f f f= = =   (3.4.15) 

Following the same bounce back scheme, no-slip and free-slip boundary conditions can be 

implemented on the east and west boundaries.  

 

Figure 3.3 Definition sketch lattice nodes the south solid boundaries. 

3.5.4 Open Boundary Conditions 

Boundary conditions for open boundaries such as inflow, outflow and seaward boundary 

conditions are prescribed by giving the macroscopic boundary values or functions at the 

boundary, i.e., constant water depth, water depth defined by tidal function, discharge, etc. If the 

velocity and depth are known, the unknown distribution functions, fα , can be computed using 

Equations (3.1.4) and (3.1.5) following the method described by Zou and He (1997). At the 

inflow boundary (see Figure 3.2), Equations (3.1.4) and (3.1.5) lead to three equations, 

0 1 2 3 4 5 6 7 8f f f f f f f f f h+ + + + + + + + =   (3.4.16) 

( ) ( )1 5 8 3 6 7 xc f f f c f f f hu+ + − + + =   (3.4.17) 

( ) ( )2 5 6 4 7 8 yc f f f c f f f hu+ + − + + =   (3.4.18) 
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If 0
y

u =  is assumed, solving the above three equations for the unknown distribution functions, 

1f , 5f  and 8f  results in  

1 3

2

3
x

hu
f f

c
= +   (3.4.19) 

4 2
5 76 2

x
hu f f

f f
c

−
= + +   (3.4.20) 

2 4
8 66 2

x
hu f f

f f
c

−
= + +   (3.4.21) 

Following the same procedure, the unknown distribution functions, 3f , 6f  and 7f  for the outflow 

boundary  can be determined using  

3 1

2

3
x

hu
f f

c
= −   (3.4.22) 

2 4
6 86 2

x
hu f f

f f
c

−
= − + +   (3.4.23) 

4 2
7 56 2

x
hu f f

f f
c

−
= − + +   (3.4.24) 

3.5.5 Initial Conditions 

The initial conditions for a physical problem to be modeled are given in form of 

macroscopic variables which is normal practice in traditional numerical methods. Since the 

lattice Boltzmann formulation is based on solving Equation (3.1.3), the initial conditions must be 

written in terms of the distribution function fα . Given the initial macroscopic boundary 

conditions, h , 
x

u , and 
y

u , the EDF, eq
fα , is computed and used as initial conditions for fα , i.e. 

( ) ( ) ( )( ), 0 , , 0 , , 0eq

x y
f f h t u t u tα α= = = =x x x .  
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4  LBM FOR MULTI-LAYER SHALLOW WATER EQUATIONS 
 
4.1 MRT Collision Operator 

The LB model is used to solve the shallow water equations for each layer. The LB 

equation for describing dynamics of local particle distribution functions in a discrete velocity 

field is (Chen and Doolen 1998; Zhou 2004): 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
8

( ) ( ) ( )
2

0

b
, , , , ,

6
eq nn i

i

s tc
f t t t f t m t m t F t

e

β βα α
α α α β β

β β=

∆ + ∆ + ∆ = − − +
 ∑x c x x x x

b

lll l l  (4.1.1) 

where ( )
fα

l  is the particle distribution function moving along the α  direction for the layer l , 

( )eq
fα

l  is the equilibrium distribution function (EDF) along the α  direction for the layer l . The 

second term on the right hand side of equation (4.1.1) is the MRT collision collision operator, 

which represents changes in ( )
fα

l  due to particle collisions. 
i

F  is the external force per unit mass 

in the shallow water equations (Zhou 2004). The external forces are defined in macroscopic 

variables and their contribution distributed along the α  directions. Equation (4.1.1) consists of a 

streaming step and a collision step (Succi 2001; Zhou 2004). Based on equation (4.1.1), a multi-

layer LBGK model is constructed. 

The local water height and flow velocity for each layer are calculated as the zeroth and 

first moments of the distribution functions:  

( ) ( )h fαα
=∑l l   (4.1.2) 

( ) ( ) ( )
i i

h u c fα αα
=∑l l l   (4.1.3) 

The EDFs (Chen and Doolen 1998) applied to the multi-layer shallow water equations are  
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 (4.1.4) 

where 2
s

c  is known as the squared speed of sound, which in LBM for shallow water equations is 

a numerical parameter that relates to the wave celerity, C gH= , i.e., 2 2 2 2
s

c C gH= = . It is 

noted that the weighting coefficients αω  remain the same as in monolayer LBGK formulation 

since each layer has the same planar discretization. The EDFs for the multi-layer LBGK have the 

same form as the monolayer and follow the same constraints on the zeroth, first, second, and 

third moments for each layer: 

( ) ( )eqf hαα
=∑ l l   (4.1.5) 

( ) ( ) ( )eq

i i
c f h uα αα

=∑ l l l   (4.1.6) 

( )( ) ( ) 2 ( ) ( )eq

i j ij s i j
c c f h c u uα α αα

δ= +∑ l l l l   (4.1.7) 

( )
2

( ) ( ) ( ) ( ) ( )

3
eq

i j k ik j jk i ij k

c
c c c f h u u uα α α αα

δ δ δ= + +∑ l l l l l  (4.1.8) 

The forcing term is given as 

( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1

1 11 1
2 1 2 1

l

i Wi Pi NCi Ci

i i i i
l i Ml l

i i i i

F F F F F F

u u u u
u

h h h h

ρ

κδ µ δ µ δ
+ −

+ −

= + + + +

− −
− + − − −

− −

ll l l l

l l l l
l

l l l l

 (4.1.9) 

The bed friction is now considered in the kappa term and the vertical viscosity forces in the mu 

term.  
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4.2 Recovery of Multi-layer Shallow Water Equations 

This section presents the recovery of the multi-layer shallow water equation by multi-

scale analysis. Without loss of generality, the multi layer recovery begins with results of multi-

scale analysis of the LBM for shallow water equations, i.e., equations (3.2.10), (3.2.11) and 

(3.2.13), applied to layer l of the multi-layer LBM. 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )( )

1 1

2

1 1 1

: 0i

i

i ji
s

j i

h uh
O

t x

h u uh u
h c

t x x

ε
∂∂

+ =
∂ ∂

∂∂ ∂
+ = −

∂ ∂ ∂

l ll

l l ll l
l

 (4.1.10) 
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Selecting the relaxation time  

2 2
0.5 3 0.5 3

t

tc x

ν ν
τ

∆
= + = +

∆ ∆
  (4.1.12) 

and the squared speed of sound  

2 ( )

1

1 1

2 2

M
m

s

m

c g h gH
=

= =∑   (4.1.13) 

equations (4.2.1) and (4.2.2) become 
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( )
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 (4.1.15) 

The term I  represents the numerical error. Substituting the second equation of (4.2.5) into the 

term I , it becomes the second derivative of ( ) ( )
i

h u
l l with respect to 1t , which is small compared to 

the first derivative and is neglected. Combining the first and second order terms in equations 

(4.2.5) and (4.2.6), the multi-layer shallow water equations are recovered: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 2
1

0

2

i

i

M m

i ji m i
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l ll
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 (4.1.16) 

4.3  Boundary and Initial Conditions 

4.3.1 Introduction 

Concerning the boundary conditions for the multi-layer lattice Boltzmann formulation, 

treatments for the boundary conditions for the monolayer shallow water equations are referred to. 

Periodic boundary, solid boundary, and initial conditions are straightforward to extend to the 

multi-layer lattice Boltzmann formulation as they involve exactly the same techniques presented 

in sections 3.3.2, 3.3.3 and 3.3.5 repeated for each layer. Open boundary conditions, however, 

need more attention as they involve macroscopic variables defined by the multi-layer shallow 

water equations.  

4.3.2 Multi-layer Open Boundary Conditions 

 Based on the known velocity and depth, the unknown distribution functions in the 

monolayer formulation, fα , were calculated based on the conservation constraints on the zero 
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and first moments in section 3.3.4. The unknown distribution functions in the multi-layer 

formulation, ( )
fα

l  are calculated in a similar manner for each layer, however, the equivalent local 

water heights, ( )
h

l , and velocities ( )
u

l  must be determined. The local water height is prescribed 

as  

( ) , 1,...,
H

h M
M

= =
l

l .  (4.2.1) 

For the velocity components, a constant velocity along the vertical direction prescribed as 

( ) , 1,...,
i i

u U M= =
l

l .  (4.2.2) 

Similar to section 3.3.4, ( ) 0l

yu =  is assumed, resulting in the following equations for the 

unknown distribution functions, ( )
1f
l , ( )

5f
l  and ( )

8f
l :  

( ) ( )
( ) ( )

1 3

2

3
x

h u
f f

c
= +

l l
l l   (4.2.3) 
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( ) ( )

( )
( ) ( )

4 2
5 76 2

x
h u f f

f f
c

−
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l l l l
l l   (4.2.4) 
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( ) ( )

( )
( ) ( )

2 4
8 66 2

x
h u f f

f f
c

−
= + +

l l l l
l l   (4.2.5) 

Following the same procedure, the unknown distribution functions, ( )
3f
l , ( )

6f
l  and ( )

7f
l  for the 

outflow boundary are determined using  

( ) ( )
( ) ( )

3 1

2

3
x

h u
f f

c
= −

l l
l l   (4.2.6) 

( )
( ) ( )
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4 2
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x
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f f
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−
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l l l l
l l   (4.2.8) 
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4.4 Multi-Layer LB Algorithm 

With the solution known at time n , the solution at time 1n +  is calculated with an 

explicit treatment of quantities local to a layer, i.e., the left hand side of equations (2.2.1) 

and(2.2.2), the kinematic viscosity term in equation(2.2.6), the wind-driven forcing term, the bed 

slope forcing term, the non-conservative pressure source term, and the forcing term representing 

the Coriolis effect. The vertical viscosity forcing term ( ( )
iFµ
l ) can be interpreted as a friction term 

between layers. To increase the solution stability, this term is treated implicitly. First, equation 

(4.1.1) is solved for each layer explicitly to obtain intermediate distribution functions *( ) 1n
fα

