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Abstract

Over the last decade quantum computing has become a very popular field in various
disciplines, such as physics, engineering, and mathematics. Most of the attraction
stemmed from the famous Shor period–finding algorithm, which leads to an effi-
cient algorithm for factoring positive integers. Many adaptations and generalizations
of this algorithm have been developed through the years, some of which have not
been ripened with full mathematical rigor. In this dissertation we use concepts from
white noise analysis to rigorously develop a Shor algorithm adapted to find a hid-
den subspace of a function with domain a real Hilbert space. After reviewing the
framework of quantum mechanics, we demonstrate how these principles can be used
to develop algorithms which operate on a quantum computing device. We present
a self-contained account of white noise analysis, including the main relevant results.
Inspired by a generalized function in the algorithm, we develop a new distribution,
the delta function for a subspace of an infinite dimensional Hilbert space. We then
use this distribution to rigorously prove one of the main identities needed for the al-
gorithm. Finally we provide a rigorous formulation of the hidden subspace algorithm
in infinite dimensions.
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Chapter 1

Introduction

The field of quantum computing gained much fame with the development of Shor’s
quantum factoring algorithm in 1995. Using the fundamental ideas from the fac-
toring algorithm and a few new concepts many new quantum algorithms have been
constructed. At first most quantum algorithms were designed to run on a finite di-
mensional state space. However, in recent years many researchers have turned their
attention to developing quantum algorithms which operate on state spaces of infinite
dimension.

The present work began as an attempt to develop a quantum algorithm on an
infinite dimensional state space which computes the famous Jones polynomial, a prin-
cipal concept in knot theory. Such an algorithm is conjectured possible in the work
by Lomonaco and Kauffman [21]. In order to do this, we began by examining a baby
version of such an algorithm, the quantum hidden subspace algorithm. This algo-
rithm takes a function φ on a Hilbert space and attempts to find a subspace V such
that φ(x+ v) = φ(x) for all v ∈ V . This algorithm is also presented in [21], but only
at a very formal level. It is based on being able to do computation in the spirit of
Feynman path integrals.

When trying to derive a rigorous mathematical formulation of this algorithm many
interesting results presented themselves. Many of these centered around trying to
make sense of the formal distributional identity∫

V

δ(x− v)Dv =

∫
V ⊥

e2πi〈x,u〉Du

where Dv and Du are Lebesgue type measures on the subspaces V and V ⊥ of a
real Hilbert space E. In order to formalize such notions we turned to the theory of
White Noise Analysis, which is the theory of distributions in infinite dimensions. The
background material needed for White Noise Analysis and a summary of the subject
are presented in chapters 4 and 5, respectively.

With the tools of White Noise Analysis we develop the concept of a delta function
of a subspace V . This is presented in chapter 6. We also formulate and prove a
mathematically rigorous formulation of the above equation in chapter 7.

1



Finally, we apply the theory of White Noise Analysis in chapter 8 to present a
complete mathematically rigorous quantum algorithm for finding a hidden subspace.
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Chapter 2

Quantum Mechanics

At the turn of the twentieth century Einstein developed the general theory of relativ-
ity. This theory is successful in describing the geometric structure of the universe and
in showing how matter affects and is affected by this structure. However, it does not
provide an answer to a question that puzzled physicists at the time (and to an extent
still does today): What exactly is matter? Physicists developed quantum theory in
an attempt to provide an answer to this question.

The first step toward quantum theory stemmed from a puzzle created by Maxwell’s
electromagnetic theory. Maxwell’s enigma was that the total energy generated in
an enclosed “black oven” (sealed, lightproof metal box with heated walls) should be
infinite according to his theory. He reasoned that the walls would emit electromagnetic
radiation of all possible frequencies—of which there are infinitely many.

In 1900, Max Planck offered a solution. He suggested that energy comes in discrete
“clumps” which he called quanta, and these quanta cannot be subdivided. He even
calculated the proportion between the energy and the frequency of a wave—what is
now known as Planck’s constant. However, Planck was not able to answer the most
obvious question: Why should energy comes in “clumps”?

Einstein answered this riddle in 1905 when he proposed that a light wave is made
of discrete packets of energy called photons. He reasoned that Planck’s quanta are
the photons that make up the wave. Now, what does it mean to say that particles
constitute a wave? Even today no one really knows. So, in the realm of quantum
mechanics physicists have to abandon their intuitions and rely on mathematics—in
particular, the theory of Hilbert spaces.

2.1 Framework of Quantum Mechanics

Quantum Mechanics can be thought of as a means for the development of physical
theories. The subject does not tell you what laws a physical system obeys; it provides
a framework for deducing such laws. Here we will briefly describe the postulates of
quantum mechanics. These postulates were derived from a long process of trial and

3



error. Also, the motivation for these postulates is not always clear—even to the
expert.

2.1.1 State Space

The first postulate tells us about the structure of a physical system.

Postulate 1. Associated to an isolated physical system is a Hilbert space known as
the state space of the system. The system is completely described by its state vectors,
which are unit vectors in the state space of the system.

Notation. State vectors in a state space are usually denoted by |φ〉. The condition
that |φ〉 is a unit vector is usually expressed in inner–product notation as 〈φ|φ〉 = 1,
where 〈φ| denotes the linear functional in the dual of the state space given by the
inner–product of a vector with |φ〉. Also, the orthogonal projection onto a unit vector
|φ〉 is written as |φ〉〈φ|. This is the Dirac notational convention.

Unfortunately, this postulate does not tell us what the state space is for a physical
system; it only tells us that one exists. Finding the exact state space for a physical
system can be a difficult problem.

Example 2.1. The simplest quantum mechanical system, and the one most common
in quantum computing, is the qubit. The state space of the qubit is C2. It can be
represented physically by two electronic levels in an atom. In this model, an electron
can exist in a ground state or an excited state. By shining light of a particular
intensity on the atom for an appropriate amount of time, it is possible to the move
the electron from a ground state to an excited state and vice versa. What is perhaps
more interesting is that by reducing the the amount of time we shine the light, an
electron initially in a ground state will move into a state “between” the excited and
ground states.

The standard orthonormal basis elements for C2 are denoted by |0〉 and |1〉. (These
correspond to our ground and excited states in the atom model.) Hence an arbitrary
state vector in this system can be expressed as

|φ〉 = α|0〉+ β|1〉

where α and β are complex numbers satisfying |α|2 + |β|2 = 1. The vector |φ〉 is
called a superposition of the states |0〉 and |1〉. Also, the state |φ〉 is said to be a pure
state when either α = 0 or β = 0; otherwise, it is called a mixed state.

Example 2.2. Another classical example of a state space is L2(R3), used in the study
of wave functions.

4



2.1.2 Evolution

The next postulate tells us how the quantum system changes with time.

Postulate 2 (Discrete Version). A unitary operator on the state space relates the
state of a closed quantum system at different times.

This postulate tells us that |φ1〉, the state of the system at time t1, is related to
|φ2〉, the state of the system at time t2, by a unitary operator U depending only on
t1 and t2. That is,

|φ2〉 = U |φ1〉

Let us note that just as the framework of quantum mechanics does not tell us the
state space or state of a particular quantum system, it also does not tell us which
unitary operator U describes the evolution between states at two different times; it
only assures us that such a U exists.

Example 2.3. Let us now return to the qubit of Example 2.1 and look at some
common unitary transformations on this space. The unitary transformations

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
along with the identity, make up what are known as the Pauli matrices. These are
often used in the study of quantum computation. In particular, the matrix X is
sometimes called the bit flip matrix, since it takes |0〉 to |1〉 and |1〉 to |0〉.

Another useful unitary operator in quantum computing is the Hadamard gate
given by

H =
1√
2

[
1 1
1 −1

]
Postulate 2 describes how the quantum states of a closed system at two different

times are related. This postulate can be refined to describe the evolution of a quantum
system in continuous time.

Postulate 2 (Continuous Version). In a closed quantum system, the time evolution
of the system’s state is described by the Schrödinger equation,

i~
d|φ〉
dt

= H|φ〉

where ~ is Planck’s constant and H is a fixed Hermitian operator known as the
Hamiltonian of the system.

5



To see that the discrete version of Postulate 2 agrees with with the continuous
version, observe that when H is constant with respect to t, the Schrödinger equation
yields the solution

Ut = e−itH/~

It is easy to check that Ut is the unitary operator guaranteed by the discrete version
of Postulate 2. That is, if |φ1〉 is the state of the system at time t1, and |φ2〉 is the
state of the system at time t2, then

|φ2〉 = Ut2−t1|φ1〉

When H depends on t, the solution to the Schrödinger equation is a bit more
complicated, but in the special case when Hs and Ht commute for all s, t a little
differential equations can offer the formal solution

|φt〉 = exp

(
−i
~

∫ t

0

Hs ds

)
|φ0〉

2.1.3 Measurement

Now that we know the structure of a quantum system and how this structure evolves,
we must develop a means by which to observe the system. This action of observing no
longer leaves the system closed, and thus does not require the use of unitary operators.
The next postulate describes the effects of measurement on a quantum system.

Postulate 3. Quantum measurements are described by a collection of operators
{Mm} on the state space of the system. These operators must satisfy the completeness
relation ∑

m

M∗
mMm = I

Each Mm is called a measurement operator and the index m refers to a measurement
outcome that may occur in the experiment. If the quantum system is in the state |φ〉
before a measurement takes place, then the probability that the result m occurs is
given by

p(m) = 〈φ|M∗
mMm|φ〉

Moreover, the state of the system after the measurement is

Mm|φ〉√
p(m)

Postulate 3 is a bit discouraging in that we cannot directly observe the state of a
quantum system—as the mere act of doing so destroys the current state and places
the system in another state. However, we will see that people have devised clever
methods of getting around this.
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Note that the completeness relation assures us that the probabilities of each pos-
sible outcome sum to 1. Observe∑

m

p(m) =
∑
m

〈φ|M∗
mMm|φ〉 = 〈φ|

(∑
m

M∗
mMm

)
|φ〉 = 〈φ|I|φ〉 = 〈φ|φ〉 = 1

Also, as a consequence of Postulate 3, we can make no distinction between the states
|φ〉 and eiθ|φ〉 since 〈φ|e−iθM∗

mMme
iθ|φ〉 = 〈φ|M∗

mMm|φ〉. In the state eiθ|φ〉, we call
eiθ the phase factor and we say eiθ|φ〉 is equal to |φ〉 up to a global phase factor.

Projective Measurements

An important special case of Postulate 3 is projective measurements. They are used
in many applications of quantum computation.

Postulate 3 (Projective Measurements). A Hermitian operator, M , on the state
space of the system describes a projective measurement. The operator M is called
an observable and has spectral decomposition given by

M =
∑
m

mPm

where Pm is the orthogonal projection onto the eigenspace of M with eigenvalue
m. Each eigenvalue m of the observable corresponds to a possible outcome of the
experiment. If the system is in state |φ〉 before the measurement, then the probability
of obtaining the result m is given by

p(m) = 〈φ|Pm|φ〉

and upon the outcome m occurring, the state of the system immediately after the
measurement is

Pm|φ〉√
p(m)

Remark 2.4. Often a set of projections {Pm} is provided satisfying
∑

m Pm = I and
PmPn = δmnPm. The observable is understood to be M =

∑
mmPm.

Another common practice is to measure in the basis |m〉 where {|m〉} forms an
orthonormal basis for the state space. In this case the observable is given by M =∑

mm|m〉〈m|.
Remark 2.5. Projective measurements are equivalent to the first version of Postu-
late 3, when the projective measurements are given the ability to perform unitary
transformation, as described in the discrete version of Postulate 2.

