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Carruth et al.: SCS 21: ? (n)
SEMINAR ON CONTINUITY IN SEMILATTICES {8CS)

| DATE M D Y
NAME(S) Carruth, Clark, Zvans, Lea, Wilson Ny = | 10 76
TOPIC  <(n)
Lawson SCS Memo dated 7/12/76 Other Memos guoted herein

REFERENCE Misleve SCS memo dated 8/13/76

Now that everyone seems to agree that "way below" should have
as its definition:

(a) x<<y iff .y < supA implies X & supF for some finite F c A
ST eather'than the original: F
(b) x 1is way.beIOW y iff .y = SUpA iﬁplies X £ supF for some
finite Fg A .
our seﬁinaf,would suggest yet a nee notafion and term for this concept.

Before everyone curses us out loud, please hear us out.

" In his meoo'of .7/12/?6 ; Lawson defines <<< hy
. {e) x<<<y. iff y < supA .implies X << supf f‘or' some finite F& A
| _and oroves that, for compact S, :x<<< Yy iff ¥y e (=) . He also
4 o aeserts (Corollary 5) that x é,/\(S = {:z & S | S has small semi-
| -lat'tices-at _} if‘f‘ X = sup {yé S ].j<<‘x} . No proof is glven
and, in fact, the assertlon remains an open question. In a Qersonal
' correspondence.reoelved here on 10/5/76 Lawson did establish the |

assertion for compact metric 5.

West Germany:  TH Darmstadt (Gierz, Keimel)

' : U. Tibingen (Mlslove Visit.)
England: | U, Oxford (Scott) _

USA: - ~U. California, Riverside (Stralka)

LSU Baton Rouge (Lawson)
Tulane U., New Orleans (Hofmann, Mislove)
u. Tennessee, Knoxville (Carruth, Crawley)
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Mext, Mislove (8/18/76) used this open assertion to construct
'an?examﬁle'of a compact S such that L(S) = A (S) is not a
CL - object. First of all, there is a typographical error in the
definition of T in step L. The set Q should ﬁave been defined
as F VU P'"‘lu A whefe
P= {(n,1),(n"1,0)) | n e W} .
(tote: ((n,lji(n+1,0)), not {{d,0},(n+1,1)) . 5 ‘This example
- ' caﬁ also bhe #iewed as a generalized hormos with-
X = {1 -1/ | n ¢ ;N}tJ ff} in an obvious fashion. Next, he
correctly observes that 1 &€ L(T) , as (1} = .f\(f[h,oj)o

new
T[n,Q] is a subsemilattice. He then incorrectly "shows" that each

and

semilattice neighborhood of _[n,r] must contain [0,0] . Both
of his assertions "each semilattice neighborhood of [ﬁ,r] must
contain [h,o] " and "each semilattice neighborhnood of [h,d]

must contaiﬁ n - l,OJ " are correct, however, it does not follow

that "each semilattice neighborhood of [h,r] must contain [h—l,O]".

AN

Tn fact, if this were true, each semilattice neighborhood of 1 would
necessarily contain [0,0] y yielding 1 4 L(T) . The problem, of
course, is that each sémilattice neighborhood of [h,r] must contain
[n,O] but it need not be a neighborhood of En,O] . In fact, if

' which is st a weighlorheed of [n 0]
r#0, T[ﬁ,d] is a semilattice neighborhocd of in,r P (unless n=N).

It can, however, he easily argued that L(T) = {;[0,0], 1} anyway.

Now, in step.? , Mislove concludes that (1,1) &€ L(S) by using

the fact that (1,1) = sup{z €S ] z << (1,1)} . As we have
. S '
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obsgrvedv, the suf‘ficiency of this condition remains in_ gquestion,
Hov,.u-‘a\‘rer',‘ one sees thét (1,1) € T(En,O],[n,O])a as before and so
(1,1) € L(S) (or é glutton for punishment might use Lawson's
observation that the condition is sufficient for compact metric S).
Similar remarks apply to the "pr-oof"" that ([n,0],1) & L(S} .