+l  , 

velocities *( ) 1n

i
u

+l , and local water heights ( )* 1n
h

+l :  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
8

*( ) 1 ( ) ( )
2

0

b
, ,

6
eq nnn n ni

i

s tc
f t f m t m t F

c

β βα α
α α α β β

β β

+

=

∆ + ∆ = − − +
 ∑x c x x x x

b

lll l l  (4.2.9) 

*( ) 1 *( ) 1n nh fαα

+ +=∑l l  (4.2.10) 

*( ) 1 *( ) 1 *( ) 1n n n

i i
u c f hα αα

+ + +=∑l l l   (4.2.11) 

Then, an implicit step is solved for macroscopic variables given as: 

( )

( )( )

( )

( ) ( )

1 * 1

( ) 11 * 1

0n n
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i i

h h

Fhu huµ
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       

l l

ll l
  (4.2.12) 

where the right hand side represents the intermediate solution given by the explicit LB step 

(equations (4.2.9)-(4.2.11)) and is known. The first row in equation (4.2.12) relates to mass 

conservation, which is not affected by the vertical viscosity forcing. The second row in equation 

(4.2.12) relates to momentum that needs to account for the vertical viscosity forcing. The 

updating of flow velocities ( ) 1n

i
u

+l  at time 1n +  based on the second row in equation (4.2.12) 

leads to an M M×  tridiagonal linear system (Audusse 2005): 
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where the matrix elements are 
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, 2, ,n

n n
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c h M
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∆
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+

l
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The above numerical procedure to advance the solutions of the multi-layer LB algorithm 

from time n  to time 1n +  can be summarized in the following steps: 

Step 1. Use the local water heights, ( )n
h

l , total water depth, nH  and velocities, ( )n

i
u

l  at time n  

to compute the EDFs, ( )eq
fα

l , from equation (4.1.4). 

Step 2. Calculate the distribution functions, ( )
fα

l , using equation (4.2.9) and impose bounce-back 

boundary conditions for each layer to ensure conservation of mass and momentum at the 

impermeable walls. 

Step 3. Calculate intermediate local water heights, *( ) 1n
h

+l , total water depth, * 1nH +  and 

velocities, *( ) 1n

i
u

+l  using equations (4.2.10) and (4.2.11). 
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Step 4. Update velocities ( ) 1n

i
u

+l  at time 1n +  by solving the linear system in equation (4.2.13). 

Step 5. Repeat Step 1 to Step 4 for next time step. 
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5 HPC LBM FOR SHALLOW WATER EQUATIONS VIA OPENMP 
 
5.1 Introduction 

To demonstrate the inherent parallelism feature of the LB model for higher performance 

computing, this study introduces OpenMP in a shared memory environment to test the scalability 

of the multi-layer LB code. OpenMP parallelization is a straightforward extension of serial 

coding, based on the simple recipe: i) add work distribution directives; ii) carefully control 

variable scoping; iii) if needed, choose the most suitable parallel loop scheduling; and iv) if 

needed, take care of false sharing of variables among threads. Although this approach works with 

some very simple codes, most programs parallelized in this way do not scale beyond a small 

number of processors (Massaioli and Amati 2002). A computational advantage of the LBM is 

that implementing streaming and colliding steps leads to a computational algorithm that is very 

suitable for parallelization in both shared and distributed memory environments. Massaioli and 

Amati (Massaioli and Amati 2002) implemented a two-dimensional LB algorithm using standard 

OpenMP directives and showed linear speedup to eight processors. The standard OpenMP 

directive uses an implicit control of the loop variable. In this study, implicit and explicit loop 

control approaches are compared in OpenMP for our multi-layer LB algorithm. The latter allows 

for cache optimization by dividing the computational domain of each processor into sub-

domains. 

5.2 Basic Code and Basic Parallelization 

As mentioned above, the LBM implementation comprises two steps: streaming and 

collision. The collision step is completely local as there are essentially no spatial dependencies 

among variables and lends itself very favorably to parallelization. The streaming step, however 

has spatial dependencies of magnitude 1 and is the most critical part of the solution procedure as 
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far as the parallelization is concerned. Moreover, it takes up to approximately 25% of the total 

running time which would yield a theoretical limit for the speedup (Wellein et al. 2006). The 

basic code  to be parallelized using OpenMP is written in FORTRAN 90 and follows the 

traditional practice of explicitly separating the collision and streaming operations in different 

subroutines so that the whole simulation can be pseudocoded as: 

do from first time step to last time step 

call collision 

call streaming 

enddo 

 
5.3 Basic Parallelization 

The pseudocode of the collision subroutine is given as: 

sub collision 

     for each grid point ( ),i j  

         compute ( ) ( )( ), ,eqf i j f i jα α αω −  for every direction α  

         update ( ),f i jα  

end for each 
 

The outermost loop, corresponding to the rightmost array index (i.e. to the y space coordinate) 

can be elected for parallelization, to reduce the overhead caused by entering/exiting work sharing 

constructs. A PARALLEL DO construct, with proper privatization of variables holding 

intermediate results, is enough. Each iteration has the same computational cost so that static 

scheduling can be used. No false sharing effect is present for non trivial grids. The non-locality 

of the streaming step requires more attention. To reduce memory occupancy, the streaming step 

is performed in place. As the pseudocode 

sub streaming 

for each direction α  

for each grid point ( ),i j  

move ( ),f i jα  to ( ),
i j

f i c j cα α α+ +  

end for each 
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end for each 

 

shows, different distribution functions move independently, but care must be taken depending on 

the length and direction of movement, so that the destination array element can be safely 

overwritten. Thus, every non zero component of cα  introduces a data dependency in the loop on 

the corresponding spatial index (loops are nested from greater to smaller stride, for cache 

efficiency reasons): 

do j = nyf,nyi,-1    do j = nyi,nyf 

do i = nxi,nxf    do i = nxf,nxi,-1 

( ) ( )2 2, , 1f i j f i j= −     ( ) ( )4 4, , 1f i j f i j= +  

( ) ( )6 6, 1, 1f i j f i j= + −    ( ) ( )8 8, 1, 1f i j f i j= − +  

enddo      enddo 

enddo     enddo 

 

do j = nyf,nyi,-1   do j = nyi,nyf  

do i = nxf,nxi,-1    do i = nxi,nxf 

( ) ( )1 1, 1,f i j f i j= −      ( ) ( )3 3, 1,f i j f i j= +  

( ) ( )5 5, 1, 1f i j f i j= − −     ( ) ( )7 7, 1, 1f i j f i j= + +  

enddo     enddo 

enddo      endd 

 

5.4 Code Optimization and Parallelization 

The streaming step is the obvious target for improving parallelization because it’s data 

dependencies and memory access patterns. The streaming step may be attacked by noting that it 

contains a number of dependencies that prevent an efficient parallelization in its form; however, 

most of these difficulties may be overcome by alternating among two copies of distribution 

functions which alternate as source and destination on odd and even time steps. This approach is 

commonly accepted as good approach on both serial and parallel implementation. Furthermore, 

the approach allows one simple loop that can be iterated over for both streaming and collision. 

The resulting pseudo-code is given as: 

do j=nyi,nyf 
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do i=nxi,nxf 

            ( ) ( )1 1, 1,odd even
f i j f i j= −  

            ( ) ( )2 2, , 1odd even
f i j f i j= −  

            ( ) ( )3 3, 1,odd even
f i j f i j= +  

            ( ) ( )4 4, , 1odd even
f i j f i j= +  

            ( ) ( )5 5, 1, 1odd even
f i j f i j= − −  

            ( ) ( )6 6, 1, 1odd even
f i j f i j= + −  

            ( ) ( )7 7, 1, 1odd even
f i j f i j= + +  

    ( ) ( )8 8, 1, 1odd even
f i j f i j= − +  

enddo 

enddo 

 

A simple schedule achieves a good parallelization. Despite the increase in memory 

occupancy, there is a substantial benefit in the cache usage pattern providing an overall 15% 

serial speedup. The other technique used in this application has been to combine all phases, i.e. 

streaming, density and collision operators, into a single computational loop, so as to achieve 

maximal data reuse. With this modification, the code structure becomes: 

do j=nyi,nyf 

do i=nxi,nxf 

            ( ) ( )1 1, 1,odd even
f i j f i j= −  

            ( ) ( )2 2, , 1odd even
f i j f i j= −  

            ( ) ( )3 3, 1,odd even
f i j f i j= +  

            ( ) ( )4 4, , 1odd even
f i j f i j= +  

            ( ) ( )5 5, 1, 1odd even
f i j f i j= − −  

            ( ) ( )6 6, 1, 1odd even
f i j f i j= + −  

            ( ) ( )7 7, 1, 1odd even
f i j f i j= + +  

    ( ) ( )8 8, 1, 1odd even
f i j f i j= − +  

compute ( ) ( )( )1 , ,eq oddf i j f i jα ατ −  for every α  

          update ( ),odd
f i jα  

enddo 

enddo 

 



 53 

Massaioli and Amati (2002) found that a simple STATIC schedule for the PARALLEL 

DO directive was favorable and reported that runs with the basic LBM code structure with 

DYNAMIC and GUIDED schedules were not very satisfactory. Bella et al. (2002) suggested 

strategies to improve performance and efficiency based on implementing a fused approach using 

two copies of distribution function arrays and a static schedule alternating the source and 

destination arrays. This approach has been shown to improved parallelism by removing the 

spatial dependencies and has been proven to increase efficiency on both serial and parallel 

implementations. Bella et al. (2002) reported increased speedup and efficiency but only reported 

up to 6 processors. They also failed to report on how the size of the domain affects the parallel 

performance. 

5.5 Cache Optimization 

Obtaining data from the main memory in every computational cycle is time-consuming 

and the CPU remains idle during this process. If the data were being accessed from cache in 

every computational cycle, time consumed by data transfer would be much less. To obtain good 

performance on cache-based computer architectures, the computational algorithms are required 

to divide the data (computational domain) into blocks (sub-domains) that can fit into cache and 

then be utilized repeatedly. Not all algorithms are amenable to this kind of cache optimization 

since data dependencies disallow updating sub-domains separately. The lattice Boltzmann 

algorithm has only nearest neighbor data dependencies and is highly amenable to cache 

optimization. 