Example 2.6. Let us again consider the state space of the qubit with standard
orthonormal basis |0〉 and |1〉. Suppose the state space is in that state |φ〉 = α|0〉+β|1〉
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where α, β ∈ C. It is important to note that when performing a measurement on |φ〉,
what is actually being observed is j, where j = 0 signifies the state |0〉 and j = 1
signifies the state |1〉. Now measuring |φ〉 in the basis {|0〉, |1〉} we see that

p(0) = 〈0|φ〉〈φ|0〉 = |α|2 and p(1) = 〈1|φ〉〈φ|1〉 = |β|2

gives us the probability of observing the state |0〉 and |1〉, respectively. Also, the state
of the system after the measurement is |0〉 if measurement outcome 0 occurred and
|1〉 if measurement outcome 1 occurred.

2.1.4 Composite Systems

The next postulate describes how the state space of a quantum system can be built
from the state spaces of many distinct quantum systems. It gives us a canonical way
of describing composite systems in quantum mechanics.

Postulate 4. Suppose we have n physical systems with state spaces H1, H2, · · · , Hn,
respectively. Then the state space of the composite physical system is given by
H1⊗H2⊗· · ·⊗Hn, the tensor product of the state spaces of the component physical
systems. Moreover, if system number i is in state |φi〉, then the state of the composite
system is given by |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉.

Notation. The composite state |φ1〉⊗ |φ2〉⊗ · · ·⊗ |φn〉 is often written |φ1〉|φ2〉 · · · |φn〉
or |φ1φ2 · · ·φn〉

Example 2.7. In Example 2.1, we said that the state space of different polarizations
of n photons is given by C2n

. When considering only 1 photon we have the qubit
state space C2. So, as per Postulate 4, the state space for the composite system of
n photons is given by

⊗n
1 C2, which is canonically isomorphic to the space C2n

in
Example 2.1.

Entangled States

Perhaps the most intriguing notion arising from Postulate 4 is that of entanglement
in composite quantum systems. A state |φ〉 ∈ H1 ⊗ H2 is said to be entangled if it
cannot be written as |φ〉 = |φ1〉⊗ |φ2〉 where |φ1〉 and |φ2〉 are state vectors in H1 and
H2, respectively. A simple example of an entangled state occurs when H1 = H2 = C2,
where H1 and H2 are both given the standard orthonormal basis {|0〉, |1〉}. The state

|φ〉 =
|00〉+ |11〉√

2

is an entangled state. This can be easily verified with a wee bit of algebra.
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Chapter 3

Quantum Algorithms

Quantum Computation is the study of information processing tasks that can be car-
ried out on a quantum mechanical system. Such a system can be considered a quan-
tum computer. In this chapter we explore some of the more important algorithms
that have been developed to run on a quantum mechanical system. We begin by ex-
amining what is considered the most important tool in the development of quantum
algorithms, the quantum Fourier transform.

3.1 Fourier Transform

Suppose we are working in the vector space CN with orthonormal basis given by
{|0〉, |1〉, . . . , |N − 1〉}. We define the quantum Fourier transform to be the linear
operator F with the following effect on the orthonormal basis:

F|l〉 =
1√
N

N−1∑
k=0

e2πilk/N |k〉

To see that the quantum Fourier transform is a unitary linear operator, it suffices
to show that 〈l|F∗F|m〉 = δlm for any |l〉, |m〉 in the orthonormal basis. Observe

(3.1) 〈m|F∗F|l〉 =
1

N

N−1∑
k=0

e−2πimk/Ne2πilk/N〈k|k〉 =
1

N

N−1∑
k=0

e2πi(l−m)k/N

Now if l = m, then the above sum is 1. If l 6= m, then using the algebraic identity
1 + x+ x2 + · · ·+ xN−1 = 1−xN

1−x
the above becomes

(3.2)
1− e2πi(l−m)

1− e2πi(l−m)/N
= 0

9



3.1.1 Product Representation

We now focus on the n qubit state space C2n
with orthonormal basis {|0〉, |1〉, . . . , |2n−

1〉}. In this space, the Fourier transform has a useful representation. Before we derive
this, we adopt some notational conventions. It will be convenient to write the state
|l〉 using the binary representation l = l1l2 . . . ln, where l = l12

n−1 + l22
n−2 + . . . ln20.

We also adopt the binary fraction notation for 0.lmlm+1 . . . lp. That is

0.lmlm+1 . . . lp =
lm
2

+
lm+1

4
+ · · · lp

2p−m+1

Now we can derive the product representation for the quantum Fourier transform on
the n qubit space.

F|l〉 =
1√
2n

2n−1∑
k=0

e2πilk/2n|k〉

=
1√
2n

1∑
k1=0

· · ·
1∑

kn=0

e2πil
Pn

j=1 kj2
−j |k1 · · · kn〉 changing to binary notation

=
1√
2n

1∑
k1=0

· · ·
1∑

kn=0

n⊗
j=1

e2πilkj2
−j |kj〉

=
1√
2n

n⊗
j=1

1∑
kj=0

e2πilkj2
−j |kj〉

=
1√
2n

n⊗
j=1

[
|0〉+ e2πil2−j |1〉

]

=
1√
2n

(
|0〉+ e2πi0.ln|1〉

) (
|0〉+ e2πi0.ln−1ln|1〉

)
· · ·
(
|0〉+ e2πi0.l1l2···ln|1〉

)(3.3)

since e2πil2−j

= exp(2πil1 · · · ln−j.ln−j+1 · · · ln) = exp(2πi0.ln−j+1 · · · ln)

The product representation (3.3) for the quantum Fourier transform is very useful in
a number of quantum algorithms. In particular, it makes up the crux of the Phase
Estimation algorithm, which is discussed in the next section.

3.2 Phase Estimation

The phase estimation algorithm is the fountainhead of many other quantum algo-
rithms and relies heavily on the quantum Fourier transform. In a state space, sup-
pose we have an unitary operator U with eigenvector |φ〉 and eigenvalue e2πiu, where
u has an unknown value between 0 and 1. The phase estimation procedure finds an
approximation for u.
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3.2.1 Procedure

The phase estimation procedure requires two registers. The first register is an n
qubit state vector initialized to |0〉. The second register is initialized to the state |φ〉.

We begin by applying the Hadamard H = 1√
2

[
1 1
1 −1

]
gate to each of the n qubits

initialized to 0 to create a superposition of all the orthonormal basis states in the
state space C2n

. At the end of this step the first register is in the state

(3.4)
1√
2n

2n−1⊗
k=0

(|0〉+ |1〉) =
1√
2n

(|0〉+ |1〉) · · · (|0〉+ |1〉) =
1√
2n

2n−1∑
k=0

|k〉

For the next step we must assume we have available a black box that can perform
the controlled–U j on the vector |φ〉. That is, upon reading a |1〉 in the kth qubit, the
controlled–U2n−k

operator would apply U2n−k
to |φ〉 and would do nothing when a |0〉

is read. Black boxes such as these are often referred to as oracles. Applying such an
oracle places the first register in the state:

(3.5)
1√
2n

(
|0〉+ e2πi2n−1u|1〉

)(
|0〉+ e2πi2n−2u|1〉

)
· · ·
(
|0〉+ e2πi20u|1〉

)
Observe that (3.5) above looks strikingly similar to the product representation

of the quantum Fourier transform given in (3.3). In fact, by applying the inverse
quantum Fourier transform, F , to the above state we get an approximation for u. To
see why this is so, suppose that that u can be written using exactly n bits. That is,
u = 0.u1u2 . . . un. Then (3.5) becomes

(3.6)
1√
2n

(
|0〉+ e2πi0.un|1〉

) (
|0〉+ e2πi0.un−1un|1〉

)
· · ·
(
|0〉+ e2πi0.u1u2...un|1〉

)
Now (3.6) is exactly equal to the product representation for F|u1 . . . un〉. Therefore
applying the inverse quantum Fourier transform will give put us in the state |u1 . . . un〉,
which when measuring in the basis yields the state |u1 . . . un〉. From this we can
compute u = 0.u1u2 . . . un.

In many cases we will not be able to express the eigenvalue u using a fixed number
of bits. For an arbitrary u = 0.u1u2 . . . unun+1 . . . we can obtain an approximation ũ
for u. In fact, it can be shown that it requires

n = m+

⌈
log

(
2 +

1

2ε

)⌉
qubits to obtain an m–bit approximation, ũ, to u with a probability of success at
least 1− ε (see pages 223 and 224 in [24]).

Many interesting quantum algorithms rely heavily upon the quantum phase esti-
mation algorithm. The most famous of which is Shor’s Factoring Algorithm.
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Below we provide a summary of the the Quantum Phase Estimation algorithm.

Algorithm: Quantum Phase Estimation

Inputs: n = m+
⌈
log
(
2 + 1

2ε

)⌉
qubits initialized to 0; an eigenstate |φ〉 of U with

eigenvalue e2πiu; a black box that performs the controlled–Uk operation

Outputs: An m–bit approximation ũ to u, with probability of success at least
1− ε

Procedure:

1. Start in the initial state: |0〉|φ〉

2. Apply H⊗n ⊗ I to create superposition:

→ 1√
2n

2n−1∑
k=0

|k〉|φ〉

3. Apply the black box:

→ 1√
2n

2n−1∑
k=0

|k〉Uk|φ〉

=
1√
2n

2n−1∑
k=0

e2πiku|k〉|φ〉

4. Apply F−1 ⊗ I:
→ |ũ〉|φ〉

5. Measure the first register with respect to the basis {|0〉, |1〉, . . . , |2n − 1〉}:

→ |ũ〉

3.3 Shor’s Factoring Algorithm

Shor’s Factoring Algorithm is responsible for much of the interest surrounding the
subject of quantum computing in the past decade. This algorithm simply takes a
positive composite integer N and returns a non–trivial factor of N . What is so
remarkable is that it can accomplish this task efficiently, whereas there is no known
efficient algorithm that performs this task on a classical computer. By efficient, we
mean the algorithm runs and completes in polynomial time in the number of bits it
takes to represent the problem.

The algorithm relies on being able to find the order p of an integer a modulo N .
That is, p > 0 is the smallest integer such that ap ≡ 1 (mod N).

12



3.3.1 Order–Finding

Essentially, the quantum algorithm for order–finding boils down to applying the phase
estimation algorithm to the unitary operator defined by

U |b〉 = |ab mod N〉

where a and N are coprime with a < N . However, in order to apply the phase
estimation algorithm to U , we must know an eigenstate of U . This is the subject of
the next proposition.

Proposition 3.1. If a has order p with respect to N , then the state

|us〉 =
1
√
p

p−1∑
k=0

e−2πiks/p|ak mod N〉

is an eigenvector of U with eigenvalue e2πis/p for all integers s with 0 ≤ s ≤ r − 1.

Proof. Observe

U |us〉 =
1
√
p

p−1∑
k=0

e−2πiks/pU |ak mod N〉

=
1
√
p

p−1∑
k=0

e−2πiks/p|ak+1 mod N〉

=
1
√
p

p∑
k=1

e−2πi(k−1)s/p|ak mod N〉

= e2πis/p 1
√
p

p∑
k=1

e−2πiks/p|ak mod N〉

= e2πis/p 1
√
p

p−1∑
k=0

e−2πiks/p|ak mod N〉,

since ap ≡ a0 ( mod N) and e−2πikp/p = e−2πik0/p = 1

= e2πis/p|us〉

Since U |us〉 = e2πis/p|us〉 we have that us is an eigenvector or U with eigenvalue
e2πis/p.

The next object of concern is that preparing the eigenstate

|us〉 =
1
√
p

p−1∑
k=0

e−2πiks/p |ak mod N〉
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requires that we know the value of p, which defeats the purpose of the algorithm. To
circumvent this dilemma, we use the identity

(3.7)

p−1∑
s=0

e2πiks/p = pδk0 for k ∈ {0, 1, . . . , p− 1},

which we saw in (3.1) and (3.2), to observe that

(3.8)
1
√
p

p−1∑
s=0

e2πisk/p|us〉 = |ak mod N〉

In particular, for k = 0

(3.9)
1
√
p

p−1∑
s=0

|us〉 = |1〉

The final problem to deal with is that running the phase estimation procedure with U
and |us〉 = 1√

p

∑p−1
k=0 e

−2πiks/p|ak mod N〉 will return an approximation to s/p, where

we are only interested in p. The way to overcome this is to use continued fractions.