We hasten to say that the example is quite nice, A4long these

lines, is it obvious that L{S) is always a closed subspace of 87

Is it even true 7

Wow to the topic o.f' this memo. T'}llroughout, S will ‘be a2 complete
lattice. We also adcq‘at t.he convention'that D will always be an
arbitrary up-directed subset of 3 and 4 will always denote an
elerrie'nf of D which, when written, is asserted to exist. Hence,
we know : that: | |
(d) x<ky iff ¥ s sunD -'implies x<d; and
(e) x<<<y iff ¥y ¢ supD Vimplies X <<d .

Let us _def‘ine:

(1) x <{1) y iff x< y ;

(2) x «(2) y iff y < supD implies x <(1) d ;

(3} x <(3)y iff ¥ € supD  implies x <(2) a ;
and recursively define:

(n) x <)y iff y< supD implies X <(n-1) 4 .-

One might read x <€(2) y as "x is two-below y", and, in general,

) o
x <(n)y as "x is n-below y". Recall that x <y means yé&({fTx) .
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Observation 1.1. - {a) TFor a compact S, <£(3) = < according to

. La:;;:_son .(?/12/76) ;
| (b) For a compact Lawson S, £(2) = < and so

<(2) = <(3) bwy (a) .

Problem. Is £(2) = | £ (3) for 11 gofnpact S ? Equivalently,
is <(2) = < for all compact 5 ?

Surely almostr everyone has ftried to prove this in one form or anotier

and it appears to be quite difficult.

e offer some observations about - <(n) . Perhaps these
relations"have beén studied for cémplete lattices in the literature,
it we are not aware of any such stud'i.es. ‘ .

2, P o= {n e W [é(ﬁ+1)§ é.(n)} = .,
Froof. First we show 1 éP . Fix (x,y)& <(2) . Let D= {y} .
Then y %(1) supD =y 'implies x <(1) 4 = y . Hence, x <£(1) vy,
<(2)€ <(1) , end L eP .

Assume that %k &P ., That is, assume that <(k+1)E€ <(k) .
Fix (x,y)e =<{k+2} and fix D such that vy &{1) supD . Then,
since x s(k+2) vy , we have x <(k+1) d. MNow, by the induction
hypothesis, x & (k) d.‘ . Henée, by definition, x <£L(k+l) y so

that <L(k+2) &€ <£(k+1) 2nd k+1 &P . B

Corollary 1.73. <(n) is antisymmetric for all n eN . @&

Examnle 1.4. Let D= {1 - 1/n n e m} and let S = DY {1}

with the usnal orﬁering. Then, 1 <£{1) supD , but 1 f#(l) éd for

any A4 &€ D. Hence, 1 #(2) 1, and so <£(n) 1s not reflexive for

any n 2 2 (in view of 1l.2) .

https://repository.Isu.edu/scs/vol1/iss1/21
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L%, |

|

The next proposition proves to be indispensible in the study of <n

5. <(n) e €m)C <(n+n-1) .

J

Proof. | The vroof is by induction on n .
n=1: For m=1 the assertion is clear since (1) is
transitive. Assume for m = k and fix x é(l) ry <{k+1) z . Yowm,
' fix D such that z <(1) supD . Then y <(k) d and by the I. H. ,

x <(k)d. Hence, x <(k+1) z..

Assume for n = k: i.e. <{k) ¢ <{m) € <(k+m-1) for all m &I’

We proceed to show that <(k+1) o &{m) C <{k+m) for all m e I .

m=1: TFix x <£(k+1) y <{1) z and D such that 2z <(1) supD .

Then y <(1) supD implies x <(k) d . Hence, x <(k+*l) z as
was to be shown .

Assume for m =3 : i.e. <(k+1) o <(j) € <L(k+]) .

Fix x <(k+1) y <(j+*1) z and D such that =z <(1) supD . Then,

y <(j)d and by the I. H. x <(k+j) a . Hence, x <k+-j+1) z .