5.6 Cache Optimization for LBM Using OpenMP 

 To implement the LBM algorithm efficiently with optimal use of cache, the grids need to 

be divided into subsections that fit in cache. Performing computations separately for each 
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subsection, for several time steps, achieves cache optimization. A standard approach of 

implementing the LBM algorithm is based on the OpenMP’s PARALLEL region directive. The 

OpenMP PARALLEL DO directive uses an implicit loop control. Although simple to 

implement, the OpenMP PARALLEL DO directive has overhead caused by opening and closing 

of fork/join parallel regions each time step. It also has the disadvantage of not being able to 

control cache asscess.  An explicit loop control technique is implemented to reduce the over 

head. This also has the added benefit of ensuring the same processor assignment in the parallel 

region and allows cache optimizations to be applied. This approach also is straightforward to 

extend to MPI programs for distributed memory systems. The domain is partitioned evenly over 

the i  direction using an explicit loop schedule. This approach also keeps the same processor for 

each partition. Loop blocking is applied for cache optimization on each processor. This results in 

the final pseudo code shown below. The parallelization is load balanced for the periodic and 

simply boundary conditions considered in this study. OpenMP PARALLEL SECTIONS 

directive is used to ensure the processors stay synchronized inside a time step.  

do jj=1,ny,jblksize 

do ii=ibeg,iend,iblksize 

 

do j=jj,min(ny, jj+jblksize-1) 

do i=ii,min(iNx, ii+iblksize-1) 

            ( ) ( )1 1, 1,odd even
f i j f i j= −  

            ( ) ( )2 2, , 1odd even
f i j f i j= −  

            ( ) ( )3 3, 1,odd even
f i j f i j= +  

            ( ) ( )4 4, , 1odd even
f i j f i j= +  

            ( ) ( )5 5, 1, 1odd even
f i j f i j= − −  

            ( ) ( )6 6, 1, 1odd even
f i j f i j= + −  

            ( ) ( )7 7, 1, 1odd even
f i j f i j= + +  

    ( ) ( )8 8, 1, 1odd even
f i j f i j= − +  

compute ( ) ( )( )1 , ,eq oddf i j f i jα ατ −  for every α  



 55 

          update ( ),odd
f i jα  

 

enddo 

enddo 

 
enddo 

enddo 
 

There is more than one choice of domain decomposition for three dimensional data. The 

current parallel LB algorithm is implemented by decomposing the entire flow domain into 

several computational domains divided along one horizontal flow direction, i.e., the lateral flow 

direction, according to the number of processors. The choice of one horizontal flow direction is 

made to restrict data communication in one direction. This decomposition allows the LB 

equation to be calculated with minimal communication across processor domains to retain the 

parallel benefits of the LBM. The main key is that the domain is not decomposed in the vertical 

(layer) direction. This allows the LB equation and the implicit step to remain completely local in 

layers to each processor and does not require the tridiagonal solver for equation (4.2.13)  to be 

parallelized. An added benefit is that the computational domain of each processor is further 

divided into sub-domains to allow for cache optimization.  

5.7 Parallel Speedup and Efficiency 

Parallel performance is often evaluated by two factors: parallel speedup and efficiency. 

The parallel speedup is the ratio of computation times for one thread to the total number of 

threads (processors) used. The efficiency is the average speedup over the total number of threads. 

These two factors are used to evaluate the HPC in the following numerical simulations of wind-

driven circulation in a square lake of dimensions 64000 64000m m×  with a flat bottom. The 

multi-layer LB method was implemented on a shared memory HPC system, an AIX v5.3 

constellation from IBM with 1.9 GHz IBM POWER5+ processors. The initial water depth is 10 
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m. The lake is discretized into a grid of size 1024 1024 10× ×  corresponding to 10 layers and 

62.5x y m∆ = ∆ = . The initial local water height is 1 m  for each layer and the initial flow 

velocity is zero. The LBM parameters are 0.501τ = , 8 st∆ = , and 7.8125 /e m s= . The 

physical parameters are 20.1W

iz
N mτ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 

20.01 m sµ = , 0.001 m sκ = , and 10
c

f s
−= . The wind direction is along positive x  direction. 

Therefore, the wind velocity is 7.4536
Wx

U m s=  and 0
Wy

U m s= . The initial condition for the 

distribution functions are the EDFs in equation (4.1.4) with the static water ( ( ) 0=u
l ) and the 

initial local water heights. Free-slip bounce-back boundary conditions are applied to the four 

vertical side walls of the lake. The simulations were run for 1000 time steps.  

Table 5.1 shows the execution time, speedup and efficiency for the implicit and explicit 

loop controls that were tested up to 16 processors. It demonstrates the importance of cache 

optimization in LBM. Optimizing cache-use on each thread based on dividing the processor 

domains into sub-domains improves the speedup and efficiency. The explicit loop control 

implementation takes slightly longer than the implicit approach; however, the parallel 

performance of the implicit approach starts to break down past 12 processors. The speed up and 

efficiency of the implicit approach begins to decline after 8 threads while the explicit approach 

continues to scale up to 16 threads. 
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Table 5.1: Execution Time (min), Speedup, and Efficiency for Implicit and Explicit Loop 
Control Implementations on a 1024 1024 10× × grid. 

 
 

Implicit Loop Control Explicit Loop Control 

Threads Execution 

Time (min) 

Speedup Efficiency 

Execution 

Time (min) 

Speedup Efficiency 

1 40.408 1.00 1.00 45.978 1.00 1.00 

2 20.260 1.99 0.99 22.156 2.00 1.00 

4 10.096 4.00 1.00 11.698 3.99 0.98 

8 5.468 7.39 0.92 6.005 7.54 0.94 

12 4.335 9.32 0.78 3.946   11.65 0.97 

16 6.306 6.40 0.40 3.076 14.94 0.93 
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6 HPC LBM FOR SHALLOW WATER EQUATIONS VIA GPU 

ACCELERATION  
 
6.1 Introduction 

The computational advantage of the LBM is that implementing streaming and colliding 

steps leads to a computational algorithm that is very suitable for parallelization on both GPU and 

CPU based architectures. However, the implementation details and techniques on these two 

architectures for code optimization are completely different. Increasing CPU parallel 

performance relies on optimal data caching (Tubbs and Tsai 2009) when increasing parallel 

performance on GPUs relies on memory access patterns and latency (Tolke and Krafczyk 2008; 

Walsh et al. 2009).  

The GPU is specialized for graphics rendering tasks, which require computationally-

intensive, highly parallel computations with much more transistors devoted to data processing 

compared to traditional CPUs. More specifically, the GPU is especially well-suited to address 

problems that can be expressed as data-parallel computations with high arithmetic intensity 

(NVIDIA 2008). The data-parallel computations require the same program instructions to 

execute on many data elements in parallel. The arithmetic intensity is the ratio of arithmetic 

operations to memory operations.  

Modern GPUs contain hundreds of arithmetic units (stream processors) to provide 

tremendous acceleration for numerically intensive scientific applications. The latest generation 

of high-end video cards offer considerable computing power using their 100-200 on-card 

processors, 0.3-1.0 plus GB of RAM and fast inter-processor communications. Recently, the use 

of the GPU to accelerate non-graphics computations has drawn much attention (Bolz et al. 2003; 

Kruger and Westermann 2003; Buck 2005). This is due to the fact that the computational power 

of GPU’s has exceeded that of PC-based CPUs by more than one order of magnitude while being 
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available for a comparable price. Furthermore, GPU’s have become a low cost high-performance 

computing (HPC) solution as GPU video cards have become standard in most desktop and laptop 

computers, and can eliminate the cost of expensive cluster computing alternatives for HPC tasks.  

  One promising application of this GPU computing capability is through MATLAB and 

MATLAB mex functions. With a properly developed mex function, the MATLAB user friendly 

interface can be used to perform behind the scenes parallel computations on the GPU. The GPU 

becomes a co-processor for the personal computer. While the MPI implements a means of 

parallel computing on a cluster of PC’s, NVIDIAs’s “Compute Unified Device Architecture” 

(CUDA) implements a means of computing on the large number of processors of a GPU. MPI is 

employed for complicated computations, but is often limited by inter-computer communications, 

while CUDA is employed for massive number of simple computations using the fast 

communication between many processors. Both approaches have their strengths and weaknesses. 

The LBM and MATLAB performance on vectorized codes appear to be ideally suited for GPU 

computation. 

Computation on a GPU is basically a three step process: (1) Copy data to the GPU 

memory, (2) Execute code (the “kernel) to process that data, and (3) Copy the results back from 

the GPU memory. In general, code should be designed to minimize steps (1) and (3), which 

frequently limit the overall speed of the calculations. CUDA calculations usually start to 

outperform ordinary CPU calculations for large-size problems. GPU development is still in its 

infancy and the techniques and approaches may be still raw but promising. As interest continues 

to peak, more tools and functionality should become available.  

To investigate the LBM code performance on GPU architectures for shallow water flow 

and mass transport, this study uses the Jacket GPU engine for MATLAB® on a single GPU 
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workstation. The Jacket GPU engine for MATLAB® is built on the Compute Unified Device 

Architecture (CUDA), which is a hardware and software architecture for issuing and managing 

computations on the GPU as a data-parallel computing device without the need of understanding 

and programming graphics rendering languages (NVIDIA 2008). CUDA technology enables the 

GPU to solve computationally intensive numerical modeling applications in a simplified 

programming interface, making it more accessible to computational scientists. Jacket is a GPU 

engine for MATLAB® built on NVIDIA’s® CUDA technology. It enables standard MATLAB® 

code to run on the GPU. Jacket is a complete and transparent system, automatically making 

memory transfer and execution optimization decisions (Accelereyes 2009). Jacket GPU 

parallelization is a straightforward extension of serial CPU coding in MATLAB®, based on the 

simple recipe: i) vectorize MATLAB® code; ii) minimize memory transfers between host (CPU) 

and device (GPU); and iii) identify and use the appropriate processor for serial (host) vs. parallel 

(device) computations (Accelereyes 2009). In this study, the parallel performance of our LB 

algorithm and how it scales with increasing problem size is demonstrated using Jacket. This 

study specifically implements LBM on NVIDIA GPU architectures. 

