SCS 28: The Lattice of Open Subsets of a Topological Space

Klaus Keimel
Technische Universität Darmstadt, Germany, keimel@mathematik.tu-darmstadt.de

Michael Mislove
Tulane University, New Orleans, LA USA, mislove@tulane.edu

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation
Keimel, Klaus and Mislove, Michael (1976) "SCS 28: The Lattice of Open Subsets of a Topological Space,"
Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 29.
Available at: https://repository.lsu.edu/scs/vol1/iss1/29
The lattice of open subsets of a topological space

REFERENCE

If X is a topological space, then the space of open subsets of X, $O(X)$, is a complete lattice. This memo is intended to give some results about when $O(X)$ is a continuous lattice or a compact semilattice. These results are not all new, and they are not exhaustive; however, we hope they will shed some light on the problem, and eventually lead to a solution of it.

If we denote by 2^X the complete algebraic lattice of all subsets of X, then there is a natural kernel operator $k : 2^X \rightarrow 2^X$ with image $O(X)$, namely, $k(A) = \text{int } A$, the interior of the set A. The following lemma shows that the now well-known lemma in reference 1 is of virtually no use in determining when $O(X)$ is a continuous lattice.

Lemma 1. Let X be a T_1 space, and define $k : 2^X \rightarrow 2^X$ by $k(A) = \text{int } A$. If k preserves sups of up-directed sets, then X is discrete.

Proof. $X = \sup \{ F : F \subseteq X \text{ is finite} \}$, and this is an up-directed sup. Hence, if k preserves up-directed sups, we have $X = \sup \{ k(F) : F \subseteq X \text{ is finite} \}$. Thus, if $x \in X$, then there is some $F \subseteq X \text{ finite with } x \in k(F)$, and $k(F)$ is a finite open set. Since X is T_1, points are closed, and so it follows that each point of $k(F)$ is open. Therefore (x) is open, and so X is discrete.

As a result of this lemma, we see that whether or not $O(X)$ is a continuous lattice must be determined independently of the lattice 2^X; thus the way-below relation on $O(X)$ must be determined.

Definition 2. Let L be a complete lattice. For $x, y \in L$, we write $x \ll y$ if and only if for each up-directed set $A \subseteq L$ with $y \leq \sup A$, there is some $a \in A$ with $x \leq a$.

We write $x \ll y$ if and only if, for each up-directed subset A of L with $y \leq \sup A$, there is some $a \in A$ with $x \ll a$.

West Germany: TH Darmstadt (Gierz, Keimel)
U. Tübingen (Mislove, Visit.)

England: U. Oxford (Scott)

USA: U. California, Riverside (Stralka)
LSU Baton Rouge (Lawson)
Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

*: This memo stems from conversations held in Darmstadt in September; thanks to A v H
Definition 3. Let X be a topological space, $U \subseteq V$ open subsets of X. We say U is relatively compact in V if each open cover of V admits a finite subcover of U. Clearly U is relatively compact in V if and only if $U \ll V$ in $O(X)$.

Proposition 4. Let X be a Hausdorff space, and let A, B be open subsets of X. The following are equivalent:

1. $A \ll B$ in $O(X)$.
2. $\overline{A} \subseteq B$ and \overline{A} is compact.

Proof. Suppose that $A \ll B$ in $O(X)$, and let $x \in X \setminus B$. Then X Hausdorff implies that the family of closed neighborhoods of x is downwards directed and has intersection $\{x\}$, and so the family $\{B \setminus N : N$ is a closed neighborhood of $x\}$ is an up-directed family in $O(X)$ whose sup is B. $A \ll B$ then implies that there is some closed neighborhood N with $A \subseteq B \setminus N$. It follows that $\overline{A} \subseteq \overline{B}$. Since $A \ll B$ implies $A \ll B$, we have $A \ll B$ implies that $\overline{A} \subseteq B$. Second, assume that $A \ll B$, and let $\{O_i\}$ be an open cover of \overline{A}. Then, the family $\{O_i \cup B \setminus \overline{A}\}$ is an open cover of B, and since $A \ll B$, it follows that $A \ll O_i \cup B \setminus \overline{A}$ for some i, if we assume that the O_i are up-directed, which is possible by taking finite unions of the O_i's if necessary. Then, the first part of the proof shows that $\overline{A} \subseteq O_i$; this then demonstrates the compactness of \overline{A}. Hence we have shown that 1 implies 2.