3.3.2 Continued Fractions Algorithm

The continued fractions algorithm provides us with a means of describing positive
real numbers using expressions of the form

[a0, a1, . . . , ak] = a0 +
1

a1 + 1

a2+
1

···+ 1
ak

where a0, a1, . . . , ak are positive integers. It allows us to express a real number in
terms of integers alone. The continued fractions algorithm determines the continued
fraction expansion for a given positive real number. To see how it works, it is best to
consider an example:

Example 3.2. To find the expansion for the rational number 41/18 we break up
41/18 into integer and fractional parts

41

18
= 2 +

5

18

Next we take the fractional part, 5/18, invert it and break it up

41

18
= 2 +

5

18
= 2 +

1
18
5

= 2 +
1

3 + 3
5
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Continuing in this manner, we find that 41/18 has the following continued fraction
expansion:

41

18
= 2 +

1

3 + 1

1+
1

1+
1
2

Thus we can write 41/18 as [2, 3, 1, 1, 2].

It is not hard to verify that the continued fraction algorithm converges after a
finite number of steps for any rational number. In fact, it can be shown that the
expansion converges fast enough that the algorithm can be performed efficiently on
a quantum or classical computer (see [33],[19], [10]).

3.3.3 Algorithm

Before we give the full procedure for the factoring algorithm, we outline the steps
of the quantum order–finding algorithm. In the following suppose N is a positive
integer that can be represented using m bits. Also suppose a < N is a positive
integer coprime to N . Below we outline the steps for the order–finding algorithm
which finds the order of a with respect to N .

Algorithm: Quantum Order–Finding

Inputs: n = 2m + 1 +
⌈
log
(
2 + 1

2ε

)⌉
qubits initialized to 0; m qubits initialized

to the state |1〉; a black box Ua which has the effect Ua|k〉|j〉 = |k〉|akjmod N〉

Outputs: The least integer p > 0 such that ap ≡ 1 (mod N).

Procedure:

1. Start in the initial state: |0〉|1〉

2. Apply H⊗n ⊗ I to create superposition:

→ 1√
2n

2n−1∑
k=0

|k〉|1〉

3. Apply the black box:

→ 1√
2n

2n−1∑
k=0

Ua|k〉|1〉

=
1√
2n

2n−1∑
k=0

|k〉|ak mod N〉

≈ 1√
p2n

p−1∑
s=0

2n−1∑
k=0

e2πiks/p|k〉|us〉 by (3.8)
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4. Apply F−1 ⊗ I:

→
p−1∑
s=0

|s̃/p〉|us〉

5. Measure the first register with respect to the basis {|0〉, |1〉, . . . , |n− 1〉}:

→ |s̃/p〉

6. Apply the continued fractions algorithm:

→ p

The reason for the approximate equality in step 3, is that 2n may not be an
integer multiple of p. This situation is taken into account by the bounds of the phase
estimation algorithm.

However, there are still a couple of ways this algorithm can fail. First, it inherits
a possibility of failure from the phase estimation algorithm. However, we saw that
this occurs with probability at most ε. The more serious situation occurs when s and
p have a factor in common. In this scenario, the number returned by the algorithm
is a factor of p and not p itself. To see how this is overcome, suppose the algorithm
returns p1, a factor of p. In the algorithm, we replace a by a1 ≡ ap1 (mod N). Note
that the order of a1 is p/p1. We then complete the algorithm with a1 and compute
p by multiplying p1 and p/p1, the results from each run. Of course, after running
the algorithm with a1 we could also produce a factor p2 of p/p1. If this happens,
we simply repeat the algorithm with a2 ≡ ap2

1 (mod N). Since each iteration of the
algorithm divides pi by a least 2, after at most dlog(p)e ≤ dlog(N)e iterations we will
be able to find p.

With the quantum order–finding algorithm in hand, we can now provide the steps
necessary for Shor’s factoring algorithm

Algorithm: Shor’s Factoring Algorithm

Inputs: A composite integer N > 0.

Outputs: A non-trivial factor of N .

Procedure:

1. If N is an even integer, return 2.

2. If N = ab for some integers a ≥ 1 and b ≥ 2, return a.

3. Choose a random a where 1 ≤ a ≤ N − 1. If gcd(a,N) > 1, then return the
factor gcd(a,N).

4. Call the quantum order–finding algorithm to find the order p of a with
respect to N .
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5. If p is odd, then go to step 1 and start over. If p is even go to step 6.

6. If ap/2 ≡ −1( mod N), then go to step 1 and start over. Otherwise, compute
gcd(ap/2−1, N) and gcd(ap/2+1, N), test to see which one of these is a nontrivial
factor, and return the factor.

The first step guarantees that N is an odd integer. For the second step, there
is an efficient classical algorithm which determines if N = ab (see page 234 in [24]).
At the end of the third step, we either have a factor or we have to use the quantum
order–finding algorithm in the fourth step. In the fifth step, the probability that p is
odd is only (1

2
)k where k is the number of distinct prime factors of N . (see [19] and

[33]).
To see why we get a nontrivial factor in step 6 note that since ap ≡ 1 (mod N), N

must divide ap − 1 = (ap/2 − 1)(ap/2 + 1), using that p is even from step 5. Therefore
N must have a common factor with either (ap/2 − 1) or (ap/2 + 1). To see that this
factor is nontrivial observe that since p is the order of a and p is even, a cannot be
1. Thus either gcd(ap/2 − 1, N) or gcd(ap/2 + 1, N) is not equal to 1. Also, since p is
the least integer such that ap ≡ 1 (mod N), we cannot have ap/2 − 1 ≡ 0 (mod N).
And step 6 checks to make sure that we do not have ap/2 ≡ −1( mod N). Thus the
gcd(ap/2 − 1, N) and gcd(ap/2 + 1, N) cannot be N .

3.4 Quantum Period Finding Algorithm

Looking back at the quantum order–finding algorithm, we see that what truly takes
place is that the algorithm finds the period of the integer function f(r) = ar mod N .
Not surprisingly this algorithm can be generalized to an algorithm that finds the
period p of a function f : N → {0, 1} where 0 < p < 2m for some integer m. All we
need for such an algorithm is an oracle Uf that performs the unitary transformation
U |k〉|j〉 = |k〉|j ⊕ f(k)〉 where ⊕ denotes addition modulo 2. Below we outline the
steps of the quantum period–finding algorithm:

Algorithm: Quantum Period–Finding

Inputs: n = O(m+log(1/ε)) qubits initialized to 0; 1 qubit initialized to the state
|0〉 for the function evaluation; a black box Uf which performs the operation
U |k〉|j〉 = |k〉|j ⊕ f(k)〉

Outputs: The least integer p > 0 such that f(k + p) = f(k).

Procedure:

1. Start in the initial state: |0〉|0〉
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2. Apply H⊗n ⊗ I to create superposition:

→ 1√
2n

2n−1∑
k=0

|k〉|0〉

3. Apply the black box Uf :

→ 1√
2n

2n−1∑
k=0

Uf |k〉|0〉

=
1√
2n

2n−1∑
k=0

|k〉|f(k)〉

≈ 1√
p2n

p−1∑
s=0

2n−1∑
k=0

e2πiks/p|k〉|f̃(s)〉

4. Apply F−1 ⊗ I:

→
p−1∑
s=0

|s̃/p〉|f̃(s)〉

5. Measure the first register with respect to the basis {|0〉, |1〉, . . . , |n− 1〉}:

→ |s̃/p〉

6. Apply the continued fractions algorithm:

→ p

The only difference between this algorithm and the quantum order–finding algo-
rithm is in step 3 when we introduced the state |f̃(s)〉 which we now define as

|f̃(s)〉 =
1
√
p

p−1∑
k=0

e2πisk/p|f(k)〉

This is simply the Fourier transform of |f(k)〉. The identity in step 3 comes from

|f(k)〉 =
1
√
p

p−1∑
s=0

e2πisk/p|f̃(s)〉

This is easy to verify by observing that
∑p−1

s=0 e
2πisk/p = p if k is an integer multiple

of p and zero otherwise.

18



3.5 Continuous Variable Order Finding Algorithm

Up to this point, we have been primarily focused on algorithms involving finite dimen-
sional state spaces. In this section we begin to explore quantum algorithms designed
to operate on a state space of infinite dimension. In particular, we will describe a
continuous variable version of Shor’s order finding algorithm. This algorithm is due
to Lomonaco and Kauffman [20]. We will not provide a mathematically rigorous con-
struction and implementation of the algorithm, as this will take us too far off course.
However, we do provide an overview of the algorithm at a formal level with some
examples and descriptions of how to make it rigorous.

3.5.1 Description

Recall that the original quantum Order Finding algorithm found the period p of an
integer function

φ : Z → Z mod N

In particular, for Shor’s factoring algorithm, φ was taken to be φ(r) = ar mod N for
some positive integer a.

With the continuous variable ordering finding algorithm, we would like to develop
a quantum algorithm to find the period p of a function φ : R → C.

3.5.2 Rigged Hilbert Spaces

In order to develop such an algorithm, we will have to momentarily abandon the struc-
ture of a Hilbert space and work with a rigged Hilbert Space, also known as a Gel’fand
triple. In particular, we will use the rigged Hilbert Space (S(R), L2(R),S ′(R)), where
S(R) is the space of test functions and S ′(R) is the space of generalized functions or
distributions. For a treatment of test functions and distributions see Rudin [31].

The most common generalized function, and the one we will be most concerned
with is the Dirac delta function, δ(x), which has the following effect∫

R
δ(x)f(x) dx = f(0)

for suitable f (bounded, continuous functions, for instance).
We will use the notation HR for our rigged Hilbert space. This space has or-

thonormal basis
{|x〉;x ∈ R}

where by orthonormal we mean that

〈x|y〉 = δ(x− y)
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For a function f in L2(R) or S ′(R), we have the element in HR given by the formal
integral ∫

R
dx f(x)|x〉

(In this sense, |y〉 can be thought of as the delta function at y, δ(x− y).)
For a particular x0, we define

|x0〉 =

∫
R
dx 〈x0|x〉|x〉 =

∫
R
dx δ(x− x0)|x〉

which gives us the following:

〈x0|y0〉 = δ(x0 − y0)

We will also make use of the rigged Hilbert space HC which is defined in an
analogous manner.

3.5.3 Generalized Fourier Transform

In the continuous variable ordering finding algorithm, the periodic function φ is taken
to be Lebesgue integrable on every closed subinterval of R. We call such a function
admissible.

Remark 3.3. We have chosen one suitable definition of admissible functions. However,
there are many definitions for which the algorithm will still provide a solution. In this
sense, admissible can be taken to mean any such function for which the algorithm
can provide a solution.

Since φ is not assumed to be in L2(R) or L1(R), the usual definition of the Fourier
transform cannot be applied. We will define the Fourier transform on an periodic
admissible function as follows:

Definition 3.4. Let φ : R → C be a periodic admissible function with minimum
period p. The Fourier transform of φ is given by

(Fφ)(y) = δp(y)

∫ p

0

dx e−2πixyφ(x)

where

δp(y) =
1

|p|

∞∑
n=−∞

δ
(
y − n

p

)
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This definition of the Fourier transform is motivated by the following calculation:∫
R
dx e−2πixyφ(x) =

∞∑
n=−∞

∫ (n+1)p

np

dx e−2πixyφ(x)

=
∞∑

n=−∞

∫ p

0

dx e−2πi(x+np)yφ(x+ np) by a change of variables

=
∞∑

n=−∞

e−2πinpy

∫ p

0

dx e−2πixyφ(x) by the periodicity of φ

=
∞∑

n=−∞

1

|p|
δ
(
y − n

p

) ∫ p

0

dx e−2πixyφ(x) by Lemma 3.5 below

= δp(y)

∫ p

0

dx e−2πixyφ(x)

The calculation above relies heavily on the distribution equality

∞∑
n=−∞

e−2πinpy =
∞∑

n=−∞

1

|p|
δ
(
y − n

p

)
Since it is not very intuitive, we provide a rigorous proof.