6.2  NVIDIA GPU Platform 

The simulations conducted in this study are performed using a single workstation 3.0 

GHz Intel® Core™2 Extreme quad core with an NVIDIA® Tesla™ C1060 Computing 

Processor. The NVIDIA® Tesla™ C1060 Computing Processor contains 240 stream processors 

running at 1.3 GHz, which has a peak performance of 933 GFLOPs. While the memory clock is 

800 MHz and the memory size is 4 GB, the memory interface is 512 bit and the memory 

bandwidth is 102 GB/sec. The operating system used is Microsoft Windows XP.  MATLAB® 
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version 7.7.0.471 (R2008b) is used along with Jacket version 1.2. This version of Jacket uses 

NVIDIA’s CUDA version 2.3.  

The internal structure of a Tesla™ C1060 Computing Processor consists of 30 

multiprocessors (NVIDIA 2008), with eight stream processors per multiprocessor. Each 

multiprocessor has 16 KB of shared memory accessible by the eight stream processors. 

Computations on the GPU are organized into kernels (GPU programs) to be executed by multiple 

threads in parallel. Threads are organized into groups called thread blocks. All threads within a 

thread block execute the same kernel and communicate with each other through local 

multiprocessor shared memory. They synchronize their computation with built-in 

synchronization instructions. Usually, multiple thread blocks are employed because the hardware 

places constraints on the maximum number of threads in one single block. Thread blocks cannot 

synchronize executions as easily as threads within a single block can, nor do thread blocks 

communicate between their local shared memories. To communicate, the thread blocks must 

access global device memory on the GPU card. This constraint limits thread-to-thread 

communication and restrains the amount of work that can be done in one kernel invocation.   

Although the GPU architecture places constraints on inter-thread communication, it is 

specifically designed to optimize the throughput of a single set of instructions operating 

simultaneously on a large number of data sources. To obtain good performance on GPU-based 

computer architectures, the computational algorithms based on structured grids or data are 

required to divide the data (computational domain) into blocks (sub-domains) that can fit into 

thread blocks and maximize memory access patterns to achieve high throughput. The LB 

algorithm has only nearest neighbor data dependencies and is highly amenable to GPU 

architectures. 
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6.3 NVIDIA CUDA 

The NVIDIA CUDA technology is a fundamentally new computing architecture that 

enables the GPU to solve complex computational problems. CUDA (Compute Unified Device 

Architecture) technology gives computationally intensive applications access to the processing 

power of NVIDIA graphics processing units (GPU’s) through a new programming interface. 

Software development is strongly simplified by using the standard C language. The CUDA 

Toolkit is a complete software development solution for programming CUDA-enabled GPU’s. 

The Toolkit includes standard FFT and BLAS libraries, a C-compiler for the NVIDIA GPU and 

a runtime driver. CUDA technology is currently supported on the Linux and Microsoft Windows 

XP operating systems. 

6.4 AccelerEye’s Jacket 

Jacket is a GPU engine for MATLAB that enables standard MATLAB code to run on the 

GPU, connecting the user-friendliness of MATLAB directly to the speed and visual computing 

capability of the GPU (Accelereyes 2008). MATLAB GPU computing with Jacket starts at the 

most basic level through the replacement of low-level MATLAB data structures which normally 

reside on the CPU with data structures that reside on the GPU. This replaces the lowest level of 

MATLAB’s CPU-bound computation engine, moving the work MATLAB would normally do 

on the CPU to the GPU. Jacket is built on NVIDIA's CUDA technology. Jacket Beta version 0.3-

20080710 on a 32 bit Windows XP with MATLAB R2007b is used.  Jacket is run on the 2.0 beta 

version of the CUDA toolkit for Windows XP, which uses version 1.1 compute capabilities.  

Jacket-enabled MATLAB scripts achieve speed improvements in the range of 2x - 10x 

improvements, and in some cases up to 100x improvements, over equivalent CPU versions. 

While Jacket accelerates MATLAB functions and computations at a lower level, the overall 
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speedup of an algorithm depends on the nature of the algorithm. The LBM has a very simple 

implementation consisting of only local calculations (collisions) and nearest neighbor memory 

transfers (streaming), which makes it a great candidate to be implemented both on the GPU and 

in MATLAB.  

6.5 Optimizing MATLAB GPU Performance 

Implementing algorithms on the GPU using Jacket requires certain considerations to 

optimized performance. Both MATLAB and Jacket perform best on vectorized code. A 

vectorized code can make it easy to determine which parts of an algorithm is inherently serial 

and parallel. Both MATLAB and Jacket take advantage of the inherent parallelism of the 

MATLAB’s scripting M-language which is extremely powerful when utilized wisely. A good 

understanding of the memory dependencies of an algorithm is necessary as CPU’s are inherently 

serial computing devices and GPU’s are inherently parallel computing devices. For small or 

serial operations, computations on the CPU are likely to outperform computations on the GPU. 

For large or parallel operations, the GPU is likely to outperform the GPU. In a program, one can 

control which segments of code are run on each device through the casting operations. Each 

casting operation to and from the GPU pushes or pulls data back and forth from CPU memory to 

GPU memory. Excessive memory transfers should be avoided as it will reduce the performance 

of an application. The Jacket software minimizes these memory transfers automatically in 

normal operation. However, care must be taken in implementing an algorithm. Fortunately, the 

LBM can be completely vectorized and therefore all computations can be carried out on the 

GPU. Transfers to CPU memory are only necessary for outputting solutions at desired intervals. 

Currently a transfer to CPU is necessary for MATLAB plotting routines, however, due to the 

nature of the GPU plots can be created through OpenGL. 
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6.6 Computational Aspects 

The basic code to be parallelized on the GPU using Jacket is written in MATLAB’s M-

Language and follows the same traditional practice of explicitly separating the collision and 

streaming operations.  The solution algorithm has not changed. However, in order to take 

advantage of the GPU and MATLAB, the codes must be vectorized. Due to vectorization, the 

solution procedure focuses on three main steps: the calculation of local macroscopic variables 

from distribution functions, the collision step and the streaming step. Two copies of the 

distribution functions are necessary to allow the code to be vectorized. Other than that, the 

computations and procedures remain the same as the FORTRAN 90 code. Again, the whole 

simulation can be pseudo-coded as: 

For time =first time step: last time step 

Compute Macroscopic Variables 

Collision Step 

Streaming Step 

End 

 

The vectorized version of the code is straightforward and very simple. The Jacket GPU engine 

makes translating the code on the GPU as simple as casting the variables to the GPU. From 

there, all calculations are performed on the GPU. Since the LBM is inherently parallel, there is 

no need to cast variables back to the CPU until the end of the simulation or when variables are 

written to file. 

6.7 Parallel Performance 

The parallel performance on the GPU is investigated in this section.  Parallel speedup is 

used to evaluate the HPC in the following numerical simulations of wind-driven circulation in a 

rectangular lake of dimensions 170 60km km×  with a flat bottom. The parallel performance of 

the GPU is based on arithmetic intensity and data access patterns (NVIDIA 2008); therefore, the 
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parallel performance is investigated based on how the speed up scales with increasing problems 

size. The multi-layer LB method was implemented on a single workstation in MATLAB. The 

initial water depth is 10 m. The lake is discretized into a grids of size 10 171 61× ×  , 

10 341 121× × , 10 681 241× × , and 10 1361 481× × corresponding to 10 layers and 

=1000 m, 500 m, 250 m, and 125 mx y∆ = ∆ , respectively. The initial local water height is 1 m  

for each layer and the initial flow velocity is zero. The LBM parameters are 0.501τ =  and 

20 /c m s= , with t∆  calculated as t c x∆ = ∆ . The physical parameters are 

20.1W

iz
N mτ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 20.01 m sµ = , 0.001 m sκ = , 

and 10
c

f s
−= . The wind direction is along positive x  direction. Therefore, the wind velocity is 

7.4536
Wx

U m s=  and 0
Wy

U m s= . The initial condition for the distribution functions are the 

EDFs in equation (4.1.4) with the static water ( ( ) 0=u
l ) and the initial local water heights. Free-

slip bounce-back boundary conditions are applied to the four vertical side walls of the lake. The 

simulations were run for a simulation time of 30 hours where steady state has been achieved. The 

average time per time step is investigated to make a fair comparison on computational effort.  

Table 6.1 shows the grid size, execution time per time step and speedup for the GPU over 

a single core of the CPU in MATLAB. It demonstrates the importance arithmetic intensity in 

LBM performance on the GPU. If the number of lattice nodes is sufficiently high, the 

computations will out weigh the data access and communication yielding a high arithmetic 

intensity. The multi-layer LB algorithm yields approximately 2X speed up on the smallest 

number of lattice nodes with the maximum speedup of approximately 22X on the largest number 

of lattice nodes. 
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Table 6.1: The grid size, execution time per time step and speedup for the GPU over a single 
core of the CPU in MATLAB 

 
CPU GPU Grid 

Size Execution Time per time step(s) Execution Time per time step (s) 

Speedup 

1 0.44 0.19 2.23 

2 3.04 0.30 10.13 

4 14.19 0.95 14.92 

8 56.60 2.57 22.00 
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7 NUMERICAL EXAMPLES 
 
7.1 Dam Break Flow Over A Forward Facing Step 

A two-dimensional dam-break problem over a forward facing step is considered 

(Benkhaldoun et al. 2007). The computational domain is a rectangular channel that is 12 m long 

and 6 m wide. The dam site and the step are located at distance 6=l  m from the upstream 

boundary. The bottom bed is assumed to be frictionless. The bed elevation is 0 m for x ≤ l  and 1 

m for x > l . The initial water depth is 5 m for x ≤ l  and 1 m for x > l . The initial velocity is 

zero everywhere.   

This test example is interesting since it includes most of flow structures such as shocks, 

rarefaction waves and contact discontinuities. The present study is limited to subcritical flow. 

This problem is formulated using the shallow water equations with no viscosity terms included 

(Benkhaldoun et al. 2007). Therefore, the viscosity terms, which can be viewed in the case as 

numerical viscosity, should approach zero in order not to smear the solution near the shock. This 

requires the relaxation time parameter, τ , to be close to the limit of 0.5  in the SRT-LBM and 

requires the relaxation rates 7s  and 8s  approaching 2.0 due to equation (3.3.11) in the MRT-

LBM. This test aims to compare the performance and stability of the proposed GLBE and LBGK 

for solving the shallow water equations with very small kinematic viscosity.  