Conversely, it is clear from the definitions that $\overline{A} \subseteq B$ and \overline{A} compact imply A is relatively compact in B, and so $A \ll B$. Hence, if $\{O_i\}$ is any up-directed family of open subsets of X with $B \subseteq \sup O_i$, then $\overline{A} \subseteq \bigcup O_i$, and so there is some i with $\overline{A} \subseteq O_i$. But, the comment just made then implies that $A \ll O_i$, and so $A \ll B$.

Corollary 5. (Isbell) For a Hausdorff space X, the following are equivalent:

1. $O(X)$ is a continuous lattice.
2. X is locally compact.

Proof. Suppose that $O(X)$ is a continuous lattice, and let $x \in X$. Since $X = \sup \{A : A \ll X\}$, there is some $A \in O(X)$ with $x \in A \ll X$. Then, there is some $B \in O(X)$ with $A \ll B \ll X$, and it follows that $A \ll X$. This shows that \overline{A} is compact by the Proposition, and so we have the desired compact neighborhood of x.

Conversely, suppose that X is locally compact, and let A be an open subset of X. Then, the local compactness and Hausdorff properties imply that A is the union of compact neighborhoods of each of the points in A, and the interior of such a neighborhood is then way-below A by the Proposition. Hence each open set of X is the sup of the open subsets way-below it, and so $O(X)$ is a continuous lattice.
Example 6. Let D be the closed unit disk in the plane, and let D have the usual topology. Let D' be the open unit disk. We define a new topology, k, on D as follows: A subset U of D is k-open if and only if, for each $x \in U$, there is an open subset V of D in the usual topology on D such that $x \in V$ and $V \cap D' \subseteq U \cap D'$. The effect of this is to give D' the usual topology, but the boundary of D is now discrete in the k-topology. We claim that D' is relatively compact in D in the k-topology: Indeed, let $\{0_i\}$ be a family of k-open sets which covers D. For each i, if $x \in 0_i \cap D'$, we let $0_{i,x} = 0_i$; if $x \in 0_i \setminus D'$, then we let $0_{i,x} = (0_i \cap D') \cup V_x$, where $x \in V_x$ is an open subset of D in the usual topology such that $V_x \cap D' \subseteq 0_i \cap D'$ (such a V_x exists by the definition of the k-topology). Now, since the family $\{0_i\}$ covers, it follows that the family $\{0_{i,x}\}$ covers D, and it is clear that each set $0_{i,x}$ is open in D in the usual topology. Hence, since D is compact in the usual topology, there is a finite subfamily $\{0_{j,x_j} : j = 1, \ldots, n\}$ which also covers D

Now, $D' = D' \cap (\bigcup\{0_{j,x_j}\}) = \bigcup(\{D' \cap 0_{j,x_j}\}) \subseteq \bigcup 0_{j,x_j}$, since $0_{j,x_j} = (0_j \cap D') \cup V_{x_j}$ and $V_{x_j} \cap D' \subseteq 0_j$ for each j. This shows that the family $0_1, \ldots, 0_n$ forms a finite cover of D', and so we have our claim. It then follows that $D' \ll D$ in the k-topology.

The point of the example is to show that $U \ll V$ does not imply \overline{U} compact even for Hausdorff spaces. The following result gives a characterization of $U \ll V$ for regular T_1 spaces.