Corollary 16 (a)~ <(n) 1is transitive for all =n & W , | -
roll o) S s tre Tl Joe Dot
() & N<n) = An<n) forall nm22. %waf/
(¢) If 1<n<m and <(n) = <(n) , then <n) = =<(k) for
all kzn .
(@) If nx=2 and <(n) € <(n) o g(n) (i.e. =(n) has
‘the interpolation property), then  <(n) = <(n+1)
(e} If nz2 and A ¢ ={n) ,‘ then <(k} = <({i) for
@{M /Z.,U,J@E' M ggzwnj% WC&[ /&eﬂ—wv—’a@[ﬂ__ Ol‘zlt Q/Z&,
all k &I . Jetew roit grtySlin. E¢ ol bl

(f) If <(2) has the interpolation property, then =<(2) = =<(3)

Published by LSU Scholarly Repository, 2023
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I

Proof: (a) For all né& W , n+tn-1 2n and so we simply apply
Proposition 1.5 and then Froposition 1.2 .

(b)) It suffices to show thaﬁ, for n 2.2 , Angn) = A n s(ntl).
The containmeﬁt from right to left follows from 1.2 . Now, fix
x ¢ S such that (x,x) &€ <(n) . Then, by 1.2 , .(x,x) e <(2) also.
Hence, by 1.5 , (x,x) € <(nt+l) . ’
| (¢) Certainly. <{n) =. s_(k)‘ for all k such that

n< kgm, ih view of 1.2 . Hence, we need only show that if

<fn) = <(n+1) , then <(n+1) = <(@+2) . Fix x gmtl) y and
D € & such that .y _s_(l)__ supD . Thenl, .x -_(_(n} d and, since we
are assuming <(n) = =n+1) , x <n+l) d . Therefore, x =(n+2) a
as was to be shown. |
| (d) Since n 22 ‘, n-1 = n+l . Hence,
<(n) ¢ <) e ghn) ¢ «(?n-1) Dby 1.5
C g(n+l) by 1.2
< <(n) by 1.2 .
'(‘. " (e) It suf‘f‘ic.es to show that <(1) &€ <(2) , in view of (c)

_above. TFirst observe that A € <(2) , in view of 1.2 .

wow, <(1) = =<(1)ed € <)o =(2) € <(2) by 1.5

c <(1) by 1.2.
(f) This follows immediately from (d) and is only isolated

as & special case for emphagis. m®

https://repository.Isu.edu/scs/vol1/iss1/21 6
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-

Corollary 1.7. (a) If S is compact, then £(3) = €(n) for all nz>

(b) If S is compact Lawson, then <£(2) = <{n) for all n 2 2.

In view of Corollary 1.7 , perhans only the pure algebraists will e

interested in the general study of <=(n) . However, at least the

question of whether‘ £(2) = <{3) for compact S remains for the
tonological élgebraists. Moreover, we proceed to discuss relation-
ships between <=(n) ' and < in the non-compact toﬁologicél setting
which should be of interest bo the topologlcal people. First we
state the following proposition. ‘For n=2 , this_ is essential

in proving that <(2) has the interpolation property in a coantinuous

lattice (Scott -Continuous Lattices ; Observation on page 110 without

proof; Isbell —-Meet-continuous Latticesl Istituto Nazionale di Alta

Matematica  Symposia Mathematica 1975, Proposition 2.3 on page 46;
Scott —SCS Memo dated 3/30/76 Page 5).

Proposition 1.8. x <(n) z and y £{n) w imply xVy <(n) z vwu.

Froof. The nroof is by induction on n , is not difficult, and is

omitted.

Froposition 1.9. Let (83, T, <) have the property that (s,T) is

a tovological space and - (S, €£) 1is a complete _lattice. We define,
as slways, x <y iff ye& (’f_‘x)o . Then:

(@) xF A 1y = Exvn] .

Published by LSU Scholarly Repository, 2023
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|

(v) For all y € S, Dy = {s €s) s« y} is closed
under finite sups and hence is up-directed;
(¢) <(n)e< & < forall n &I .
“If m 1is separately continuous, then:
() < egn) € < forall n &X .
(e)  (#x) is an upper end; 1i.e. ?‘U’f‘x)o]_‘; (<) .
Ir (3,9 ) 1is compact To and m 1is continuous , thens

(f) < € <(n) for all n €W . (Previously observed. )

| Proof. Once aga'in, t.he proofs are strjaightfor'ward and are omitted. o
Ron Wilson observes that (f) of 1.9 <can also be pr-oved

for Scoti's relation < ., In fact, ‘both results follow from a more

general relatiqn theoretic result in the spirit of _Mike Smith,

and the Gierz, Hofmenn, Keimel, Mislove SCS Memo dated "8/1:/'?6 .

