Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 22

11-10-1976

SCS 22: Representations of Colimits in CL, Part I

Gerhard Gierz University of California, Riverside, CA 92521, gerhard.gierz@ucr.edu

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Gierz, Gerhard (1976) "SCS 22: Representations of Colimits in CL, Part I," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 22. Available at: https://repository.lsu.edu/scs/vol1/iss1/22

SEMINAR ON CONT	INUGIERZ: SOS 22 Representations of Colingits In CL,	Part I		
NAME(S) Gerhard Gierz	d Gierz	DATE M	D	Y
NAME (S)		11	10	76
TOPIC Repres	entation of Colimites in <u>CL</u> , P	art I	in Sur	
	Gierz,Hofmann,Keimel,Mislove: polation property, extended ve			
	from 8/1/76	和我们会的现代的???	Section .	
(2)	Hofmann: The space of lower se	micontinuous	funct	ions
	into a <u>CL</u> -object, <u>SCS-Memo</u> fro	m 9/10/76		
- and the	and the second second second	Print Print		
In (27 K.H.Hofmann	gave a representation of copow	ers in CL. B	ut thi	s
	alse, because the following (w	and the state of the state of the state of the		. Marine Marine
used in that proof	of lemma 2.4:		Stand P.	
For every compact s	pace S and every set J, B(JxS)	= ßJxS.		
So we have to start	again.			
and the second	The second second second	and the second		
Letius recall some :	facts from (1):	Mar Can I		
		and the second second	1. 1.	
I)Let <u>CSRIP</u> be the for	llowing category:			
Objects:	(S, C) where	and the second		
C. Carlo Ballin	(1) S is a complete lattice w	ith smallest	eleme	nt 0.
The state of the s	(2) F is a binary relation on	S such that		Sidney in.
	(2.1) (Interpolation proper	ty) a D b=	Jce S:	artcb
	(2,2) a⊏ b ⇒a ≤ b	22月1月1日日		
- Sherperter 1	(2.3) 0 = 0	a standard	200 · 10-	to the
	(2.4) a ≤ b ⊏ c ⇒ a ⊯ c	and advantages the		Sec. 1
	(2.5) a = b ≤ c ⇒ a = c			
	(2.6) a ⊑ c, b ⊑ c ⇒ avb ⊑	c		Course -
Morphisms	: Let (S, E) and (T, E) be o	bjects. A mo	rphism	be-
	tween (S, \Box) and (T, \Box) is	be رa mapping be	tween	S and
West Germany:	TH Darmstadt (Gierz, Keimel) U. Tübingen (Mislove, Visit.)			
England:	U. Oxford (Scott)	and the second		
USA:	U. California, Riverside (Str LSU Baton Rouge (Lawson)			
A Contraction of the second	Tulane U., New Orleans (Hofma	nn, Mislove)		
	U. Tennessee, Knoxville (Carr	uth, Crawley)	

I

T Seminar on Continuity in Semilattices, Yoly, Isun 2023 Art and the relation E, i.e. a E b implies y(a) E y(b).

Let (S, C) be an CSRIP-object. A subset I S is called an C-ideal if $0 \in I$, if a, b $\in I$ implies $a \lor b \in I$, if $a \le b \in I$ implies $a \in I$ and if for every a CI there exists an b GI such that a = b. Every lattice ideal $I \subseteq S$ contains a largest = -ideal denoted by c(I). Denote by $P_{=}(S)$ the set of all = -ideals and by P(S) the set of all lattice ideals. Then c: $P(S) \rightarrow P_{E}(S)$ is a kernel operator and $P_{E}(S)$ is a continuous lattice.

Furthermore, let $g:(S, \vdash) \rightarrow (T, \vdash)$ be a <u>CSRIP</u>-morphism. Then $P_{E}(g): P_{E}(T) \rightarrow P_{E}(S); I \mapsto c(g^{-1}(I))$ is a <u>CL</u>-morphism, i.e. preserves arbitrary infima and updirected suprema. Therefore, $P_{\underline{r}}:\underline{CSRIP} \longrightarrow \underline{CL}$ is a contravariant functor.