Proposition 7. Let X be a regular T_1 space, and let Y be an open dense subset of X. The following are then equivalent:

1. $Y \ll X$ in $O(X)$.
2. Let $O'(X)$ be the family of all open sets U of X which satisfy: For each $x \in X$, if there is some $V \in O(X)$ with $x \in V$ and $V \cap Y \subseteq U \cap Y$, then $x \in U$. Then $O'(X)$ is a basis for a compact Hausdorff topology on X.

Note: The motivation for the topology $O'(X)$ given in part 2 stems from the idea of recovering the original topology on the unit disk D from the topology described in Example 5.

Proof. Suppose that 1 holds. It is routine to show that $O'(X)$ is a basis for a topology on X; moreover, if $x, y \in X$ with $x \neq y$, then there are disjoint open sets U and V containing x and y, respectively. Now, let $U' = \{z \in X : W \subseteq U \cap Y \subseteq U \cap Y \}$ for some open set W in X with $z \in W$, and let $V' = \{z \in X : W \subseteq V \cap Y \subseteq V \cap Y \}$ for some open set $W \subseteq X$ with $z \in W$. Then U' and V' are open in the new topology on X (they are in fact members of $O'(X)$), and since U and V are disjoint, we have that U' and V' are
disjoint. Moreover, clearly $U \subseteq U'$ and $V \subseteq V'$, so U' and V' are the disjoint open subsets in the new topology which we seek. Notice that a variant of this argument also shows that the new topology is regular, since the original topology is regular.

We now show that the new topology is compact. Let $\{A_i\}$ be a descending family of closed sets in the new topology, which, for brevity sake, we shall call the k-topology. Fix an index i, and let $x \in X$. If $x \notin A_i$, then since the k-topology is regular (as we noted above), there is a closed neighborhood $C(i,x)$ of A_i which doesn't contain x. If $x \in A_i$, then we let $C(i,x) = X$. For a finite subset F of X, we let $C(i,F) = \bigcap_{x \in F} C(i,x)$, which we note is a closed neighborhood of A_i. We claim the family $\{Y \cap C(i,F) : i \in I, F \subseteq X$ finite$\}$ has the finite intersection property. Indeed, suppose that $C(i_1,F_1), \ldots, C(i_n,F_n)$ are given. Then, $F = F_1 \cup \ldots \cup F_n$ is a finite subset of X, and since the family $\{A_i\}$ is descending, there is some A_j with $A_j \subseteq A_i$ for $k = 1, \ldots, n$. Then $C(j,F)$ is a closed neighborhood of A_j, as is $C(i_k,F_k)$ for each $k = 1, \ldots, n$, since $A_j \subseteq A_i$ for each $k = 1, \ldots, n$. Hence, since Y is dense in X, it follows that $Y \cap C(j,F) \cap \bigcap_{k \leq n} C(i_k,F_k) \neq \emptyset$, and this establishes the claim. Since Y is relatively compact in X in the original topology, it follows that $\bigcap (C(i,F) : i \in I, F \subseteq X$ finite$) \neq \emptyset$ since each of these sets has non-empty interior. Now, it is clear that $\bigcap A_i \subseteq \bigcap C(i,F)$; conversely, if $x \notin A_i$ for some i, then since $C(i_1,\{x\})$ is a closed neighborhood of A_i not containing x, it follows that $x \notin \bigcap C(i,F)$. Thus $\bigcap A_i = \bigcap C(i,F)$, and since the right side is non-empty, so also is the left. We have therefore shown that each descending family of closed subsets of X in the k-topology has a non-empty intersection, and so we conclude that X is compact in the k-topology. This finishes the proof that 1 implies 2.