 To investigate the stability and accuracy for different grid size, the domain is discretized 

into grids of 201 101× , 401 201× , 801 401× , 1601 801× , 2001 1001× , 2401 1201× , and 

2801 1401×  lattices. The corresponding lattice size for the first three grids is ∆x = ∆y = 0.06 m , 

∆x = ∆y = 0.03 m , and ∆x = ∆y = 0.015 m , respectively. The last four fine grids have the same 

grid size ∆x = ∆y = 0.0075 m . Therefore, the domain is increased to keep the constant grid 

spacing. A constant lattice speed  = 16 m sc  is used. To achieve a kinematic viscosity of 
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6 21 10v m s−= × , the relaxation time parameter in the SRT-LBM is calculated using equation 

(3.3.13): τ = 0.500003125, τ =0.50000625, τ = 0.5000125, and τ = 0.500025 for the four 

different x∆ . The relaxation rates s 1α τ=  were used for the BGK and 4 6 7 8s s s s 1 τ= = = = , 

and 1 2 7s s s 0.6= = −  for the MRT.  

The shallow water equations were run up to time t = 0.5 s. The total execution time and 

speedup for CPU and GPU implementations of the MRT-LBM are shown in Table 7.1. For the 

smallest grid ( 201 101× ), the GPU code takes longer time than the CPU code. This is due to 

communication overhead between grid blocks on the GPU that is larger than the actual 

computational cost for small grids. As the grid size increases, the computational cost becomes 

larger than the communication overhead which results in larger speed up. For the largest grid 

( 2801 1401× ), the CPU code executed in 2164.1 s while the GPU code executed in 91.11 s , 

resulting in 23.75 times speed up. 

The water free surface along the center of the channel at time t = 0.5 s is illustrated in 

Figure 7.1. The results are compared for the BGK and MRT collision operators for grid spacing 

∆x = ∆y = 0.06 m  and∆x = ∆y = 0.03 m . The exact solution is calculated using the procedure 

from (Alcrudo and Benkhaldoun 2001). It is clear that BGK solutions are unstable due to τ  very 

close to the linear stability limit of 0.5 (Servan-Camas and Tsai 2009). Using MRT gives the 

ability to tune the relaxation rates, 1s  and 2s , corresponding to the non-conserved energy and 

energy squared moments. The spurious oscillations are suppressed in the MRT. In Figure 7.2, the 

water free surface (
b

h z+ ), the water head (
2

2
u

b g
h z+ + ), the Froude number ( Fr ), and the water 

discharge ( hu ) of the MRT results are compared well to the exact solution. The results shown 

here compare favorably with several studies in the literature (see for example, (Benkhaldoun et 
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al. 2007), (Tseng 2004)). It is noted that errors in the discharge near the discontinuity are 

expected since the correct capturing of the water discharge is more difficult than the water height 

in this class of test cases (Benkhaldoun et al. 2007). Nevertheless, the MRT-LBM for shallow 

water is inherently a well-balanced scheme with correct forcing terms and does not exhibit large 

errors near the discontinuity. 

Table 7.1: Total Execution Time (s) and Speedup for CPU and GPU Implementations of the 
MRT-LBM, Example 7.1. 

 
Execution Time (s) 

Grid Size 
CPU GPU 

Speedup 

201  101×  1.71 3.72 0.46 

401  201×  10.15 7.88 1.29 

801  401×  80.54 16.55 4.87 

1601  801×  640.69 45.24 14.16 

2001  1001×  1005.50 54.18   18.56 

2401  1201×  1430.20 70.29 20.35 

2801  1401×  2164.10 91.11 23.75 

 

7.2 Flow of Partial Dam Break 

Dam break problems present an important flow phenomenon in civil engineering. The dam 

break problem is an important benchmark to validating shallow water solvers ability to correctly 

model shocks or hydraulic jumps that show occur in shallow water flows (Alcrudo and Garcia-

Navarro 1993; Chaudry 1993; Ambrosi 1995; Fagherazzi et al. 2004).  A partial dam break 

problem first presented in (Fennema and Chaudhry 1990) is considered. The partial dam-break 

presents rapid opening of a sluice gate with non-symmetric breach. The computational domain is  
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Figure 7.1: Free surface comparisons of subcritical flow over a forward facing step at time t = 
0.5 s using the BGK and MRT collision operators for grid spacing (a)∆x = ∆y = 0.06 m, and 

(b)∆x = ∆y = 0.03 m. 
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Figure 7.2: Comparisons of MRT-LBM simulation results to the exact solutions for subcritical 
flow over a forward facing step at time t = 0.5 s for (a) free surface, (b) water head. 
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Figure 7.2: Comparisons of MRT-LBM simulation results to the exact solutions for subcritical 
flow over a forward facing step at time t = 0.5 s for (c) Froude number, and (d) discharge. 
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200 m × 200 m , with a horizontal bottom. A dam, with 10m in thickness, is located in the 

middle of the domain. The initial upstream and downstream water depth is 7.5 m  and 5 m , 

respectively. The breach is 75 m  in length, which has distances of 30 m  from the left bank and 

95 m  from the right. 

The domain is discretized into a grid of size 201  201×  lattices corresponding to 

x = y = 1 m∆ ∆ . A constant lattice speed  50 m sc =  is used. The single relaxation time 

parameter is 80.5 3 10τ −= + ×  and the corresponding relaxation rate is 7
7 2.0 1.2 10s

−= − × . To 

ensure stability and accuracy, the remaining relaxation rates are 1 2 4 6 1.8s s s s= = = =  and  

8 7s s= . Free slip (tangential) bounce back boundary conditions are applied to the walls. At 

0t = s, the flow is at rest and the dam fails. Water is released through the non-symmetric breach. 

The MRT-LBM results at 7.2t = s are shown in Figure 7.3. A bore wave is formed that 

propagates downstream while spreading laterally. A depression wave moves upstream. Both 

waves are well resolved. The water depth and 
x

u  profiles at 130 mY =  are shown in Figures 

7.3a and 7.3b, respectively. The flow separates from the truncated dam walls downstream of the 

breach creating rotating eddies as shown in Figure 7.3c. The initial discontinuous condition 

presents challenges to numerical methods and is widely used to test its capability for 

discontinuous flows. The use of an asymmetric dam break problem will be able to validate that 

the correctly interacts with boundaries. This is important for shallow water flow problems with 

discontinuities when complex and irregular boundary conditions are encountered. Often, a high-

resolution Riemann-solver based method is required to produce an accurate solution to the 

problem. Fagherazzi et al. (2004) used a discontinuous Galerkin (DG) FEM to model the partial 

dam break problem. There is no analytical reference solution for this test case, but in the 

literature, numerical results of various studies are available ((Fennema and Chaudhry 1990), 
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(Duan and Liu 2007)). Computed water surface elevation and flow filed compare favorably with 

the computed results of these studies. The results demonstrate the LBM ability to solve for the 

flow velocity field and discontinuous water surface without the need for a Riemann solver. 

To illustrate the GPU performance on this problem, the grid resolution was increased 10  

times in each direction to a grid size of 2001 2001× and run on the CPU and GPU. The average 

computing time per time step for grid size 201 201×  was 0.022 s  on the CPU and 0.037 s  on the 

GPU. The average computing time per time step for grid size 2001 2001×  was 2.49 s  and 

0.12 s  on the CPU and GPU, respectively, resulting in a speedup of 21.63. 

7.3 Mass Transport of Point Continuous Injection   

The TRT-LBM code is verified on the two-dimensional mass transport in an infinite pool 

under uniform flow and depth with velocity-dependent dispersion coefficients. The concentration 

is continuously injected at a single point with a constant rate throughout the entire depth of the 

water column. The analytical solution for the concentration is (Fetter 1998): 

2 2
0

0

( U )
( , , ) exp

4 44

t

xx yyxx yy

xM y d
C x y t

D DD D

θ

θ

θ θ

θ θ θπ

=

=

 −
= − −  

 
∫ , (8.1.1) 

where M  is the mass injection rate. 0U  is the uniform flow velocity in x -direction. 

xx LD h κ= u  and yy TD h κ= u  are obtained given 
z

C g=  and 0
m

D = .  

In the numerical experiments, water depth is 1 mh = , the mass injection rate is 

215 kg m sM = , and the uniform velocity is 0U 0.45 m s= . The simulation domain was 

3000 m × 1000 m . Given 2.22
L

κ = , the experiments were run for anisotropic dispersion ratios 

xx yy
D D = 5, 10, and 25. Six different grid sizes are considered: 451 151× , 901 301× , 1801 601× ,  
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Figure 7.3: Two-dimensional partial dam break simulation results for  = 7.2 st . (a) water depth 
profile at 130Y = m, (b) 

x
u  profile at 130Y = m. 
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Figure 7.3: Two-dimensional partial dam break simulation results for  = 7.2 st . (c) water 
surface, and (d) velocity field. 
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2401 801× , 3001 1001× , and 3601 1201× . The anti-symmetric relaxation time 0.85
a

τ =  is 

selected with the symmetric relaxation time parameter fixed to 0.7381
s

τ = . 

Figure 7.4 shows the comparison of the TRT-LBM solutions along the x-axis and 

contours against the analytical solutions for grid size 3601 1201× . The results show excellent 

agreement.  Table 7.2 lists the average execution times per 1000 time steps for the TRT-LBM. 

The performance exhibits the same behavior with the speedup less than one for smaller grids and 

maximum speed up on the largest grid size. The average execution time per time step was 1.91 s  

and 0.11 s  on the CPU and GPU, respectively, resulting in a speedup of 17.74 . The speed up is 

smaller for the TRT-LBM for mass transport compared to the MRT-LBM for shallow water 

because the computational intensity is lower for the TRT-LBM.  

Table 7.2: Average Execution Time (s) per 1000 Time Steps and Speedup for CPU and GPU 
Implementations of TRT-LBM, Example 7.2. 