II) Let L,L' be continuous lattices and let $g:L \rightarrow L'$ be a map preserving arbitrary infima. Then its right adjoint $D(g):L' \rightarrow L$ preserves arbitrary suprema. Moreover, g is a <u>CL</u>-morphism iff for all x, y ∈ L, x << y implies $D(g)(x) \ll D(g)(y)$ (see ATLAS, 1.19). Therefore $D:\underline{CL} \longrightarrow \underline{CSRIP}$, $L \mapsto (L, \ll)$; $g \mapsto D(g)$ is a contravariant functor onto a full subcategory of <u>CSRIP</u>.

III) Theorem (see (1), 4.2): The functors $P : \underline{CSRIP} \rightarrow \underline{CL}$ and $D: \underline{CL} \rightarrow \underline{CSRIP}$ are adjoint on the left and $\underline{P_{c}} \circ D = 1_{CL}$. Especially, P and D both transfer limits to colimits.

The last theorem says that for the calculation of comlimites in CL it is very usefull to know the limits in CSRIP.

IV) Let Compl be the category of complete lattices with arbitrary sup-preserving maps as morphisms. It is well known that the forgetfull functor <u>Compl</u> \rightarrow <u>Set</u> preserves limits. Let U:<u>CSRIP</u> \rightarrow <u>Compl</u> be the forgetfull functor, X be a small category and $F:X \rightarrow CSRIP$ be a diagramm in CSRIP. Then the limit of F in CSRIP may be calculated as follows: Let lim UoF be the limit of UoF in <u>Compl</u> and for every $x \in |X|$ let $pr_x: \lim U \circ F \rightarrow U \circ F(x)$ be the canonical projection. Define a relation \sqsubset on lim UoF by a \sqsubset b iff $pr_x(a) \sqsubset pr_x(b)$ in $(F(x), \sqsubset)$ for all $x \in |\underline{X}|$. It is easily checked that \sqsubset satisfies (2.2)-(2.6). In (1) we constructed a largest relation & contained in E which satisfies (2.1)-(2.6) in the following way: Let B denote the set of all dyadic rationals between O and 1 i.e. the set of all rational numbers $r = n/2^m$, $n \in \mathbb{N}$, $m \in \mathbb{N}$, $n \le 2^m$. Let a, b & lim U.F. A dyadic chain from a to b is a map g:B -> lim U.F such that r < s implies y(r) = y(s), y(0) = a and y(1) = b. Define a E b iff there is a dyadic chain from a to b. https://repository.lsu.edu/scs/vol1/iss1/22 2

V) <u>Theorem</u>: Let $F:X \rightarrow \underline{CSRIP}$ be a diagram in <u>CSRIP</u>. Then (lim U.F, \underline{F}) is the limit of F in <u>CSRIP</u>; the projections are the same as in <u>Compl</u>.

VI) <u>Theorem</u>: Let $F:\underline{X} \to \underline{CL}$ be a diagram in \underline{CL} . Then the colimit lim F is given by $P_{\underline{c}}(\lim U \circ D \circ F, \underline{c})$, the canonical injection $i_{\underline{x}}:F(\underline{x}) \to P_{\underline{c}}(\lim U \circ D \circ F, \underline{c})$ sends every $a \in F(\underline{x})$ to $c(\underline{f} \in \lim U \circ D \circ F; pr_{\underline{x}}(\underline{f}) \ll a_{\underline{f}})$.

VII) <u>Corollary</u>: Let L_j , $j \in J$, be continuous lattices. Then $\coprod_j \cong P_{\underline{c}}(\Pi L_j)$, where for f, $g \in \Pi L_j$ we have $f \equiv g$ iff $f(j) \ll g(j)$ for all $j \in J$. The canonical injection $i_j:L_j \rightarrow \coprod L_j$ is given $i_j(a) = \{f \in \Pi L_j ; f(j) \ll a \text{ and } f(k) \ll 1 \text{ for } j \neq k\}$.

In part II I will prove a representation of coproducts by upper semicontinuous sections in a "bundle" of continuous lattices and discuss some model theoretical properties of the "stalks" of that "bundle".