Conversely, suppose that 2 holds, and let $\{0_i\}$ be an open cover of X in the original topology. For each index i, let $0_i' = \{z \in X : z \in V \land V \cap Y \subseteq 0_i \cap Y\}$, and note that $0_i' \subseteq O'(X)$ and $0_i \subseteq 0_i'$ for each i. Hence, the family $0_i'$ covers X, and since these sets are in $O'(X)$ which generates a compact topology, it follows that there is a finite subfamily $0_1', \ldots, 0_n'$ which cover X. Now, $Y \cap (\bigcup_{j \leq n} 0_j') = \bigcup_{j \leq n} (Y \cap 0_j') \subseteq \bigcup_{j \leq n} 0_j'$ by the definition of $0_j'$. Hence, for the cover 0_i of X, we have found a finite subcover $\{0_j : j \leq n\}$ which covers Y, and this shows that 1 holds.

This completes the proof of the Proposition.
The reason that this characterizes the way-below relation in \(O(X) \) for regular \(T_1 \) spaces \(X \) is as follows: If \(U \subset V \) are open sets, and if \(U \preceq V \), then we claim \(U \preceq \overline{U} \) in \(O(U) \): Indeed, if \(\{0_i\} \) is an open cover of \(\overline{U} \), then each \(0_i \) can be written as \(0_i \cap \overline{U} \), where \(0_i \) is open in \(X \). Hence the family \(\{0_i\} \cup (V \setminus \overline{U}) \) is an open cover of \(V \), and since \(U \preceq V \), there is a finite subcover of \(U \). Clearly this gives rise to a finite subcover of \(U \) from the \(\{0_i\} \). Conversely, suppose that \(U \preceq \overline{U} \) in \(O(U) \). Then, for any open subset \(V \) of \(X \) with \(U \subset V \), it is easily seen that \(U \preceq V \) in \(O(X) \). Thus, our Proposition does indeed characterize the way-below relation on \(O(X) \) for \(X \) regular and \(T_1 \).

We now consider the question of whether \(O(D) \) is a compact semilattice, where \(D \) is the unit disk with the topology described in Example 5. Since \(D \) is not locally compact in this topology, it is clear from Corollary 4 that \(O(D) \) is not a continuous lattice. The following definition and lemma are taken from reference 2:

Definition 8. Let \(L \) be a complete lattice, and \(A \subset L \) any subset. We define \(A^+ = \{ \sup B : B \subset A \text{ and } B \text{ is up-directed} \} \).

Lemma 9. (Lawson). Let \(S \) be a compact semilattice and \(I \) a semilattice ideal of \(S \). Then, the closure of \(I \) satisfies \(\overline{I} = I^{++} \).

Example 10. We show in this example that \(O(D) \) is not a compact semilattice, where \(D \) is the unit disk with the topology described in Example 5. Let \(E = D' \cup \{(1,0)\} \), and give \(E \) the relative topology from \(D \). Then \(E \) is open in \(D \), and so \(O(E) \) is an ideal of \(O(D) \) which is closed under up-directed sups. The lemma then implies that \(O(E) \) is a compact semilattice if \(O(D) \) is, and we show that this is not the case.