Lemma 3.5. As distributions we have the equality

(3.10)
∞∑

n=−∞

e−2πinpy =
∞∑

n=−∞

1

|p|
δ
(
y − n

p

)
This is a form of the Poisson summation formula.

Proof. Let f ∈ C∞(R) be a rapidly decreasing function. That is,

sup
n

sup
x∈R

(1 + x2)n|f (n)(x)| <∞

We first show:

(3.11)
∞∑

m=−∞

f
(
x+ m

p

)
= p

∞∑
m=−∞

f̂(mp)e−2πimpx

where f̂ denotes the usual Fourier transform of the function f and p > 0.
Let F (x) =

∑∞
n=−∞ f(x + n

p
). Observe that the sum is absolutely and uniformly

convergent. Also F is periodic with period 1
p
. Thus F has Fourier expansion F (x) =
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∑∞
m=−∞ ame

−2πimpx where

am = p

∫ 1/p

0

F (x)e−2πimpx dx

= p

∫ 1/p

0

∞∑
n=−∞

f
(
x+ n

p

)
e−2πimpx dx

= p

∫
R
f(x)e−2πimpx dx by the Fubini Theorem

= pf̂(mp)

Therefore

∞∑
n=−∞

f(x+ n
p
) = F (x) =

∞∑
m=−∞

ame
−2πimpx = p

∞∑
m=−∞

f̂(mp)e−2πimpx

which establishes (3.11).
Now for any such function f we have∫

R

∞∑
n=−∞

e−2πinpyf(y) dy =
∞∑

n=−∞

∫
R
e−2πinpyf(y) dy again by Fubini

=
∞∑

n=−∞

f̂(np)

=
1

p

∞∑
n=−∞

f
(

n
p

)
by (3.11)

=

∫
R

1

p

∞∑
n=−∞

δ
(
y − n

p

)
f(y) dy

by the definition of the right side in (3.10).

This proves the equality we are after.

3.5.4 Algorithm

With our Fourier transform in hand we can construct an algorithm for finding the
minimum period p of

φ : R → C

where φ is a periodic admissible function. For clarity, we begin by assuming that p is
an integer. This algorithm follows the same general procedure as the quantum order
finding algorithm which was discussed in section 3.3.1.
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For the algorithm we will work in the state space HR⊗HC. We will use an element
in HR to hold arguments of the function φ and another element in HC to hold the
values of φ. We will also make use of a black box

Uφ : HR ⊗HC → HR ⊗HC

which performs the operation

Uφ|x〉|y〉 = |x〉|y + φ(x)〉
We now outline the algorithm:

Algorithm: Continuous Variable Order–Finding

Inputs: an element in HR initialized to |0〉; an element in HC initialized to |0〉 for
function evaluation; a black box Uφ which has the effect Uφ|x〉|y〉 = |x〉|y+φ(x)〉;
a positive integer q such that q ≥ 2p2.

Outputs: The least integer p > 0 such that φ(x+ p) = φ(x).

Procedure:

1. Start in the initial state: |0〉|0〉

2. Apply F−1 ⊗ I to create superposition:

→
∫

R
dx e2πix·0|x〉|0〉 =

∫
R
dx |x〉|0〉

3. Apply the black box Uφ:

→
∫

R
dx |x〉|φ(x)〉

4. Apply F ⊗ I:

→
∫

R
dy

∫
R
dx e−2πixy|y〉|φ(x)〉 =

∫
R
dy |y〉

∞∑
n=−∞

∫ (n+1)p

np

dx e−2πixy|φ(x)〉

=

∫
R
dy |y〉

∞∑
n=−∞

∫ p

0

dx e−2πi(x+np)y|φ(x+ np)〉

=

∫
R
dy |y〉

∞∑
n=−∞

e−2πinpy

∫ p

0

dx e−2πixy|φ(x+ np)〉

=

∫
R
dy |y〉δp(y)

∫ p

0

dx e−2πixy|φ(x)〉

=
∞∑

n=−∞

|n/p〉
(

1

|p|

∫ p

0

dx e
−2πix

n
p |φ(x)〉

)

=
∞∑

n=−∞

|n/p〉|Ω(n/p)〉

23



where

|Ω(n/p)〉 =
1

|p|

∫ p

0

dx e
−2πix

n
p |φ(x)〉

5. Measure the first register with respect to the observable

M =

∫
R
dy
bqyc
q
|y〉〈y|

where bqyc denotes the greatest integer less than qy.

Measuring produces an eigenvalue

m

q

6. Use continued fraction recursion to find p.

Let us examine the final two steps of the algorithm in greater detail. Note that
the spectral decomposition of the observable M is given by

M =

∫
R
dy
bqyc
q
|y〉〈y| =

∞∑
m=−∞

Pm

where Pm is the project operator given by

Pm =

∫ m+1
q

m
q

dy |y〉〈y|

Measuring the state
∑∞

n=−∞ |n/p〉|Ω(n/p)〉 will produce an eigenvalue m
q

where there
exist some integer n for which we have

m

q
≤ n

p
≤ m+ 1

q

Using this we must determine the value of p.
It turns out that by selecting q ≥ 2p2, the fraction n

p
is a convergent of the

continued fraction expansion of the eigenvalue m
q
. Thus, after determining n

p
, we can

use the continued fraction algorithm (see subsection 3.3.2) to find the value of p.
For more on the continuous variable ordering finding algorithm refer to the original

paper by Lomonaco and Kauffman [20]. In the paper, they describe how to extend
the algorithm to find the period p of φ when p is a rational or irrational number.
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3.6 Hidden Subspace Algorithm

Let E be a Hilbert space with inner–product 〈·, ·〉. Further suppose we have a func-
tional φ : E → Rn with a hidden subspace V ⊂ E such that

φ(x+ v) = φ(x) for all v ∈ V

The Hidden Subspace Algorithm attempts to find the hidden subspace V . The algo-
rithm we present is based on the work of Lomonaco and Kauffman [21]. We will follow
the same general procedure found in the continuous variable order finding algorithm.

Remark 3.6. As the authors admit, the algorithm is “highly speculative”. It is based
on functional integrals, and uses a Lebesgue type measure, Dx on E, which does not
exist. The algorithm calculations are all done at a very formal level.

We will need two rigged Hilbert spaces. The first we denote by HE. It is the
rigged Hilbert space with orthonormal basis

{|x〉;x ∈ E}

where we have the bracket product defined as

〈x|y〉 = δ(x− y)

We will also need the rigged Hilbert space HRn , which can be defined in an analogous
manner to the rigged Hilbert space HR found in section 3.5.2.

For the algorithm we will need an element in HE to hold arguments of the function
φ and another element in HRn to hold the values of φ. We will also make use of a
black box

Uφ : HE ⊗HRn → HE ⊗HRn

which performs the operation

Uφ|x〉|z〉 = |x〉|z + φ(x)〉

Remark 3.7. The algorithm also relies heavily on the following identity:

(3.12)

∫
V ⊥

δ(y − u)Du =

∫
V

e−2πi〈v,y〉Dv

This identity is not obvious and is studied in great detail in chapter 6.

We now outline the algorithm:

Algorithm: Hidden Subspace

Inputs: the elements |0〉 ∈ HE and |0〉 ∈ HRn ; a black box Uφ which has the effect
Uφ|x〉|z〉 = |x〉|z + φ(x)〉;
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Outputs: a vector u ∈ V ⊥

Procedure:

1. Start in the initial state: |0〉|0〉 ∈ HE ⊗HRn

2. Apply F−1 ⊗ I to create superposition:

→
∫

E

Dxe2πi〈x,0〉|x〉|0〉 =

∫
R
Dx |x〉|0〉

3. Apply the black box Uφ:

→
∫

E

Dx |x〉|φ(x)〉

4. Apply F ⊗ I:

→
∫

E

Dy

∫
E

Dxe−2πi〈x,y〉|y〉|φ(x)〉 =

∫
E

Dy |y〉
∫

E

Dxe−2πi〈x,y〉|φ(x)〉

=

∫
E

Dy |y〉
∫

V

Dv

∫
v+V ⊥

Dxe−2πi〈x,y〉|φ(x)〉 using that E =
⋃
v∈V

(v + V ⊥)

=

∫
E

Dy |y〉
∫

V

Dv

∫
V ⊥

Dxe−2πi〈x+v,y〉|φ(x+ v)〉 by a change of variables

=

∫
E

Dy |y〉
∫

V

Dv e−2πi〈v,y〉
∫

V ⊥
Dxe−2πi〈x,y〉|φ(x)〉 since φ(x+ v) = φ(x)

=

∫
E

Dy |y〉
∫

V ⊥
Duδ(y − u)

∫
V ⊥

Dxe−2πi〈x,y〉|φ(x)〉 by equation (3.12)

=

∫
V ⊥

Du |u〉
∫

V ⊥
Dxe−2πi〈x,u〉|φ(x)〉

=

∫
V ⊥

Du |u〉|Ω(u)〉

where

|Ω(u)〉 =

∫
V ⊥

Dxe−2πi〈x,u〉|φ(x)〉

5. Measure the first register with respect to the observable

M =

∫
E

Dw |w〉〈w|

to produce a random vector u ∈ V ⊥
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Remark 3.8. In the original algorithm by Lomonaco and Kauffman [21], E was taken
to be the space Paths of all functions (paths) x : [0, 1] → Rn which are L2 with
respect to the inner–product

x · y =

∫ 1

0

dt x(t)y(t)

and the measure Dx, was taken in line with Feynman path integrals.

This algorithm provides much of the motivation for the work to follow in chapters
6, 7, and 8. We focus on making the notions introduced by this algorithm mathemat-
ically rigorous. To do this we will need the mathematical machinery of White Noise
Analysis or Infinite Dimensional Distribution Theory. The next chapters introduce
the concepts necessary for working in this subject.

27



Chapter 4

Topological Vector Spaces

In this chapter we study the weak, strong, and inductive topologies on the dual of
a countably–normed space. We see that under certain conditions the strong and
inductive topologies coincide (and are also equivalent with the Mackey topology,
which is introduced later). We also examine and compare the σ–fields generated
by these topologies to see that under reasonable conditions all the σ–fields are in fact
equivalent. This σ–field will serve as the Borel σ–field.

4.1 Basic Notions of Topological Vector Spaces

In this section we review the basic notions of topological vector spaces along and
provide proofs a few useful results.

4.1.1 Topological Preliminaries

Let E be a real vector space.
A vector topology τ on E is a topology such that addition E × E → E : (x, y) 7→

x + y and scalar multiplication R × E → E : (t, x) 7→ tx are continuous. If E is a
complex vector space we require that C× E → E : (α, x) 7→ αx be continuous.

It is useful to observe that when E is equipped with a vector topology, the trans-
lation maps

tx : E → E : y 7→ y + x

are continuous, for every x ∈ E, and are hence also homeomorphisms since t−1
x = t−x.

A topological vector space is a vector space equipped with a vector topology.
Recall that a local base of a vector topology τ is a family of open sets {Uα}α∈I

containing 0 such that if W is any open set containing 0 then W contains some Uα.
A set W that contains an open set containing x is called a neighborhood of x. If U
is any open set and x any point in U then U − x is an open neighborhood of 0 and
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hence contains some Uα, and so U itself contains a neighborhood x+ Uα of x:

(4.1) If U is open and x ∈ U then x+ Uα ⊂ U , for some α ∈ I

Doing this for each point x of U , we see that each open set is the union of translates
of the local base sets Uα.