 
Execution Time (s) 

Grid Size 
CPU GPU 

Speedup 

451  151×  27.43 45.22 0.61 

901  301×  115.32 44.10 2.62 

1801  601×  481.12 48.45 9.93 

2401  801×  837.46 62.24 13.46 

3001  1001×  1300.43 83.50   15.57 

3601  1201×  1910.64 107.71 17.74 
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Figure 7.4: Concentration breakthrough curves and contours for anisotropy ratios: /

L T
κ κ = 5 for 

(a) and (b), /
L T

κ κ = 10 for (c) and (d), and /
L T

κ κ = 25 for (e) and (f). 
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7.4 Mass Transport in Partial Dam Break 

The hypothetical partial dam break problem presented in section 7.2 is extended to 

include solute transport. The computational domain is 800 m × 200 m  with a horizontal bottom. 

The dam site is at x = 100 m . The initial upstream and downstream water depths are 10 m  and 

5 m , respectively. The initial upstream and downstream concentrations are 1 and 0 , 

respectively. The breach is located in the same position as in section 7.2. 

The domain is discretized into a grid of size 1601  401×  lattices corresponding to grid 

spacing, x = y = 0.5 m∆ ∆ . A lattice speed  200 m sc =  is used. For the shallow water solver, a 

relaxation time parameter of 80.5 3 10τ −= + ×  and the corresponding relaxation rate 

7
7 2.0 1.2 10s

−= − ×  are used. To ensure stability and accuracy, the remaining relaxation rates are 

1 2 4 6 1.8s s s s= = = =  and 8 7s s= . For the transport solver, the anti-symmetric relaxation time 

parameter 0.8
a

τ =  and the symmetric relaxation time parameter 0.7778
s

τ =  are used. The 

longitudinal and transverse coefficients are 5.93
L

k =  and 0.23
T

k =  (Elder 1959). Free slip 

(tangential) bounce back boundary conditions for the flow problem and impermeable bounce 

back boundary conditions for the transport problem are applied to the walls. The initial flow is at 

rest.  

The MRT-LBM results for water depths with grid spacing, x = y = 0.5 m∆ ∆ , at 10 st = , 

30 st = , 60 st = , and 90 st =  are shown in Figure 7.5. The maximum Peclet number is 

max max / 50
yy

Pe U x D= ∆ = . Again, a bore wave is formed that propagates downstream while 

spreading laterally; and a depression wave moves upstream. The bore is allowed to propagate out 

of the domain with no reflection. The separated flow and rotating eddies propagate at a much 

slower rate than the bore. The TRT-LBM results for concentration with grid spacing, 
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x = y = 0.5 m∆ ∆ , at  10 st = ,  30 st = ,  60 st = , and  90 st =  are shown in Figure 7.6. A 

plume is formed that propagates downstream while spreading laterally. In the early stages, up to 

 30 st = , the plume is transported due to the initial surge where the flow is yet dominated by 

downstream velocities. In the latter stages, after  30 st = , the downstream velocities due to the 

surge begin to subside and the circulation velocities become dominated. At this point, the solute 

ceases to advect downstream and begins to mix in the lateral directions.  

To investigate the GPU performance on the extended partial dam break problem, the 

domain was discretized into different grids: 401 101× , 801 201× , 1601 401× , 2401 601× , 

3201 801× , and 3601 901×  lattices with aforementioned grid spacing, lattice speed and 

relaxation time parameters. Table 7.3 shows the execution time per 1000 times steps and speed 

up for combined MRT-LBE for shallow water and TRT-LBM for transport.  

Table 7.3: Execution Time (s) per 1000 Times Steps and Speedup for CPU and GPU 
Implementations of MRT-LBM for Shallow Water and TRT-LBM for Transport, Example 7.3. 

 
Execution Time (s) 

Grid Size 
CPU GPU 

Speedup 

401  101×  82 144 0.57 

801  201×  355 146 2.38 

1601  401×  1422 149 9.54 

2401  601×  3188 160 19.93 

3201  801×  5168 247   21.00 

3601  901×  6607 305 21.66 
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The performance exhibits the same behavior with speedup less than one for largest grid spacing 

and maximum speed up on the smallest grid spacing. For the smallest grid spacing, 

x = y = 0.222 m∆ ∆ , corresponding to the largest grid size 3601 901× , the average execution 

time per time step was 6.61 s  on the CPU and 0.31 s  on the GPU, resulting in a speedup of 

21.66 . The entire simulation took 32.66 hours on the CPU and 1.55 hours on the GPU for time 

up to 90 s. 

7.5 Circulation in Rectangular Lake 

The multi-layer LB model is verified using wind-driven, density-driven and a combination of 

wind- and density-driven circulation in a rectangular lake of dimensions 3400 1400m m×  with 

and a flat bottom. The initial water depth is 65 m, where an analytical solution for the horizontal 

velocity profile in depth is available (Shankar et al. 1997). The rectangular lake is discretized 

into 501 206×  lattices in the planar direction corresponding to 6.8x m∆ =  and 6.8y m∆ = . The 

vertical direction is discretized into five, ten and twenty layers for each test case corresponding 

to an initial local water height of 8 m , 4 m , and 2 m  respectively. The LBM parameters are 

0.17 st∆ =  and 40 /c m s= . To achieve a kinematic viscosity of 6 21 10v m s−= × , the relaxation 

time parameter in the SRT-LBM is calculated using equation (3.3.13): -7
τ 0.5= 3.8147 10− × . 

The relaxation rates 4 6 7 8s s s s 1 τ= = = = , and 1 2 7s s s 0.6= = −  were used. The bed friction is 

based on a linear friction law. The initial conditions are applied by initializing the distribution 

functions to an EDF with the static water depth and local water heights, i.e. ( ) ( )eq
f fα α=

l l , where 

( ) inith H M=
l  and ( ) 0=u

l  . Free-slip bounce-back boundary conditions are applied to the four 

vertical side walls of the lake. The numerical simulation was carried out up to the establishment 

of a steady state two-dimensional circulation. The 
x

u  velocity profile at the center of the lake,  
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(c)      (d) 

Figure 7.5: Water depth for extended partial dam break simulations at (a) t = 10 s, (b) t = 30 s, 
(c) t = 60 s, and (d) t = 90 s. 
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Figure 7.6: Concentration distributions for extended partial dam break simulations at (a) t = 10 s, 
(b) t = 30 s, (c) t = 60 s, and (d) t = 90 s. 
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 = 1700 m,  = 700 mx y , was compared against the analytical solution of Navier-Stokes 

equations assuming the surface slope and the horizontal velocity are constant in the longitudinal 

direction (Shankar et al. 1997). The vertical eddy viscosity is also assumed to be constant in the 

vertical direction.  

The wind-driven circulation validation is performed for two different wind stress values, 

20.03W

iz
N mτ =  and 20.3W

iz
N mτ = . The physical parameters for this case are, 0xρ∂ ∂ = , 

0yρ∂ ∂ = , 31025 kg mρ = , 31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = ,  

The wind direction is along the positive x  direction. The wind velocities are 0.7071
Wx

U m s=  

and 7.071
Wx

U m s= , respectively, with 0
Wy

U m s= . The multi-layer LB solutions compare 

well to the analytical solutions of 
x

u  profile for uniform wind stresses of 20.03 /N m  and 

20.3 /N m , as shown in figures 7.7a and 7.7b.  

The density-driven circulation validation is performed for two different horizontal density 

gradients, 75 10x kg mρ −∂ ∂ = − ×  and 55 10x kg mρ −∂ ∂ = − × . The physical parameters for this 

case are 0W

iz
τ = , 0yρ∂ ∂ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 20.004 cm sµ = , 

0.005 m sκ = . The multi-layer LB solutions compare well to the analytical solutions of 
x

u  

profile for constant horizontal density gradients 75 10x kg mρ −∂ ∂ = − ×  and 

55 10x kg mρ −∂ ∂ = − ×  as shown in figures 7.8a and 7.8b.   

The multi-layer LB algorithm is also validated using a combination of wind- and density-

driven circulation with 20.03W

iz
N mτ = , 55 10x kg mρ −∂ ∂ = − ×  and 20.3W

iz
N mτ = , 

45 10x kg mρ −∂ ∂ = − × . The physical parameters for this case are, 0yρ∂ ∂ = , 31025 kg mρ = , 

31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = ,  The wind direction is along 
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the positive x  direction. The multi-layer LB solutions compare well to the analytical solutions of 

x
u  profile for the combined effects of wind- and density-driven circulation, as shown in figures 

7.9a and 7.9b.   

These examples demonstrate that the multi-layer LB model was capable of simulating 

wind-driven currents, density-driven current and the combination of wind- and density-driven 

flows. 

7.6 Wind-driven Circulation in Rotating and Non-rotating Basins 

In this example, the multi-layer LB model is demonstrated by simulating the wind-driven 

circulation with and without rotation over laterally varied bathymetric cross sections. A 

triangular bathymetry (see Figure 7.10) and two Gaussian bathymetry profiles are considered. 

The initial water depth for the triangular bathymetry has a minimum of 3 m  and maximum of 

20 m . The Gaussian bathymetry profiles have initial water depths given by 

( )
2

0 8 12exp
2000

y
H y

  
= + −  

   
  (7.1.2) 

and 

( )
2 2

0

3 10 3 10
8 8exp 12exp

2000 2000

y D y D
H y

   − +   
= + − + −      

         
 (7.1.3) 

where D  is the width of the basin. As shown in Figure 7.10, the x  axis coincided with the 

southern lateral wall of the basin and pointed toward the head of the system. The y  axis is laid 

along the closed boundary at 0x = . For each numerical example, the numerical domain consists 

of a longitudinally uniform basin 100 km long and 10 km wide for triangular and 15 km wide for 

Gaussian bathymetry profiles. Grid size is 250 m  along the x  and y directions. Ten vertical 

layers are used. 
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Figure 7.7: Comparisons of numerical model prediction with analytical solution for: (a) 
20.03 /W

iz
N mτ = , and (b) 20.3 /W

iz
N mτ = . 
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Figure 7.8: Comparisons of numerical model prediction with analytical solution for: (a) 
75 10x kg mρ −∂ ∂ = − ×  and (b) 55 10x kg mρ −∂ ∂ = − × . 
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Figure 7.9: Comparisons of numerical model prediction with analytical solution for: (a) 
20.03W

iz
N mτ = , 55 10x kg mρ −∂ ∂ = − × , and (b) 20.3W

iz
N mτ = , 45 10x kg mρ −∂ ∂ = − × . 
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  In the LBM formulation, the computational domain is covered by 401 41 10× ×  lattices 

for the triangular bathymetry profile and 401 61 10× ×  lattices for the Gaussian bathymetry 

profiles with 250x m∆ = , 12.5t s∆ = , and 20 /c m s= . To achieve a kinematic viscosity of 

6 21 10v m s−= × , the relaxation time parameter in the SRT-LBM is calculated using equation 

(3.3.13): -10
τ 0.5= 6 10− × . The relaxation rates 4 6 7 8s s s s 1 τ= = = = , and 1 2 7s s s 0.6= = −  

were used. The free-slip condition was used for all closed boundaries. The initial water in the 

basin was static and a wind stress was increased linearly during the first six simulated hours. 