Let \(x_0 = (1,0) \), and let \(\{x_n\}_{n \geq 1} \) be a sequence in \(D' \) with no convergent subsequence in \(E \) (e.g., take \(\{x_n\}_{n \geq 1} \) to be a sequence which converges to \((0,1) \) in \(D \) in the usual topology). Define \(A_n = E \setminus \{x_m \mid m > n\} \), and note that the family \(\{A_n\} \) is an increasing set of open subsets of \(E \) whose union is all of \(E \). Thus \(O(A_n) \), the family of open subsets of \(A_n \), is an ideal of \(O(E) \), and the family \(\{O(A_n)\} \) is an increasing family of ideals in \(O(E) \). Now, let \(\{y_n\}_n \) be a sequence in \(D' \setminus E \) which converges to \(x_0 \), and, for each \(n \), choose a sequence \(\{y_{n,m} \} \) in \(E \) which converges to \(y_n \) in the usual topology on \(D \). We define \(B_{n,m} = A_n \setminus \{y_{n,p} : p > m\} \), and note that, for each \(n \), the family \(\{B_{n,m}\} \) is an increasing family of open subsets in \(E \) whose union is \(A_n \); thus \(O(B_{n,m}) \) is an ideal of \(O(E) \), and the family of these is up-directed. We let \(I = \bigcup O(B_{n,m}) \), and note that \(E = \bigcup A_n = \bigcup B_{n,m} \in I^{++} \).
We claim that \(E \notin I^+ \): Indeed, suppose that \(\{O_i\} \) is an up-directed subset of \(I \) and that \(x_0 \in \bigcup_0 \). Then, we can assume that \(x_0 \in O_i \) for each \(i \). Fix \(i \); since \(\{y_n\} \) converges to \(x_0 \), and since \(\{y_{n,m}\} \) converges to \(y_n \) for each \(n \), it follows that there are \(r, s \) with \(y_{p,q} \in O_i \) for \(p \geq r \) and \(q \geq s \). It then follows that \(0_i \subset B_{n,m} \) implies \(n \leq r \) and \(m \leq s \), and so this also holds for each \(j \geq i \) since the \(O_j \) are up-directed. Hence, \(\bigcup_0 \bigcup \{B_{n,m} : n \leq r \text{ and } m \leq s\} \subset A_{r}' \), and so \(\bigcup_0 \neq E \).

This establishes our claim.

Now, we repeat the above construction as follows: We choose yet another sequence \(\{z_n\} \subset \bigcap E \) which converges to \(x_0 \), and which is disjoint from \(\{y_n\} \), and for each \(n \), we choose a sequence \(\{z_{n,m}\} \) in \(E \) which converges to \(z_n \) in the usual topology of \(D \). Now, for \(n,m \) in \(IN \), we define \(C_{n,m,p} = B_{n,m} \setminus \{z_{n,m,r} : r \geq p\} \), and note that \(C_{n,m,p} \) is open on \(E \) for each triple \(n,m,p \), and that the union of the \(C_{n,m,p} \), for fixed \(n,m \) is \(B_{n,m} \). This time we let \(J = \bigcup_{n,m,p} O(C_{n,m,p}) \), and note that \(J \) is an ideal of \(O(E) \). Now, \(E = \bigcup_n A_n = \bigcup_{n,m} B_{n,m} = \bigcup_{n,m,p} C_{n,m,p} \in J^+ \).

We show that \(E \notin J^{++} \): Suppose that \(\{O_i\} \) is an up-directed subset of \(J^+ \) and that \(x_0 \in \bigcup_0 \); then, as before we can assume \(x_0 \) is in each \(O_i \). We show that \(O_i \subset B_{n,m} \) for some \(n,m \) depending on \(i \); our previous remarks will then show that \(E \neq \bigcup_0 \) since this is an up-directed family. Now, for a fixed \(i \), \(O_i \in J^+ \), and so there is an up-directed family \(\{O_{i,j}\} \) in \(J \) with \(O_i = \bigcup O_{i,j} \). Again, we can assume that \(x_0 \in O_{i,j} \) for each \(j \); fixing one \(j \), since \(O_{i,j} \) is open, there are \(r, s \) in \(IN \) with \(z_{p,q} \in O_{i,j} \) for \(p \geq r \) and \(q \geq s \). It follows that \(O_{i,j} \subset C_{n,m,p} \) for some \(n,m,p \) implies \(n+m \leq r \) and \(p \leq s \), so that \(O_i \subset B_{n,m} \) and \(n+m \leq r \). Since the \(O_{i,j} \) are up-directed, it follows that \(O_{i,k} \subset C_{n,m,p} \) implies \(n+m \leq r \) and \(p \leq s \) for \(k \geq j \), and so \(O_{i,k} \subset B_{n,m} \) with \(n+m \leq r \) for \(k \geq j \). We conclude that \(O_i = \bigcup_{i,j} \bigcup_{n+m \leq r} B_{n,m} \subset B_{r,r}' \) as is clear from the definitions. Thus each \(O_i \) is a subset of some \(B_{n,m} \), and so they form an up-directed subset of \(I \). Since \(E \notin I^+ \), it follows that \(\bigcup_0 \neq E \). Therefore \(E \notin J^{++} \).