If Ux denotes the set of all neighborhoods of a point x in a topological space X,
then Ux has the following properties:

(1) x ∈ U for all U ∈ Ux

(2) if U ∈ Ux and V ∈ Ux, then U ∩ V ∈ Ux

(3) if U ∈ Ux and U ⊂ V , then V ∈ Ux.

(4) if U ∈ Ux, then there is some V ∈ Ux with U ∈ Uy for all y ∈ V . (taking V to
be the interior of U is sufficient).

Conversely if X is any set and a non-empty collection of subsets Ux is given for each
x ∈ X, then when the conditions above are satisfied by the Ux, exactly one topology
can be defined on X in such a way to make Ux the set of neighborhoods of x for each
x ∈ X. A set V ⊂ X is called open if for each x ∈ V , there is a U ∈ Ux with U ⊂ V .
[29]

In most cases of interest a topological vector space has a local base consisting of
convex sets. We call such spaces locally convex topological vector spaces.

In a topological vector space there is the notion of bounded sets. A set D in a
topological vector space is said to be bounded, if for every neighborhood U of 0 there
is some λ > 0 such that D ⊂ λU . If {Uα}α∈I is a local base, then it is easily seen that
D is bounded if and only if to each Uα there corresponds λα > 0 with D ⊂ λαUα. [29]

A set A in a vector space E is said to be absorbing if given any x ∈ E there is
an η such that x ∈ λA for all |λ| ≥ η. The set A is called balanced if, for all x ∈ A,
λx ∈ A whenever |λ| ≤ 1. Also, a set A in a vector space E is call symmetric if
−A = A. Finally, although the next concept is very common, the term we use for it
is not, so we make a formal definition:

Definition 4.1. A subset A of a topological space X is limit point compact if every
infinite subset of A has a limit point.

Remark 4.2. The term limit point compact is not the standard term for spaces with
the above property. In fact, I do not believe there is a standard term. I have seen it
called “Fréchet compactness”, “relative sequential compactness”, and the “Bolzano-
Weierstrass property”. The term limit point compact was taken directly from Munkres
[23]. It is my personal favorite term; at the very least it is descriptive.

4.1.2 Bases in Topological Vector Spaces

Here we take the time to prove some general, but very useful, results about local
bases for topological vector spaces. Most of the results in this subsection are taken
from Robertson [29].
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Lemma 4.3. Every topological vector space E has a base of balanced neighborhoods.

Proof. Let U be a neighborhood of 0 in E. Consider the function h : C × E → E
given by h(λ, x) = λx. Since E is a topological vector space, h is continuous at
λ = 0, x = 0. So there is a neighborhood V and ε > 0 with λx ∈ U for |λ| ≤ ε and
x ∈ V . Hence λV ⊂ U for |λ| ≤ ε. Therefore ε

α
V ⊂ U for all α with |α| ≥ 1. Thus

εV ⊂ U ′ =
⋂
|α|≥1 αU ⊂ U . Now since V is a neighborhood of 0 so is εV . Hence

U ′ is a neighborhood of 0. If x ∈ U ′ and 0 ≤ |λ| ≤ 1, then for |α| ≥ 1, we have
x ∈ α

λ
U (since

∣∣α
λ

∣∣ ≥ 1). So λx ∈ αU for |λ| ≤ 1. Hence λx ∈ U ′. Therefore U ′ is
balanced.

Lemma 4.4. Let E be a vector space. Let B be a collection of subsets of E satisfy-
ing:

(i) if U, V ∈ B, then there exist W ∈ B with W ⊂ U ∩ V .

(ii) if U ∈ B and λ 6= 0, then λU ∈ B.

(iii) if U ∈ B, then U is balanced, convex, and absorbing.

Then there is a topology making E a locally convex topological vector space with B the
base of neighborhoods of 0.

Proof. Let A be the set of all subsets of E that contain a set of B. For each x take
x +A to be the set of neighborhoods of x. We need to see that (1)-(4) are satisfied
from subsection 4.1.1.

For (1), we have to show x ∈ A for all A ∈ x+A. Note that since each U ∈ B is
absorbent, there exists a non-zero λ such that 0 ∈ λU . But then 0 ∈ λ−1λU = U . So
each U ∈ B contains 0. So x ∈ A for all A ∈ x+A.

For (2), we have to show that if A,B ∈ A, then (x + A) ∩ (x + B) ∈ x + A for
each x ∈ E. Recall U ⊂ A and V ⊂ B for some U, V ∈ B. So U ∩ V ⊂ A ∩ B. By
the first hypothesis, there is a W ∈ B with W ⊂ U ∩ V ⊂ A ∩ B. Thus A ∩ B ∈ A
and hence (x+ A) ∩ (x+B) ∈ x+A for each x ∈ E.

Next (3) is clear from the definition of A, since if A ∈ A and A ⊂ B then B ∈ A.
Finally for (4), we must show that if x+ A ∈ x+A, then there is an V ∈ x+A

with x + A ∈ y + A for all y ∈ V . If A ∈ A take a U ∈ B with U ⊂ A. Now we
see that x + A is a neighborhood of each point y ∈ x + 1

2
U . Since y ∈ x + 1

2
U we

have y − x ∈ 1
2
U . Thus y − x + 1

2
U ⊂ 1

2
U + 1

2
U ⊂ A. Hence y + 1

2
U ⊂ x + A. Thus

x− y + A ⊃ 1
2
U . So x− y + A ∈ A. Therefore y + x− y + A = x+ A ∈ y +A.

To prove continuity of addition, let U ∈ B. Then if x ∈ a + 1
2
U and y ∈ b + 1

2
U ,

we have x+ y ∈ a+ b+ U .
Finally, to see that scalar multiplication, λx, is continuous at x = a, λ = α, we

should find δ1 and δ2 such that λx− αa ∈ U whenever |λ− α| < δ1 and x ∈ a+ δ2U .
Since U is absorbing, there is a η with a ∈ ηU . Take δ1 so that 0 < δ1 <

1
2η

and take
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δ2 so that 0 < δ2 <
1

2(|α|+δ1)
. Now observe

λx− αa = λ(x− a) + (λ− α)a

∈ (|α|+ δ1)δ2U + δ1ηU

⊂ 1

2
U +

1

2
U ⊂ U

Thus we are done.

4.1.3 Topologies Generated by Families of Topologies

Let {τα}α∈I be a collection of topologies on a space. It is natural and useful to
consider the the least upper bound topology τ , i.e. the coarsest topology containing
all sets of ∪α∈Iτα. In our setting, we work with each τα a vector topology on a vector
space E.

Theorem 4.5. The least upper bound topology τ of a collection {τα}α∈I of vector
topologies is again a vector topology. If {Wα,i}i∈Iα is a local base for τα then a local
base for τ is obtained by taking all finite intersections of the form Wα1,i1∩· · ·∩Wαn,in.

Proof. Let B be the collection of all sets which are of the form Wα1,i1 ∩ · · · ∩Wαn,in .
Let τ ′ be the collection of all sets which are unions of translates of sets in B

(including the empty union). Our first objective is to show that τ ′ is a topology on
E. It is clear that τ ′ is closed under unions and contains the empty set. We have to
show that the intersection of two sets in τ ′ is in τ ′. To this end, it will suffice to prove
the following:

If C1 and C2 are sets in B, and x is a point in

the intersection of the translates a+ C1 and b+ C2,(4.2)

then x+ C ⊂ (a+ C1) ∩ (b+ C2) for some C in B.

Clearly, it suffices to consider finitely many topologies τα. Thus, consider vector
topologies τ1, ..., τn on E.

Let Bn be the collection of all sets of the form B1 ∩ · · · ∩ Bn with Bi in a local
base for τi, for each i ∈ {1, ..., n}. We can check that if D,D′ ∈ Bn then there is an
G ∈ Bn with G ⊂ D ∩D′.

Working with Bi drawn from a given local base for τi, let z be a point in the
intersection B1 ∩ · · · ∩ Bn. Then there exist sets B′

i, with each B′
i being in the local

base for τi, such that z + B′
i ⊂ Bi (this follows from our earlier observation (4.1)).

Consequently,
z + ∩n

i=1B
′
i ⊂ ∩n

i=1Bi

Now consider sets C1 an C2, both in Bn. Consider a, b ∈ E and suppose x ∈ (a+C1)∩
(b+C2). Then since x−a ∈ C1 there is a set C ′

1 ∈ Bn with x−a+C ′
1 ⊂ C1; similarly,
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there is a C ′
2 ∈ Bn with x− b+C ′

2 ⊂ C2. So x+C ′
1 ⊂ a+C1 and x+C ′

2 ⊂ b+C2. So

x+ C ⊂ (a+ C1) ∩ (b+ C2),

where C ∈ Bn satisfies C ⊂ C1 ∩ C2.
This establishes (4.2), and shows that the intersection of two sets in τ ′ is in τ ′.
Thus τ ′ is a topology. The definition of τ ′ makes it clear that τ ′ contains each τα.

Furthermore, if any topology σ contains each τα then all the sets of τ ′ are also open
relative to σ. Thus

τ ′ = τ,

the topology generated by the topologies τα.
Observe that we have shown that if W ∈ τ contains 0 then W ⊃ B for some

B ∈ B.
Next we have to show that τ is a vector topology. The definition of τ shows that

τ is translation invariant, i.e. translations are homeomorphisms. So, for addition,
it will suffice to show that addition E × E → E : (x, y) 7→ x + y is continuous at
(0, 0). Let W ∈ τ contain 0. Then there is a B ∈ B with 0 ∈ B ⊂ W . Suppose
B = B1 ∩ · · · ∩Bn, where each Bi is in the given local base for τi. Since τi is a vector
topology, there are open sets Di, D

′
i ∈ τi, both containing 0, with

Di +D′
i ⊂ Bi

Then choose Ci, C
′
i in the local base for τi with Ci ⊂ Di and C ′

i ⊂ D′
i. Then

Ci + C ′
i ⊂ Bi

Now let C = C1 ∩ · · · ∩Cn, and C ′ = C ′
1 ∩ · · · ∩C ′

n. Then C,C ′ ∈ B and C +C ′ ⊂ B.
Thus, addition is continuous at (0, 0).

Now consider the multiplication map R×E → E : (t, x) 7→ tx. Let (s, y), (t, x) ∈
R× E. Then

sy − tx = (s− t)x+ t(y − x) + (s− t)(y − x)

Suppose F ∈ τ contains tx. Then

F ⊃ tx+W ′,

for some W ′ ∈ B. Using continuity of the addition map

E × E × E → E : (a, b, c) 7→ a+ b+ c

at (0, 0, 0), we can choose W1,W2,W3 ∈ B with W1 +W2 +W3 ⊂ W ′. Then we can
choose W ∈ B, such that

W ⊂ W1 ∩W2 ∩W3

Then W ∈ B and
W +W +W ⊂ W ′
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Suppose W = B1 ∩ · · · ∩ Bn, where each Bi is in the given local base for the vector
topology τi. Then for s close enough to t, we have (s− t)x ∈ Bi for each i, and hence
(s − t)x ∈ W . Similarly, if y is τ–close enough to x then t(y − x) ∈ W . Lastly, if
s − t is close enough to 0 and y is close enough to x then (s − t)(y − x) ∈ W . So
sy − tx ∈ W ′, and so sy ∈ F , when s is close enough to t and y is τ–close enough to
x.

The above result makes it clear that if each τα has a convex local base then so
does τ . Note also that if at least one τα is Hausdorff then so is τ .

A family of topologies {τα}α∈I is directed if for any α, β ∈ I there is a γ ∈ I such
that

τα ∪ τβ ⊂ τγ

In this case every open neighborhood of 0 in the generated topology contains an open
neighborhood in one of the topologies τγ.