Proposition‘ 1.10, _Let C be a tinary relation on S such that:

@) € € €1 | |

) [ o) g C :

(c) | a [ supD implies a C d .

Then, [ € <(n) forall n €W .
Proof. The case mn =1 1is simply (a) » Assume for n =k . , .
Fix x L ¥y and D &S " such that Ng <(1) supd . Then, by (b),

x C suoD and, by (¢), x [ & . WNow, by the I.H., X <(x) 4

and so X é(?@'i) v . [#]

https://repository.Isu.edu/scs/vol1/iss1/21
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0

|

Along these same ‘1ines, consider the category CSRIP. If we
modify the assumptions somewhat, while retaining the Interpolation

proper-ty, we can ohtain L € <«(n) for alln € W .

Proposition 1.,il1. Suppose (S, C) satisfies:

(1) S 1is a complete lattice; and
(2) [ 1is a binary relation on S5 such that:
(2.1) ce L ; al:ld
- | (2.2) © € «2).

Then, [ € <{n) for-all n €W,

i

Proof. For n =1 use 2.2 and 1.2 , For n =2 use 2.2 .,

Assume for k with k22 ., Fix x Ly and DS such that
y <(1) supd . By two applications of 2.1 we obtain elements

a and b such that xCLalb Ly =(1) supD . Hence,

x <(k)a <(x)b =(1) suoD by the I.H. and it follows that

T

x <(k)a <(k-1)4d . Therefore; x <(2k-2)d by 1.5 and,

since "k 2 2 , 2k-2 =k which implies x <(k) & . Thus, x <(k+1)

- This seems to be a good place to make an observation due to
Ron Wilson. The reference is the Gieraz, Hofmann, Xeimel, Mislove
SCS Wemo dated 8/1/76 . On vage 20 , the question "Is wg = vg ?"

is asked. Unless we are missing something, the answer 1s yes and 1t

follows from the following:

Observation 1.12. <<% = <%  for each compact S .

Proof. It suffices to show that << dyadic chains are < dyadic

chains, and conversely. If ¢ 1s a << = <(2) dyadic chain, then

Published by LSU Scholarly Repository, 2023 ‘ 9
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| .
r<s implies ¢(r) <(2) (p(r—jﬁ-?-) <(2) cp(s) which implies
?ﬂr’)' <(3) #Ks) by 1.5 . Now, by Lawson's observation that
<(3) = £, we have c{’(r) - gﬂ(s) . That each ¢ dyadic chain

is 2  £(2) dyadic chain follows from 1.9(f) . o]

This last observation indicates, it would seem, that the

relations <£(n) can be useful, even though they collapse to various
degrees in the cordoact_ setting. As to the purely algebraic setting,
the next proposition and its corollary, due to C. Z. Clark, are of

interest.

Pronosition 1,13, Let 35 be a complete lattice and fix x € 5 ,

Let T = (¥ xS) Vv {0,p,1}Y and define a partial order on T by:
(1) M,y = [0y« ap] U g0 ) s2i3 U 1)
(11) o = 7 5 t1 o= {1} .‘

i) te = U x 0] U G U ED -

Tnen, (T,<) is a complete lattice and the following properties hold:

f

3

(1) x =) y in S implies p =(n) (i,y in . T Vie Ii:
(2) x n) y tn S implies p <) (i, in T Vi & T
(3) x <) 1 in S and x £+l) 1 in S imply

A

p <(n+l) 1 in T and o %(n-%Z) 1 in T .