Now, \(J \) is an ideal in the semilattice \(O(E) \) with \(J^{++} = J^{+++} \). But, Lemma 8 shows that the closure of each ideal \(I \) is \(I^{++} \), and clearly closed ideals are closed under the formation of up-directed supers (since these are then limits in the topology). Hence \(O(E) \) cannot be a compact semilattice, since \(J \) is an ideal with \(J^{++} \) not closed under up-directed supers, and so also not closed in any semilattice topology.
We close this memo with an observation on a result of Lawson's which appears in the proof of Theorem 13 of reference 2.

Definition 11. Let \(L \) be a complete lattice. For \(x, y \in L \) we define \(x \ll_c y \) if and only if for each subset \(A \) of \(L \) with \(y \leq \text{sup} A \), there is some countable subset \(\{a_n\} \) of \(A \) with \(x \leq \text{sup} a_n \).

Lemma 12. For a compact semilattice \(S \) and an \(x \in S \), we have \(x = \text{sup} \{ y \in S : y \ll_c x \} \).

Proof. (Lawson(2)). For any compact neighborhood \(W_0 \) of \(x \) in \(S \), choose recursively a family \(W_n \) of compact neighborhoods of \(x \) with \(W_n^2 \subseteq W_{n-1} \) for each \(n \). Let \(U \) be the intersection of the family \(W_n \). Then, it is readily seen that \(U \) is a compact subsemilattice of \(S \) containing \(x \). We let \(u = \text{inf} U \), and claim that \(u \ll_c x \).

Indeed, suppose that \(A \) is a subset of \(S \) with \(x \leq \text{sup} A \). Then, \(S \) is a compact semilattice, and so \(x = \text{sup} xA \). Hence, since \(\text{sup} A = \text{sup} \{ \text{sup} F : F \subseteq A \text{ finite} \} \), and the right side is an up-directed sup, the right side is also a limit. Hence, for each \(n \in \mathbb{N} \), there is some finite subset \(F_n \subseteq A \) with \(\text{sup} xF_n \leq W_n \). Now, the set \(C = \bigcup_{n} F_n \) is a countable subset of \(A \), and \(\text{sup} xF_n \leq W_n \) for each \(n \) implies that \(\text{sup} \{ \text{sup} xF_n : n \in \mathbb{N} \} = \lim_{n} \text{sup} xF_n \leq U \), and so \(u = \text{inf} U \leq \text{sup} xC \).

Since \(\text{sup} xC \leq \text{sup} C \), it follows that \(u \leq \text{sup} C \), and we have established our claim.

Now, we have shown that, for each compact neighborhood \(W_0 \) of \(x \), there is some \(u \in W_0 \) with \(u \ll_c x \) (that \(u \in W_0 \) follows from the fact that \(V \subseteq V^2 \) for each subset \(V \) of \(S \), so that the family \(W_n \) is towered). It then follows that \(x = \text{sup} \{ y \in S : y \ll_c x \} \), and so the lemma is proved.

We note in closing the following properties of the Example 9: \(0(E) \) is a lower continuous complete lattice (since sups are just unions and finite infima just intersections), and \(0(E) \) satisfies the property that each \(U \in 0(E) \) is the sup of the \(V \in 0(E) \) with \(V \ll_c U \) in \(0(E) \); this follows from the fact that \(E \) is a countable union of compact subsets, as is also each open subset of \(E \).

Finally, note that the proof that \(0(E) \) is not a compact semilattice can be used to show the following:

Proposition 13. Let \(X \) be a Hausdorff space which is embeddable in compact first countable (or, in particular, compact metrisable) space. Then the following are equivalent:

1. \(0(X) \) is a compact semilattice
2. \(0(X) \) is a continuous lattice.
3. \(X \) is locally compact.