After six hours, the wind was constant. The wind stress acted along the positive x  direction and 

blew uniformly throughout the domain. The numerical simulations were run up to 2 days after 

the wind stress was constant with the establishment of a steady state velocity field occurring after 

about 1 day. The numerical simulations were run on a single workstation with a 3.0 GHz Intel® 

Core™2 Extreme quad core processor. 

 

x
y

z

 

Figure 7.10: Computation domain with triangular bathymetry profile. 
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The first example is for the non-rotating case, in which the bathymetric profile was 

triangular with minimum depth of 3 m , maximum depth of 20 m . The physical parameters are 

20.03W

iz
N mτ = , 31025 kg mρ = , 31.2

a
kg mρ = , 0.0015

W
C = , 20.004 cm sµ = , 

0.0025 m sκ = , and 10
c

f s
−= . The wind stress was applied in the positive x  direction. The 

wind velocity is 4.0825
Wx

U m s=  and 0
Wy

U m s= . The bed friction is formulated using a 

linear friction law. Figure 7.11 shows the 
x

u  and 
y

u  distributions at 50x km=  and 98x km=  

planes. In the shallow region along the transverse boundaries in Figures 7.11a and 7.11b, 
x

u  

flows in the direction of the wind at all depths. The 
x

u  flows in the opposite direction of the 

wind in the central part of the channel. The magnitude of the flow is highest near the surface and 

decreases with depth as expected from the bottom friction. Figures 7.11c and 7.11d show a 

divide of the transverse flow, 
y

u  at 0y = . The symmetric distributions are due to neglecting 

Coriolis effect (non-rotating). 

To further demonstrate the current method, the effect of the Earth’s rotation with Coriolis 

parameter, 4 110
c

f s
− −=  is added to the first experiment. The 

x
u  distributions in Figures 7.12a 

and 7.12b show similar lateral variability to those in the non-rotating case. The difference is seen 

at 98x km=  plane where 
x

u  is symmetric for the non-rotating case, but asymmetric for the 

rotating case. The spatial distributions of 
x

u  at 50x km=  and 98x km=  planes for both cases 

were consistent with those obtained by (Sanay and Valle-Levinson 2005). Due the Coriolis 

effect, the 
y

u  distributions in Figures 7.12c and 7.12d are not symmetric.  

The simulation time for both cases was  20.67 min  on a single core and 5.07 min  on 

four cores of a single workstation, demonstrating the expected 4 times speedup. 
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An important feature of the solution caused by the inclusion of the Earth’s rotation is the 

free surface elevation distribution in the domain as shown in Figure 7.13. In the non-rotating 

case, the surface elevation distribution was only a function of along-channel direction. The 

across-channel barotropic pressure gradient expected in wind-driven flow over flat-bottom 

rotating systems is nearly a linear function of y  location (Sanay and Valle-Levinson 2005). The 

combination of Coriolis effect and laterally varying bathymetry produced surface elevation 

contours with stronger lateral variability compared to the non-rotating case. This is due to the 

spatial variability in the longitudinal flow and vertical mixing dictated by the laterally varying 

bathymetry. The spatial distribution of the simulated surface elevation was consistent with that 

obtained by (Sanay and Valle-Levinson 2005) and (Glorioso and Davies 1995). 

The second numerical example in the rotating case considers a Gaussian bathymetric 

profile with initial water depth given by equation (7.1.2). The initial water depth has a minimum 

of 8 m  and a maximum of 20 m  located at the center of basin. The physical parameter values 

remain the same, but the Coriolis parameter is 4 110
c

f s
− −= . The Gaussian profile produces a 

channel-shoal combination resulting in the flow patterns shown in Figure 7.14. The 
x

u  flows in 

the direction of the wind for shallow regions along the transverse boundaries and in the opposite 

direction of the wind in the central part of the channel as shown in Figures 7.14a and 7.14b. The 

asymmetry near the closed boundary is more prevalent for this bathymetry profile (see Figure 

7.14b). The 
y

u  distributions shown in Figures 7.14c and 7.14d are asymmetric because of the 

Coriolis effect. The magnitude of  
y

u  at 98x km=  plane is much larger than at 50x km=  plane.  

The third numerical example of the rotating case considers a bathymetric profile with two 

Gaussians and initial water depth given by equation (7.1.3) with a minimum of 8 m . The 
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maximum depth is 20 m  located at 3 10y D km= − , and local maximum depth is 16 m  located 

at 3 10y D km= . Using the same physical parameter values as in the previous Gaussian 

bathymetric case, the flow patterns are shown in Figure 7.15. Similarly, the 
x

u  flows in the 

direction of the wind in the shallow regions and flows in the opposite direction of the wind in 

both deeper channels as shown in Figure 7.15a and 7.15b. The 
y

u  is very small at 50x km=  

plane (Figure 7.15c) while it is very strong at 98x km=  plane (Figure 7.15d). 

The simulation time for the second and third numerical examples was 32.89 min on a 

single core and 8.12 min on four cores of a single workstation, which also demonstrates the 

expected 4 times speedup.  

7.7  Wind- and Density-driven Circulation in Rotating Basins 

In this example, the multi-layer LB model is demonstrated on GPU-based HPC by 

simulating wind-driven, density-driven, and combined wind- and density-driven circulation over 

a Gaussian bathymetry profile. The Gaussian bathymetry profile has initial water depth given by 

equation 7.1.3. Again, the x  axis coincides with the southern lateral wall of the basin and 

pointed toward the head of the system. The y  axis is laid along the closed boundary at 0x = . 

The numerical domain consists of a longitudinally uniform basin 100 km long and 10 15 km 

wide. The Grid spacing is 125 m  along the x  and y directions. Ten vertical layers are used. The 

maximum depth is 27 m  located at 3 10y D km= − , and local maximum depth is 11 m  located at 

3 10y D km= . 

For each case, the LBM formulation consists of the computational domain covered by 

801 121 10× ×  lattices with LBM parameters, 125x m∆ = , 6.25t s∆ = , and 20 /c m s= . To 

achieve a kinematic viscosity of 6 21 10v m s−= × , the relaxation time parameter in the SRT- 
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Figure 7.11: Contours of 
x

u  velocity ( m s ) at (a) 50x km= , and (b) 98x km=  for a non-

rotating system with the triangular bathymetry profile. The dark areas represent negative 
velocities 
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Figure 7.11: Contours of  
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u  velocity ( )210m s −×  at (c) 50x km= , and (d) 98x km=  for a 

non-rotating system with the triangular bathymetry profile. The dark areas represent negative 
velocities. 
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Figure 7.14: Contours  of 
x

u  velocity ( )m s  at (a) 50x km= , and (b) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.2). The dark areas represent negative 
velocities. 
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Figure 7.14: Contours  of  
y

u  velocity ( )210m s −×  at (c) 50x km= , and (d) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.2). The dark areas represent negative 
velocities. 
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Figure 7.15: Contours of 
x

u  velocity ( )m s  at (a) 50x km= , and (b) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities. 
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Figure 7.15: Contours of y
u

 velocity ( )210m s −×
 at (c) 50x km= , and (d) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities. 
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LBM is calculated using equation (3.3.13): -9
τ 0.5= 1.2 10− × . The relaxation rates 

4 6 7 8s s s s 1 τ= = = = , and 1 2 7s s s 0.6= = −  were used. The free-slip condition was used for all 

closed boundaries. The initial water in the basin was static, the horizontal density gradient was 

constant, and a wind stress was increased linearly during the first six simulated hours. After six 

hours, the wind was constant. The wind stress acted along the positive x  direction and blew 

uniformly throughout the domain. The numerical simulations were run up to 2 days after the 

wind stress was constant with the establishment of a steady state velocity field occurring after 

about 1 day. The numerical simulations were run in MATLAB on a single workstation with a 3.0 

GHz Intel® Core™2 Extreme quad core processor and an NVIDIA® Tesla™ C1060 Computing 

Processor. The parallel performance of a single core of the quad core processor and the Tesla are 

compared. 

For the wind-driven case, the physical parameters are 20.04W

iz
N mτ = , 0xρ∂ ∂ = , 

0yρ∂ ∂ = , 31025 kg mρ = , 31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.0025 m sκ = , 

and 4 11 10
c

f s
− −= × . The wind stress was applied in the positive x  direction. The wind velocity 

is 4.0825
Wx

U m s=  and 0
Wy

U m s= . The bed friction is formulated using a linear friction law. 

Figure 7.16 shows the 
x

u  and 
y

u  distributions at 50x km=  and 98x km=  planes. Similar to 

previous results, the 
x

u  flows in the direction of the wind at all depths in the shallow regions 

along the transverse boundaries and center of the channel as shown in Figures 7.16a and 7.16b,. 

