Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 30

12-29-1976

SCS 29: On the Closedness of the Set of Primes in Continuous Lattices

Karl Heinrich Hofmann Technische Universitat Darmstadt, Germany, hofmann@mathematik.tu-darmstadt.de

Oswald Wyler Carnegie Mellon University, Pittsburgh, PA USA

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Hofmann, Karl Heinrich and Wyler, Oswald (1976) "SCS 29: On the Closedness of the Set of Primes in Continuous Lattices," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 30. Available at: https://repository.lsu.edu/scs/vol1/iss1/30

SEMINARHORNANG ON WILL STY 29 ION to E Continuous Lattices

NAME(S) K.H.Hofmann and O.Wyler		DATE M	D	Y
		12	28	76
On the closedness of the set of primes in continuous lattices				
[1] K.Keimel and M.Mislove SCS-Memo 9-30-76, notably part 2				
[2] K.H.Hofmann ,SCS-Memo 11-23-76				
 [3] O.Wyler, Algebraic theories of continuous lattices, preprint (old title Compact complete lattices). [4] K.H.Hofmann and J.D. Lawson, Irreducibility, preprint. The following question is fairly pressing: 				
(P) Let S be	e a <u>CL</u> -object. When is $\overline{\text{PRIME S}} =$	PRIME S?		
<pre>In [1] ,Keime: butive S, and discussed at s found to be no the following: ((0)) For all This condition ((0')) For an ((0")) For all ((0")) For all</pre>	and Mislove have given a conclu- in [4] the question of distribut some length (Chapter 3). The cond ecessary and sufficient in the di a,x,y \subseteq S,the relations a< <x and<br="">on is evidently equivalent to any by $s \in S$ the set int $\uparrow s$ is a fil- l a,b,x,y $\subseteq S$, the relations a< << is a subsemilattice of $S \times$</x>	asive answer vivity in <u>CL</u> lition Keimel stributive of ad a< <y imply<br="">of the foll ter. [2] <x and="" b<<y<br="">S.</x></y>	for di was and M ase wa a< <xy owing imply</xy 	.stri- fisāove ts
Keimel and Mislove give an example of asublattice of the square violating this condition.				
O.Wyler proves	the following fact in [4] 12.5,	old version:	- ,	. 1
If L is a latt PRIME L is cl	ice with O and 1 $\hat{1}$ osed , where \hat{L} is the Z -dual of	L (HMS -DU	then ALITY)	•
West Germany:	TH Darmstadt (Gierz, Keimel) U. Tübingen (Mislove, Visit.)			
England:	U. Oxford (Scott)			5
USA:	U. California, Riverside (Stra LSU Baton Rouge (Lawson) Tulane U., New Orleans (Hofman U. Tennessee, Knoxville (Carru	lka) n, Mislove) th, Crawley)		

-

1

.

The purpose of the Memo is to observe that this fact together with the observations by Keimel and Mislove in [1] suffice to show that ((0)) is sufficient for the closedness of PRIME S regardless of distributivity. In order to make this a bit more selfcontained, we present a proof of Wyler's proposition.

Recall that the \blacktriangleright <u>CL</u> -topology of a <u>CL</u>-object S has a basis of the open sets

 $U(u;v_1,\ldots,v_n) = int \uparrow u \setminus (\uparrow v_1 \cup \ldots \cup \uparrow v_n),$

int $\uparrow u = \{x \in S: u \ll x\}$.

<u>LEMMA</u> 1. If $v_1 \dots v_n \leq u$, then $U(u; v_1, \dots, v_n) \cap PRIME S = \emptyset$. Clear from the definitions.

<u>PROPOSITION</u> 2. In a <u>CL</u> -object S condition ((0)) implies <u>PRIME</u> S =PRIME S. Proof. Let s \notin PRIME S. Then there exist elements x,y $\notin \downarrow$ s with xy \leq s. Since S is a continuous lattice, we find elements a \ll x and b \ll x with a,b $\notin \downarrow$ s. By condition ((0")) we know ab \ll xy. Thus U(ab; a,b) is an open neighborhood of s which according to Lemma 1 ix does not contain primes.[]

<u>RECALL</u> 3 . An algebraic lattice $S \subseteq Z$ is <u>arithemetic</u> if K(S) is a sublattice (i.e. is closed under finite infs).

REMARK 4. Any arithmetic lattice $S \in Z \subseteq CL$ satisfies condition ((0)). Proof. Let a $\langle \langle x, y \rangle$. Since $S = \sup(\downarrow S \cap K(S))$ for all $S \in S$, there are compact elements $c, k \in K(S)$ such that $a \ll c, k$ and $c \le x$ and $k \le y$. Since S is arithmetic, $ck \in K(S)$. Thus $a \le ck \ll ck$, whence $a \ll ck$. Multiplication $(A \cap A)$ COROLLARY 5. (Wyler) The set of primes is closed in any arithmetic lattice. This follows now from Proposition 2 and Remark 4.

<u>COROLLARY</u> 6. If $S \subseteq CL$ and PS is as in ATLAS (the Z-object of all lattice ideals), then PRIME PS is closed.

For distributive S this poccurs in the proof of 2.1 in Keimel-Mislove [1]. From ATLAS we recall the morphism $r_S:PS \longrightarrow S$, $r_L(J) = \sup J$. By the preceding Corollary, $r(PRIME PS) \longrightarrow$ is a closed subspace of S which contains PRIME S (since $p \in PRIME$ S implies $\downarrow p \in PRIME$ PS). Keimel and

2

2

Mislove demonstrate that condition ((0)) implies that $J \subseteq PRIME$ PS always gives sup $J \subseteq PRIME$ S. We have

 $((n)) \implies ((n+1)):$

((0))

((1)) If J is a prime ideal of S, then sup J is a prime.

((2)) PRIME S = PRIME S.

If S is distributive, then these conditions are equivalent. Example 4.2 in ATLAS satisfies ((2)), but not ((0)).

Question. Does ((2)) imply ((1))?

If S satisfies ((2)), then the distributive CL-subobject

 $S' = \{x \in S: x = inf(\uparrow x \land PRIME S)\}$ appears to play and role. It is not clear which. The closure operator $f:S \longrightarrow S'$, $f(s) = inf(\uparrow s \land PRIME S)$ is a lattice homomorphism. So what?

3