ILTJ

pof. First we show that. T is a complete laftice. Fix A # 0
in T, f{(a) Ir 1 €A, then supA = 1. In the remaining cases
we assume 1 q.l-. A,

(h) It AN (71} x S) # O for infinitely many i , then suna = 1 .

s =t

https://repository.Isu.edu/scs/vol1/iss1/21
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X . . i

(¢) Ir & & {0,p} , then supA € {,p} .
(@) It A ¢ {0,05 U ({1} xS) forsome 1 and A N({R x 5) # 0 ,
| then supA = (i,sup 7,(A)) if either sup -'n'z(Ar) 2x or p 4=A ,
and supA = (i, (s1J.p’;T2(A))vx) otherwise,
() If AN({i¥xS)#0 # AN(TH x5} with 1 # 3, then
supA = (n,1) , where n = max {k eV | An( 03 x5)# D} .
These cases are exhaustive and so (T,.S.) is a complete 1attié-e'._:. |

Froof of (1): For n =1 the assertion follows immediately from

the definition of fp . Assume for n =k . Suppose x <(k+l1}) vy .
Fix 1 € M and D& T. such that (i,y) <{i) supD . If 1 &D ,
then x <(k+1)} y = x <(k)y = p =<(x) (1,y) Iby the I.H.

— b (k)1 by 1.5 == 1 <(k)da. If 1¢D, then
DAN({j} x S)# O for some jzpi (since sup({l,...,i-1} x3) =

- @dditiona;,_ : . |
(i-1,1) ). If D meets at least one slices, then (j,1) & D

for some j»i . Hence, again, x =(k+1) v = x =(k)y =

p <k} (J,y) by the I.H. = p <(k) {(j,1) by 1.5 =

p £{k)d . Finally, if D meets dnly, the j- slice, then

v ) suplw, L(FY x 5 YAy . (If j =1, this is easy,

|

whereas if j>1i , sup(ﬂ'z [({j} x 5 YND]) =1 (1) ¥ - )
Now, since x <L (k+1) y , we have x <(k) T,{d) for some

¢ € {3y x S . Hence,  p (k) (j,T,(@)) =4 . Therefore, in any
case; p <(k)d for some d €D, so that p <(k+i) {(i,y) and
we are finished. |

Proof of {2): For n =1 the assertion follows immediately {rom

the definition of #$p . Assume for n = k . Suonose x -f(k+1) vy .
Fix 1 & T . Then there exists D such that y <(1) supd but

R B R e R L

Ed
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x $(1\1) d forany 4 &D . Now, (1} x D is an up-directed sct

in T, (i,y) =(1) (i,sund) = sup [{ﬂ x D] . DPut, X é{x) ¢

for all d &D implies, by the I.H., p $(k) (i,d) for all & €D .

Hence, {g(k-’rl) (i,y) .

Proof of (3): First we show that p <£n+t) 1 in T . Let D be
an up-directed set in T such bthat supD = 1. Ir 1 €D, then
x <(nY 1 in S implies (by (1)) p» <n) {(i,1) for all 1 €N

T 1.5
and hence p <(n) 1¥T If 1 ¢ D, then there exist i,J with i # |

such that D ALY x8) #0# DA({3 « S) . It follows that
D contains an element of the form ¢ = (§,1) for some (L &N .

——

Put, x <(n) 1 implies p <(n) (2,1) by (1) . Hence,

n <n+i) 1. Next we snhow thet o $(n+'2) 1 in T . Let

]

D= {(i,l) | 1 e T.‘LT} Then suoD =1 . But x <(n+1) 1 in 3
implies p $(n—“l) (i,1) for all i €M .by (2) . Therefore,

D s'F’(n+2)'; in T. &

Corollary -1.14, There exists a complete lattice S such that

«(nt+1) # <n) for all . n € N .

Froof. According to 1.13 and 1.4 , there is, 'for eachr n & W,

a complete lattice S = such that ;.;’_(n+1) # ‘i(n) . Stack such

a collection almost any way you like“(adding n and/or 1 if necessary)

and a suitable example is obtained. For example, if we stack them

un (with no identifications) and add a 1 to obtain T , then one

can show that <(n) N (3;x5;) = <(n) for all i,m &€ W fronm
T S . . ‘

which it follows that <{n*1) # <(n) for all n €N . ¢
‘ T T
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