4.2 Countably–Normed Spaces

We begin with the basic definition of a countably–normed space and a countably–
Hilbert space.

Definition 4.6. Let V be a topological vector space over C with topology given by a
family of norms {| · |n;n = 1, 2, . . .}. Then V is a countably–normed space. The space
V is called a countably–Hilbert space if each | · |n is an inner product norm and V is
complete with respect to its topology.

Remark 4.7. By considering the new norms ‖v‖n = (
∑n

k=1 |v|k
2)

1
2 we may assume

that the family of norms {| · |n;n = 1, 2, . . .} is increasing, i.e.

|v|1 ≤ |v|2 ≤ · · · ≤ |v|n ≤ · · · ,∀v ∈ V

If V is a countably–normed space, we denote the completion of V in the norm
| · |n by Vn. Then Vn is by definition a Banach space. Also in light of Remark 4.7 we
can assume that

V ⊂ · · · ⊂ Vn+1 ⊂ Vn ⊂ · · · ⊂ V1

Lemma 4.8. The inclusion map from Vn+1 into Vn is continuous.

Proof. Consider an open neighborhood of 0 in Vn given by

Bn(0, ε) = {v ∈ Vn; |v|n < ε}

Let in+1,n : Vn+1 → Vn be the inclusion map. Now

i−1
n+1,n(Bn(0, ε)) = {v ∈ Vn+1; |v|n < ε} ⊃ Bn+1(0, ε) since |v|n ≤ |v|n+1

Therefore in+1,n is continuous.
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Proposition 4.9. Let V be a countably–normed space. Then V is complete if and
only if V =

⋂∞
n=1 Vn.

Proof. Suppose V =
⋂∞

n=1 Vn and {vk}∞k=1 is Cauchy in V . By definition {vk}∞k=1 is
Cauchy in Vn for all n. Since Vn is complete, a limit v(n) exist in Vn. Using that the
inclusion map in+1,n : Vn+1 → Vn is continuous (by Lemma 4.8) and that

V ⊂ · · · ⊂ Vn+1 ⊂ Vn ⊂ · · · ⊂ V1

we have that all the v(n) are the same and belong to each Vn. Thus they are in
V =

⋂∞
n=1 Vn. Let us call this element v ∈ V .

Since |vk − v(n)|m → 0 for all m we have that |vk − v|m → 0 for all m. Hence
v = limk→∞ vk in V . Thus V is complete.

Conversely, let V be complete and take v ∈
⋂∞

n=1 Vn. We need to show v is in V .
For each n we can find vn ∈ V such that |v − vn|n < 1

n
(using that V is dense in Vn).

Now for any k < n we have |v − vn|k ≤ |v − vn|n < 1
n
. Thus limn→∞ |v − vn|k = 0.

This gives us that {vn} is Cauchy with respect to all norms | · |k where k = 1, 2, . . .
Let v = limn→∞ vn in V . Since for all k we have v, v ∈ Vk and limn→∞ |v−vn|k = 0,

we see that v = v. Thus v ∈ V and we have V ⊃
⋂∞

n=1 Vn. That V ⊂
⋂∞

n=1 Vn is
obvious, since V ⊂ Vn for all n.

4.2.1 Open Sets in V

In light of Theorem 4.5, we see that a local base for V is given by sets of the form:

B = Bn1(ε1) ∩Bn2(ε2) ∩ · · · ∩Bnk
(εk)

where Bni
(εi) = {v ∈ V ; |v|ni

< εi} is the | · |ni
unit ball of radius εi in V .

Proposition 4.10. Let V be a countably–normed space. For every element B of the
local base for V there exist n and ε > 0 such that Bn(ε) ⊂ B.

Proof. Let B = Bn1(ε1) ∩ Bn2(ε2) ∩ · · · ∩ Bnk
(εk) be an element of the local base for

V . Then take n = max1≤j≤k nj and ε = min1≤j≤k εj. Observe Bn(ε) ⊂ B since for
v ∈ Bn(ε) we have |v|nj

≤ |v|n < ε ≤ εj for any j ∈ {1, 2, . . . , k}. Thus v ∈ B.

Corollary 4.11. Let V be a countably–normed space. Then a local base for V is
given by the collection {Bn

(
1
k

)
}∞n,k=1.

Corollary 4.12. Let V be a countably–normed space. Then a local base for V is
given by the collection {Bk

(
1
k

)
}∞k=1. Moreover we have that B1(1) ⊃ B2

(
1
2

)
⊃ · · ·

Proof. Let U be a neighborhood of 0. By Corollary 4.11 there are positive integers n
and k such that Bn( 1

k
) ⊂ U . If n ≥ k, we have that Bn

(
1
n

)
⊂ Bn

(
1
k

)
since 1

n
≤ 1

k
. If

n ≤ k, then Bk

(
1
k

)
⊂ Bn

(
1
k

)
since |v|k < 1

k
gives us that |v|n ≤ |v|k < 1

k
.

For m ≥ k we have that Bm

(
1
m

)
⊂ Bk

(
1
k

)
since |v|k ≤ |v|m and 1

m
< 1

k
.
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4.2.2 Bounded Sets in V

Recall that a subset D of a countably–normed space V is said to be bounded if for
any neighborhood U of zero in V there is a positive number λ such that D ⊂ λU (see
subsection 4.1.1). This leads us to the following useful proposition:

Proposition 4.13. A set D in a countably–normed space V is bounded if and only
if supv∈D |v|n <∞ for all n ∈ {1, 2, . . .}.

Proof. (⇒) Suppose D is a bounded set in V . Take the open neighborhood Bn(1) =
{v ∈ V ; |v|n < 1} in V . Since D is bounded in V there is an λ > 0 such that D ⊂
λBn(1). Thus supv∈D |v|n ≤ λ.

(⇐) Suppose U is a neighborhood of 0 in V . Then by Proposition 4.10 there is
an Bn(ε) ⊂ U . Let supv∈D |v|n = M < ∞. Then D ⊂ M+1

ε
Bn(ε) ⊂ M+1

ε
U . So D is

bounded.

4.2.3 The Dual

Again take V to be a countably–normed space associated with an increasing sequence
of norms {| · |n}∞n=1 and let Vn be the completion of V with respect to the norm | · |n.
We denote the dual space of V by V ′. Let 〈· , ·〉 denote the bilinear pairing of V ′ and
V .

Of course, each Banach space Vn also has a dual, which we denote by V ′
n. We

use the notation to | · |−n to denote the operator norm on the Banach space V ′
n. The

relationship between V ′ and each V ′
n is discussed in the next proposition.

Proposition 4.14. The dual of a countably–normed space V is given by V ′=
⋃∞

n=1 V
′
n

and we have the inclusions

V ′
1 ⊂ · · · ⊂ V ′

n ⊂ V ′
n+1 ⊂ · · ·V ′

Moreover, for f ∈ V ′
n we have |f |−n ≥ |f |−n−1.

Proof. (⊃) Take v′ ∈ V ′
n. Then v′ is continuous on Vn with topology coming from the

norm | · |n . Thus v′ is continuous on V , since V ⊂ Vn and the norm | · |n is one of
the norms generating the topology on V .

(⊂) Take v′ ∈ V ′. Since v′ is continuous on V the set

v′
−1

(−1, 1) = {v ∈ V ; |〈v′, v〉| < 1}

is open in V . So we can find a member B of the local base for V such that B ⊂
v′−1 (−1, 1). By the corollary to Proposition 4.10 we have that Bn(ε) ⊂ v′−1 (−1, 1)
for some positive integer n and some ε > 0.

Thus for all v ∈ V with |v|n < ε we have that |〈v′, v〉| < 1. Since V is dense in
Vn, if v ∈ Vn and |v|n ≤ ε then |〈v′, v〉| ≤ 1. Thus v′ ∈ V ′

n.
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To see that V ′
n ⊂ V ′

n+1 take f ∈ V ′
n. Then for all v ∈ Vn we have that

|f(v)| ≤ |f |−n|v|n ≤ |f |−n|v|n+1

Since Vn+1 ⊂ Vn, the above holds for all v ∈ Vn+1. Thus f ∈ V ′
n+1 and |f |−n−1 ≤

|f |−n.

Proposition 4.15. A linear functional f on V is continuous if and only if f is
bounded on bounded sets of V .

Proof. (⇒) Let f be a continuous linear functional on V . Then f is in V ′. So
f = 〈v′, ·〉 for some v′ ∈ V ′. Now by Proposition 4.14, v′ ∈ V ′

n for some n. Let D ⊂ V
be bounded. By Proposition 4.13 we have that supv∈D |v|n = M < ∞. Using this
we see that supv∈D |〈v′, v〉| ≤ M |v′|−n <∞. Thus f = 〈v′, ·〉 is bounded on bounded
sets.

(⇐) Suppose f is bounded on bounded sets. Consider the local base sets B1(1) ⊃
B2

(
1
2

)
⊃ · · · in V as in Corollary 4.12. By contradiction we assume that f is not in V ′.

Then f is not in V ′
k for any k. So f is not continuous on Vk and hence not bounded on

Bk

(
1
k

)
. Hence we can find a vk in Bk

(
1
k

)
such that |f(vk)| > k. The sequence {vk}∞k=1

goes to 0 in V . Thus {vk}∞k=1 must be bounded. But then by hypothesis, {f(vk)}∞k=1

should be bounded. But by construction it is not, a contradiction.

Corollary 4.16. A linear functional f on V is continuous if and only if f is bounded
on some neighborhood of 0 in V .

Proof. Suppose f is bounded on some neighborhood U of 0 in V . Then for any α > 0,
f is bounded on αU . Let D be a bounded set in V . Then D ⊂ λU for some λ > 0.
So f is bounded on D and hence continuous by Proposition 4.15

There are several topologies one can put on the dual space V ′. The three most
common are the weak, strong, and inductive topologies. In the following sections
we discuss the properties of these three topologies and compare them against one
another. Throughout this discussion, the topology on V ′

n is taken to be the usual
strong topology (i.e. the topology induced by the operator norm on V ′

n as the dual of
the Banach space Vn).

4.2.4 Bounded Sets of V Revisited

Let V be a countably–normed space. With the notion of the dual V ′ of V behind us
(see subsection 4.2.3), we can formulate a better understanding of bounded sets in
V . We begin with the following simple definition:

Definition 4.17. A set D ⊂ V is said to be weakly bounded if given a set N(v′; ε) =
{v ∈ V ; |〈v′, v〉| < ε} there is a λ > 0 such that D ⊂ λN(v′; ε).
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Theorem 4.18. Suppose V is a countably–normed space with dual V ′. Let D ⊂ V .
Then the following are equivalent

(1) D is bounded.

(2) D is weakly bounded.

(3) The values of each v′ ∈ V ′ are bounded on D.

(4) For all n, we have supv∈D |v|n <∞.

Proof. We have already shown that (1) and (4) are equivalent in Proposition 4.13.
((1) ⇒ (2)) Suppose D is bounded in V . Take a v′ ∈ V ′. Then v′ ∈ V ′

n for some
n. For v ∈ D we have |〈v′, v〉| ≤ |v′|−n|v|n ≤ |v′|−nMn where Mn = supv∈D |v|n. Thus

we have D ⊂ 2|v′|−nMn

ε
N(v′; ε). So D is weakly bounded.

((2) ⇒ (3)) Suppose D is weakly bounded in V . Take v′ ∈ V ′. By assumption
D ⊂ λN(v′; ε) for some λ > 0. So for v ∈ D we have |〈v′, v〉| ≤ λε.

((3) ⇒ (4)) Consider D ⊂ V ⊂ Vn. By hypothesis all v′ ∈ V ′ are bounded
on D. In particular all v′ ∈ V ′

n ⊂ V ′ are bounded on D. This means the linear
functionals {〈·, v〉; v ∈ D} are pointwise bounded on V ′

n. Thus we can apply the
uniform boundedness principle to see that supv∈D |v|n <∞.