The 
x

u  flows in the opposite direction of the wind in the deep parts of the channel. Figures 7.16c 

and 7.16d show the contours of the transverse flow, 
y

u  at 50x km=  and 98x km=  planes.  
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For the density-driven case, the physical parameters are 0W

iz
τ = , 85 10x kg mρ −∂ ∂ = − × , 

0yρ∂ ∂ = , 31025 kg mρ = , 31.2
a

kg mρ = , 0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = , 

and 4 11 10
c

f s
− −= × . Figure 7.17 shows the 

x
u  and 

y
u  distributions at 50x km=  and 98x km=  

planes. In the case of the density-driven flow, the 
x

u  flows in the direction of the horizontal 

gradient at all depths in the shallow regions along the transverse boundaries and center of the 

channel in Figures 7.17a and 7.17b,. The 
x

u  flows in the opposite direction of the horizontal 

gradient in the deep parts of the channel. These flow features are the opposite of those found for 

the pure wind driven case. The magnitude of the flow is highest near the surface and decreases 

with depth as expected from the bottom friction. Figures 7.17c and 7.17d show the contours of 

the transverse flow, 
y

u  at 50x km=  and 98x km=  planes. Although the flow field is reversed 

for this case, the effect of the Earth’s rotation is consistent with the earlier examples producing 

surface elevation contours with strong lateral variability, which is to be expected. The transverse 

velocities exhibit similar behavior as the wind driven case with stronger magnitude near the 

98x km=  plane. However, along the 50x km=  plane, the velocities are small yet exhibit a 

vertical distribution of positive and negative flow. 

For the combined wind- and density-driven case, the physical parameters are 

20.04W

iz
N mτ = , 85 10x kg mρ −∂ ∂ = − × , 0yρ∂ ∂ = , 31025 kg mρ = , 31.2

a
kg mρ = , 

0.0015
W

C = , 20.004 cm sµ = , 0.005 m sκ = , and 4 11 10
c

f s
− −= × . The wind stress was 

applied in the positive x  direction. Figure 7.18 shows the 
x

u  and 
y

u  distributions at 50x km=  

and 98x km=  planes. For the combined of wind- and density-driven case, the 
x

u  distribution is 

similar to the density driven case in terms of direction of the flow in shallow and deep regions as 

shown in Figures 7.18a and 7.18b.  Figures 7.18c and 7.18d show the contours of the transverse 
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flow, 
y

u  at 50x km=  and 98x km=  planes. The flow features with respect to bottom friction, 

Earth’s rotation, and bathymetry are all consistent with previous results. The main difference in 

the combined case is that the magnitude of the flow is smallest near bed, increases in the positive 

z-direction then decreases again near the surface. This is expected due to the bottom friction and 

the wind stress occurring in the opposite direction of the density-gradient. The density gradient 

accounts for the direction of the flow, while the wind stress accounts for the smaller magnitude 

velocities near the surface. 

The simulation time for each case was 47.3  hours on a single core of the CPU and 1.68  

hours on the Tesla GPU demonstrating 28.16 times speedup.  
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Figure 7.16: Contours of 

x
u  velocity ( )m s  at (a) 50x km= , and (b) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities 
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Figure 7.16: Contours of  
y

u  velocity ( )210m s −×  at (c) 50x km= , and (d) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities.
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Figure 7.17: Contours of 

x
u  velocity ( )m s  at (a) 50x km= , and (b) for the Gaussian 

bathymetry profile given in equation (7.1.3). The dark areas represent negative velocities. 
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Figure 7.17: Contours of  
y

u  velocity ( )210m s −×  at (c) 50x km= , and (d) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities. 
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Figure 7.18: Contours of 

x
u  velocity ( )m s  at (a) 50x km= , and (b) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities. 
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Figure 7.18: Contours of  
y

u  velocity ( )210m s −×  at (c) 50x km= , and (d) 98x km=  for the 

Gaussian bathymetry profile given in equation (7.1.3). The dark areas represent negative 
velocities 
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8  CONCLUSIONS 
 

Coastal wetland restoration and management is an area of high impact socially, 

economically and ecologically. Understanding the physical processes involved as well as 

understanding and managing how human activities affect these processes is of great importance. 

Numerical modelling and simulation serves as a tool to both validate mathematical models used 

to understand these physical processes and how they interact and predict and analyze the affects 

of human activities. Ultimately, improved modelling capabilities and the ability to simulate 

multiple scenarios while studying how they interact with each other leads to more sophisticated 

decision making and management tools. This dissertation focused on study, validation, and 

demonstration of the lattice Boltzmann method as a numerical modelling and simulation tool for 

two- and three- dimensional flows in the shallow water regime in high performance computing 

environments. The concluding remarks for the dissertation are the following: 

For the two-dimensional shallow water equations, the MRT collision operator out performs 

the SRT (BGK) collision operator for the shallow water equations at the situation that the 

relaxation time parameter, τ , is close to the stability limit of 0.5. The MRT collision operator 

was able to increase stability and accuracy and eliminate spurious oscillations when the SRT 

model fails. The dam break problem demonstrates that the MRT-LBM is able to handle complex 

flow structures such as shocks, rarefaction waves and contact discontinuities. For the two-

dimensional anisotropic advection dispersion equation, the TRT-LBM with speed-of-sound 

techniques was able to account for the heterogeneity and anisotropy in the velocity dependent 

dispersion coefficient. Specifically, the speed-of-sound techniques are able to cope with the 

discontinuous free surface water depth in the transport problem. Excellent agreement is obtained 

between numerical predictions and analytical solutions for both the hydrodynamic and transport 
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equations. The combination of MRT-LBM and TRT-LBM to predict mass transport with 

velocity-dependent dispersion in shallow water flow due to partial dam breaks is demonstrated 

with the numerical results indicating that the present method is promising for modeling transport 

phenomena in shallow water flows 

The two-dimensional LBM for shallow water equation has been extended to solve three-

dimensional wind-driven and density-driven circulation by introducing a multi-layer LB model. 

The advantage of the multi-layer LB model is that it avoids the computationally expensive 

solution of the Navier-Stokes equations and obtains stratified horizontal flow velocities as 

vertical velocities are relatively small and the flow is still within the shallow water regime. A 

MRT-LBM model is used to solve for each layer coupled by the vertical viscosity forcing term. 

To increase solution stability, an implicit step is chosen to obtain stratified velocities 

distributions. The main advantage of using the LBM is that after selecting appropriate EDFs, the 

LB algorithm is only slightly modified for each layer and retains all the simplicities in the LBM 

within the high performance computing (HPC) environment. 

The multi-layer LB model has been implemented to simulation three dimensional wind- 

and density-driven circulation. The influence of wind stress, horizontal density gradient, vertical 

viscosity forcing, bottom friction and bathymetry were tested. The numerical results of flow 

velocities for wind-driven circulation in a rectangular lake with a flat bottom agree well with the 

analytical solutions (Shankar et al. 1997). Moreover, the multi-layer LB model was tested over 

non-uniform bathymetry with and without the effects of the Earth’s rotation to calculate lateral 

and vertical distributions of the velocities. The simulated wind-driven circulation patterns, 

consisting of downwind flow over the shallow regions and upwind flow in the deep region along 

the entire domain, were consistent with other studies (Glorioso and Davies 1995; Sanay and 
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Valle-Levinson 2005). The simulated density-driven and combined wind- and density-driven 

circulation patterns were consistent with the wind-driven results.  

The parallel performance of the shallow water LBM and multi-layer LB model has been 

investigated on central processing unit (CPU) based and graphics processing unit (GPU) based 

high performance computing (HPC) architectures. A key point to understand in the 

implementation of the parallel LBM is that the two step solution procedure, (stream and collide), 

involves only a data shift to nearest neighbor nodes and local computations. This inherent 

parallelism is efficient on both CPU based on GPU based architectures; however, the 

performance must be optimized for each architecture. For the two dimensional LBM, the parallel 

domain decomposition and data access patterns should be selected to take advantage of cache 

optimization using explicit loop control on the CPU and shared memory optimization on the 

GPU. The parallel performance on the CPU was improved with the explicit loop control and 

depends on the block size chosen. The parallel performance on the GPU increases with problem 

size due to increasing computational intensity and decreasing need for communication sub-

domains of the data. The parallel performance of the multi-layer LB model shared the same 

characteristics on the CPU and GPU; however the parallel decomposition along only on the 

horizontal flow directions has two advantages: 1.) It retains the inherent parallelism of the LBM 

for each layer; and 2.) It retains the locality of the tridiagonal solver over layers with respect to 

threads. 

Future Work 

The work presented in this dissertation provides a foundation for an interdisciplinary study 

focused on improving numerical modeling and simulation tools for coastal modeling, restoration 

and management. The aim of this dissertation will be to extend the capabilities of the LBM for 
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coastal modeling and implement the LB models in a computational framework capable of taking 

advantage of heterogeneous HPC systems. The future work can include: 

1. Performing a higher order recovery of the multi-layer shallow water equations using 

the MRT collision operator in order to perform a stability analysis to provide a 

systematic basis for choosing MRT parameters. 

2. Implementing and characterizing the parallel performance of the parallel two-

dimensional and multi-layer LB models in a high level language such as C using 

hybrid shared memory (OpenMP), distributed memory (MPI) techniques for CPU-

based HPC systems. 

3. Implementing and characterizing the parallel performance of the parallel two-

dimensional and multi-layer LB modes in a high level language such as Open 

Computing Language (OpenCL) for GPU-based HPC systems. 

Performing the higher order Chapman Enskog recovery of the multi-layer shallow water 

equations and stability analysis will improve the understanding of the MRT collision operator 

while providing a guide for parameter selection. Implementing the parallel LB solvers using 

hybrid OpenMP / MPI techniques on the CPU and OpenCL on the GPU will allow the parallel 

features of the algorithm to be well understood leading to efficient implementation on different 

architectures. The future of high performance computing will rely on a combination of 

distributed and shared memory systems based on traditional CPU-based architectures as well as 

accelerators such as GPU-based architectures. The over arching theme is that the parallel features 

of the algorithm must be well studied and designed to be flexible enough for heterogeneous HPC 

systems. The research into the hybrid OpenMP / MPI implementations on the CPU and OpenCL 

implementation on the GPU will provide the foundation for LB solver that is flexible and 



 115 

efficient on various heterogeneous HPC systems. The outcome of the project is a more mature 

parallel LB solver for two and three dimensional shallow water modeling providing a better tool 

to research computational techniques for computational efficiency and coupling between various 

models on heterogeneous HPC systems. The parallel LB solver can then be used to study the 

natural processes affecting coastal wetland loss running scenarios in the Lake Ponchartrain 

Basin.  
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