4.2.5 The Metric on V

Let V be a countably–normed space. Define the function ρ : V × V → [0,∞) by

(4.3) ρ(v, u) =
∞∑

n=1

1

2n

|v − u|n
1 + |v − u|n

First observe that ρ is a metric on V . From the above definition it is obvious that
ρ(v, v) = 0 and ρ(v, u) > 0 for all u 6= v. It is also clear that ρ(v, u) = ρ(u, v).
We have left to check the triangle inequality. To verify the triangle inequality it is
sufficient to show that

|v + u|n
1 + |v + u|n

≤ |v|n
1 + |v|n

+
|u|n

1 + |u|n

To show this, we first note that the function f : [0,∞) → [0, 1) given by f(t) = t
1+t

is increasing. Thus

|v + u|n
1 + |v + u|n

≤ |v|n + |u|n
1 + |v|n + |u|n

=
|v|n

1 + |v|n + |u|n
+

|u|n
1 + |v|n + |u|n

≤ |v|n
1 + |v|n

+
|u|n

1 + |u|n
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Proposition 4.19. The metric ρ on V has the following properties:

(1) ρ(v, u) = ρ(v − u, 0)

(2) If vk → 0 in V , then ρ(vk, 0) → 0.

Proof. That ρ(v, u) = ρ(v − u, 0) for all u, v ∈ V is obvious from the definition.
For (2), let vk → 0 in V . Then limk→∞ |vk|n → 0 for each n. So, for a given ε > 0,

take N so that 1
2N < ε

2
. Take K such that for any k > K we have |vk|n < ε

2
for all

1 ≤ n ≤ N . Then for k > K we have

∞∑
n=1

1

2n

|vk|n
1 + |vk|n

=
N∑

n=1

1

2n

|vk|n
1 + |vk|n

+
∞∑

n=N+1

1

2n

|vk|n
1 + |vk|n

<
ε

2
+

1

2N
< ε

Therefore ρ(vk, 0) → 0 as k →∞.

As you may have guessed, we would not take the time to talk about this metric
unless it proved useful in some way. Well, it turns out that the topology induced by
this metric is identical to the original topology on V .

Theorem 4.20. The topology on the countably–normed space V induced by the metric
ρ is equivalent to the original topology on V (i.e. the topology induced by the family
of norms {| · |n}∞n=1).

Proof. By Proposition 4.19, it is sufficient to consider the sets {v ∈ V ; ρ(v, 0) < ε}
and the neighborhoods {v ∈ V ; |v|n < δ} of 0 in V for ε, δ > 0 and n ∈ {1, 2, . . .}.
We have to show that every {v ∈ V ; |v|n < δ} contains some {v ∈ V ; ρ(v, 0) < ε}
and conversely.

Consider a neighborhood {v ∈ V ; |v|n < δ} in V . If v ∈ V satisfies ρ(v, 0) < ε,

then 1
2n

|v|n
1+|v|n < ε and thus

|v|n <
2nε

1− 2nε
=

2n

1
ε
− 2n

So, take ε > 0 such that

0 <
2n

1
ε
− 2n

< δ

and we have {v ∈ V ; ρ(v, 0) < ε} ⊂ {v ∈ V ; |v|n < δ}.
Now consider a set {v ∈ V ; ρ(v, 0) < ε}. Assume, by contradiction, there is no n

and δ > 0 such that {v ∈ V ; |v|n < δ} ⊂ {v ∈ V ; ρ(v, 0) < ε}. Then for each k we
can find vk ∈

{
v ∈ V ; |v|k < 1

k

}
such that vk is not in {v ∈ V ; ρ(v, 0) < ε}. This

gives us a sequence {vk}∞k=1 that tends to 0 in V but not with respect to the metric
ρ. This contradicts Proposition 4.19.

From this it follows that V is a complete countably–normed space if and only
(V, ρ) is a complete metric space. The following is a result which proves useful in a
few theorems to come:
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Lemma 4.21. Given a closed convex symmetric absorbing set C in a complete
countably–normed space V we can find a neighborhood U of 0 contained in C.

Proof. Since C is absorbing we have that V ⊂
⋃∞

n=1 nC. Knowing that V is a
complete metric space we can apply the Baire category theorem to see that the closed
set C is not nowhere dense. Thus the interior of C, C◦, is not empty. Take v in C◦

and let U be a symmetric open set around 0 such that v + U ⊂ C◦ (e.g. take U to
be one of the Bk

(
1
k

)
described in Corollary 4.12).

Because C is symmetric we have that −v−U = −v+U is in C. Since C is convex
it contains the convex hull of v + U and −v + U . But this convex hull contains U ;
observe for any w ∈ U we have that

w =
(v + w) + (−v + w)

2

Thus we are done.

4.3 Weak Topology

The weak topology is the simplest topology placed on the dual of a countably–normed
space. It is defined as follows:

Definition 4.22. The weak topology on the dual V ′ of a countably–normed space V
is the coarsest vector topology on V ′ such that the functional 〈·, v〉 is continuous for
any v ∈ V .

In the following propositions, we prove some commonly used properties of the
weak topology.

Proposition 4.23. The weak topology on V ′ has a local base of neighborhoods given
by sets of the form:

N(v1, v2, . . . , vk; ε) = {v′ ∈ V ′; |〈v′, vj〉| < ε, 1 ≤ j ≤ k}

Proof. In order for 〈·, v〉 to be continuous for all v ∈ V we need 〈·, v〉 to be continuous
at 0. Or equivalently, we require that 〈·, v〉−1 (−ε, ε) = N(v; ε) be open for each
ε ∈ R. Hence for each v ∈ V we form the topology τv on V given by the local base
{N(v; ε)}ε>0 The weak topology is the least upper bound topology for the family
{τv}v∈V (see subsection 4.1.3). Thus, by Theorem 4.5, a local base for the weak
topology is given by sets of the form

N(v1, v2, . . . , vk; ε) = N(v1; ε) ∩N(v2; ε) ∩ · · · ∩N(vk; ε)

where v1, v2, . . . , vk ∈ V .
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Proposition 4.24. The inclusion map i′n : V ′
n → V ′ is continuous when V ′ is given

the weak topology.

Proof. Consider the weak base neighborhood N(v1 . . . vk; ε) where v ∈ V . Observe
that

i′−1
n (N(v1 . . . vk; ε)) = {v′ ∈ V ′

n; |〈v′, vj〉| < ε, 1 ≤ j ≤ k}

Since for each j, vj ∈ V ⊂ Vn we have that the functional 〈·, vj〉 is continuous on V ′
n.

(Since Vn is a Banach space, Vn ⊂ V ′′
n .) Thus {v′ ∈ V ′

n; |〈v′, vj〉| < ε, 1 ≤ j ≤ k}, is
open in V ′

n, being the finite intersection of open sets.

Proposition 4.25. Let V be a countably–Hilbert space. Then the space V ′
n is dense

in V ′ when V ′ is endowed with the weak topology.

Proof. Consider v′ ∈ V ′. An arbitrary neighborhood U of v′ contains a set of the
form v′ + N where N = N(v1, . . . , vk; ε) = {v′ ∈ V ′; |〈v′, vj〉| < ε, 1 ≤ j ≤ k}. We
must find a v′n ∈ Vn such that v′n ∈ v′+N . That is |〈v′n−v′, vj〉| < ε for all 1 ≤ j ≤ k.

Now v′ ∈ Vl for some l since V ′ =
⋃∞

n=1 V
′
n. If l ≤ n we are done, since V ′

l ⊂ V ′
n

by Proposition 4.14. If l > n a little more work needs to be done, but it is still very
straightforward.

For clarity, we assume k = 2 and v1, v2 are independent unit vectors in Vn. (There
is no harm in assuming this. We can just shrink ε suitably by dividing by the
maximum of |v1|n and |v2|n.) Suppose 〈v′, v1〉 = λ1 and 〈v′, v2〉 = λ2. Write v2

as v2 = αv1 + βv⊥1 where v⊥1 is a unit vector in the orthogonal complement of {v1} in
Vn. Then λ2 = 〈v′, v2〉 = λ1α + β〈v′, v⊥1 〉 or equivalently 〈v′, v⊥1 〉 = λ2−λ1α

β
. Consider

w = λ1v1 + λ2−λ1α
β

v⊥1 . Now w ∈ Vn. Thus 〈w, ·〉n is in V ′
n, where 〈·, ·〉n is the inner-

product on Vn. We now observe that 〈w, v1〉n = λ1 and 〈w, v2〉n = 〈w,αv1 + βv⊥1 〉n =
λ1α+λ2−λ1α = λ2. Hence 〈w, ·〉n agrees with v′ on v1 and v2. Therefore w ∈ v′+N
and we have that V ′

n is dense in V .

4.4 Strong Topology

Recall the notion of bounded sets in a countably–normed space V (as in subsections
4.2.2 and 4.2.4). Using bounded sets in V we can define the strong topology on V ′.

Definition 4.26. The strong topology on the dual V ′ of a countably–normed space
V is defined to be the topology with a local base given by sets of the form

N(D; ε) = {v′ ∈ V ′; supv∈D |〈v′, v〉| < ε}

where D is any bounded subset of V and ε > 0.

Taking D to be a finite set such as {v1, v2, . . . , vk}, it is clear that the strong
topology is finer than the weak topology.
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Proposition 4.27. The inclusion map i′n : V ′
n → V ′ is continuous when V ′ is given

the strong topology.

Proof. Consider the neighborhood N(D; ε) = {v′ ∈ V ′; supv∈D |〈v′, v〉| < ε} where D
is a bounded set in V and ε > 0. Now

i′−1
n (N(D; ε)) =

{
v′ ∈ V ′

n; sup
v∈D

|〈v′, v〉| < ε
}

Let supv∈D |v|n = M . Take v′0 in i′−1
n (N(D; ε)) and let c0 = supv∈D |〈v′0, v〉| < ε.

Consider the open set B(v′0,
ε−c0
M+1

) = {v′ ∈ V ′
n; |v′ − v′0|−n <

ε−co

M+1
}. We assert that

B(v′0,
ε−c0
M+1

) ⊂ i′−1
n (N(D; ε)).

Take v′ ∈ B(v′0,
ε−c0
M+1

). Then |v′ − v′0|−n <
ε−c0
M+1

. This gives us the following

sup
v∈D

∣∣〈v′ − v′0,
v
|v|n 〉

∣∣ < ε− c0
M + 1

Thus supv∈D |〈v′ − v′0, v〉| < ε − c0, since |v|n ≤ M when v ∈ D. From this we see
that supv∈D |〈v′, v〉| < ε. Therefore v′ ∈ i′−1

n (N(D; ε)).

4.4.1 Strongly Bounded Sets of V ′

When V ′ is endowed with the strong topology, a bounded set B ⊂ V ′ is called strongly
bounded. (Likewise when V ′ has the weak topology, B is said to be weakly bounded).
Strongly bounded sets have many nice properties, which we will prove in this section.
First let us begin with the following definition:

Definition 4.28. A set B ⊂ V ′ is said to be bounded on the set A ⊂ V if

sup
v′∈B,v∈A

|〈v′, v〉| <∞

Lemma 4.29. A set B ⊂ V ′ is strongly bounded if and only if it is bounded on each
bounded set D ⊂ V .

Proof. (⇒) Let B ⊂ V ′ be strongly bounded and let D be a bounded set of V .
Consider the neighborhood of V ′ given by

N(D; 1) =
{
v′ ∈ V ′; sup

v∈D
|〈v′, v〉| < 1

}
Since B is bounded there exists an λ > 0 such that B ⊂ λN(D; 1) or equivalently
1
λ
B ⊂ N(D; 1). Then for v′ ∈ B we have v′

λ
∈ N(D; 1). Thus |〈v, v′〉| ≤ λ for any

v ∈ D. Therefore B is bounded on the set D.
(⇐) Suppose B is bounded on each bounded set D ⊂ V . Consider a neighborhood

N(D; ε) of 0 in V ′. By hypothesis, supv′∈B,v∈D |〈v′, v〉| = M <∞. So for any v′ ∈ B

we have that |〈 εv′

M+1
, v〉| < ε when v ∈ D. Thus ε

M+1
B ⊂ N(D; ε) or equivalently

B ⊂ M+1
ε
N(D; ε). Hence B is bounded.
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Lemma 4.30. A set B ⊂ V ′ is strongly bounded if an only if there exists k such that
B is bounded on Bk(

1
k
).

Proof. (⇒) As per Corollary 4.12, consider the local base sets B1(1) ⊃ B2(
1
2
) ⊃ · · ·

of V . By contradiction suppose that B is not bounded on Bk(
1
k
) for any k. Then for

every k there exist a vk ∈ Bk(
1
k
) and a v′k ∈ B such that |〈v′k, vk〉| > k. The sequence

{vk} goes to 0, thus it must be bounded. So by Lemma 4.29 there must exist a
positive number M such that |〈v′, vk〉| ≤M for all v′ ∈ B and all k ∈ {1, 2, . . .}. This
contradicts the way v′k and vk were chosen.

(⇐) Conversely, let B ⊂ V ′ be bounded on some Bk(
1
k
) ⊂ V . Take a bounded

set D in V . Then D ⊂ λBk

(
1
k

)
for some λ > 0. Thus B is bounded on D, since B is

bounded on λBk

(
1
k

)
. Thus by Lemma 4.29, B is bounded.

Theorem 4.31. A set B ⊂ V ′ is strongly bounded if and only if B ⊂ V ′
k for some k

and B is bounded in the norm | · |−k of V ′
k.

Proof. (⇐) Let B ⊂ V ′
k be bounded in the norm | · |−k by some M > 0 (i.e.

supv′∈B |v′|−k < M). Consider the set Bk(1) = {v ∈ V ; |v|k < 1}. Then for v′ ∈ B
and v ∈ Bk(1) we have that |〈v′, v〉| ≤ M . Thus B is bounded on Bk(1) and hence
on Bk(

1
k
). Therefore B is strongly bounded by Lemma 4.30.

(⇒) Conversely suppose B is a strongly bounded set in V ′. Then by Lemma 4.30
there is a k such that B is bounded on the set Bk(

1
k
) = {v ∈ V ; |v|k < 1

k
}. That is

there is an M <∞ such that |〈v′, v〉| ≤M for all v′ ∈ B and all v ∈ Bk

(
1
k

)
.

Let Nk ⊂ Vk be given by Nk = {v ∈ Vk; |v|k < 1
k
}. Since V is dense in Vk we have

that
sup

v′∈B,v∈Nk

|〈v′, v〉| ≤M

From the above we see for any v′ ∈ B and unit vector v ∈ Vk we have that
|〈v′, v

(k+1)
〉| < M . Hence |v′|−k ≤ (k + 1)M . Thus for any v′ ∈ B we have that

v′ ∈ V ′
k and |v′|−k ≤ (k + 1)M .

4.4.2 Reflexivity

Just as we can discuss the dual V ′ of V , we can also talk about the dual of V ′. Of
course, this depends on the topology we put on V ′. As we will see it turns out that
V ′′ = V as sets if V ′ is given the weak or strong topology (and V is a countably–
Hilbert space). We can also put a topology on V ′′. We construct this topology from
the strongly bounded sets in V ′. For each set B in V ′ that is strongly bounded and
each ε > 0 form the neighborhood

N(B; ε) =
{
v̂ ∈ V ′′; sup

v′∈B
|〈v̂, v′〉| < ε

}
Take the collection of all setsN(B; ε) as our local base in V ′′. We call this topology the
strong topology on V ′′. Given this topology we will also see that V ′′ is homeomorphic
to V .
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Proposition 4.32. Let V be a countably–Hilbert space. Then V = V ′′ when V ′ is
given the weak or strong topology.

Proof. Consider v ∈ V and the corresponding linear functional v̂ on V ′ given by

〈v̂, v′〉 = 〈v′, v〉 where v′ ∈ V ′

Observe that 〈v̂, ·〉 is continuous since 〈v̂, ·〉−1 (−ε, ε) = {v′ ∈ V ′; |〈v′, v〉| < ε} which
is open in the weak (and hence the strong) topology on V ′.

Also note that if û = v̂, then 〈v′, v〉 = 〈v′, u〉 for all v′ ∈ V ′. Thus v = u. Therefore
the correspondence v → v̂ is injective.

We now show that the correspondence v → v̂ is surjective. Take v′′ ∈ V ′′. Then v′′

is continuous on V ′. Since, by Proposition 4.14, V ′ =
⋃∞

n=1 V
′
n we have that v′′ ∈ V ′′

n

for all n. But Vn = V ′′
n since Vn is a Hilbert space. Thus v′′ can be considered as an

element of Vn for all n. Since V is a countably–Hilbert space we have that ∩∞n=1Vn = V
by Proposition 4.9. Thus v′′ ∈ V and we have that v → v̂ is surjective.

Theorem 4.33. If V is a countably–Hilbert space, then V ′′ is homeomorphic to V
when V ′′ is given the strong topology.

Proof. From Proposition 4.32 we already see that V = V ′′. We now need to see that
the correspondences v̂ → v and v → v̂ are continuous.

First we consider the continuity of v → v̂. Let N(B; ε) be a neighborhood of
0 in V ′′. So we have that B is a strongly bounded set in V ′. By Theorem 4.31
we know that B ⊂ V ′

k for some k and is bounded in the norm | · |−k. Let us call
supv′∈B |v′|−k = M <∞. Consider the neighborhood Bk

(
ε
M

)
⊂ V given by Bk

(
ε
M

)
=

{v ∈ V ; |v|k < ε
M
}. Take a v ∈ Bk

(
ε
M

)
. We need to see that v̂ ∈ N(B; ε). For any

v′ ∈ B we have that

|〈v̂, v′〉| = |〈v′, v〉| ≤ |v′|−k|v|k < M
ε

M
= ε

So v̂ ∈ N(B; ε). Thus v → v̂ is continuous.
Now consider v̂ → v. Let 0 < ε < 1 and take Bk(ε) = {v ∈ V ; |v|k < ε}, a member

of the local base for V (see subsection 4.2.1). Let B ⊂ V ′ be given by

B = {v′ ∈ V ′; |〈v′, v〉| ≤ 1 for all v ∈ Vk with |v|k < ε}

Note that B is strongly bounded by Theorem 4.31. So we can form the local base
element N(B; ε) of V ′′ given by

N(B; ε) =

{
v̂ ∈ V ′′; sup

v′∈B
|〈v̂, v′〉| < ε

}
Take a v̂ ∈ N(B; ε). Note that 〈 v

|v|k
, ·〉k ∈ B since 〈 v

|v|k
, u〉k ≤ |u|k for u ∈ Vk.

Since v̂ ∈ N(B; ε) and 〈 v
|v|k
, ·〉k ∈ B, we must have |〈 v

|v|k
, v〉k| = |v|k < ε. Therefore

v ∈ Bk(ε). This proves the continuity of the map v̂ → v.
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4.4.3 Completeness in V ′

Suppose V ′ is given the strong topology. The convergence of a sequence of functionals
{v′k}∞k=1 in V ′ to an element v′ ∈ V ′ is called strong convergence and {v′k}∞k=1 is said
to converge strongly to v′. Obviously {v′k}∞k=1 converging strongly to v′ is equivalent
to {v′k − v′}∞k=1 converging strongly to 0. Thus a sequence {v′k}∞k=1 converges strongly
to v′ if and only if for any bounded set D ⊂ V and any number ε > 0 there exist
a K > 0 such that v′k − v′ ∈ N(D; ε) = {v′ ∈ V ′; supv∈D |〈v′, v〉| < ε} for all k ≥ K.
Hence a sequence {v′k}∞k=1 converges strongly to v′ if and only if {〈v′k, ·〉}∞k=1 converges
uniformly to 〈v′, ·〉 on each bounded set D ⊂ V . We say that a sequence {v′k}∞k=1

is strongly Cauchy (or strongly fundamental) if the sequence of numbers {〈v′k, v〉}∞k=1

converges for each element v ∈ V and the convergence is uniform on each bounded
set D ⊂ V .

Theorem 4.34. Let V be a countably–normed space. The dual V ′ of V is complete
under the strong topology.

Proof. Let {v′k}∞k=1 be a strongly Cauchy sequence in V ′. Then for v ∈ V we have
that the sequence of numbers {〈v′k, v〉}∞k=1 converges. We conveniently denote this
limit by 〈v′, v〉. For for each v ∈ V we have

〈v′, v〉 = lim
k→∞

〈v′k, v〉

This functional 〈v′, ·〉 is clearly linear on V . We have to check that it is con-
tinuous. For this it is sufficient to see that 〈v′, ·〉 is bounded on bounded sets (see
Proposition 4.15). Let D be a bounded set in V . Observe the functions {〈v′k, ·〉}∞k=1

are bounded on D. Moreover they converge uniformly to 〈v′, ·〉 on D. Hence there is
a K > 0 such that |〈v′ − v′K , v〉| < 1 for all v in D. Thus we have that

sup
v∈D

|〈v′, v〉| ≤ sup
v∈D

|〈v′K , v〉|+ 1 <∞

Therefore 〈v′, ·〉 is bounded on bounded sets and hence continuous. So v′ ∈ V ′ and
V ′ is complete with respect to the strong topology.

4.4.4 Comparing the Weak and Strong Topology

When a countably–normed space V is complete, many properties of the strong and
weak topologies coincide. We will see that weakly and strongly bounded sets are one
in the same. Also under suitable conditions, weak and strong convergence coincide.

Theorem 4.35. Let V be a complete countably–normed space with dual V ′. Every
weakly bounded set in V ′ is strongly bounded.
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Proof. By Lemma 4.30 and Corollary 4.12 it is sufficient to show that a weakly
bounded set B is bounded on some neighborhood of zero in V .

Let us define a set C ⊂ V as follows:

C = {v ∈ V ; |〈v′, v〉| ≤ 1 for all v′ ∈ B} =
⋂

v′∈B

{v ∈ V ; |〈v′, v〉| ≤ 1}

Observe that C is closed, being the intersection of closed sets, C is convex, being the
intersection of convex sets, and C is symmetric, being the intersection of symmetric
sets. Finally note that C is absorbent: Take v ∈ V . Since B is weakly bounded
we must have B ⊂ λN(v; 1) where N(v; 1) = {v′ ∈ V ′; |〈v′, v〉| < 1} for some λ > 0.
Thus |〈v′, v〉| ≤ λ for all v′ ∈ B. Hence v

λ
∈ C or equivalently v ∈ λC.

So we can apply Lemma 4.21 to see that there is a neighborhood U of 0 in V such
that U ⊂ C. Therefore the elements of B are uniformly bounded on U (by 1). Thus
B is bounded on U and hence strongly bounded.

Corollary 4.36. Let V be a complete countably–normed space with dual V ′. If a
sequence {v′k}∞k=1 in V ′ converges pointwise (on each v ∈ V ), then {v′k}∞k=1 is strongly
bounded.

Proof. Since {v′k}∞k=1 converges pointwise, it is weakly bounded.

Corollary 4.37. Let V be a complete countably–normed space with dual V ′. Then
V ′ is complete with respect to the weak topology.

Proof. Take a Cauchy sequence {v′k}∞k=1 ⊂ V ′. Then by Corollary 4.36, we have that
{v′k}∞k=1 is strongly bounded. Thus by Lemma 4.30, {v′k}∞k=1 is bounded on some
neighborhood U of 0 in V . That is, there exist an M > 0 such that |〈v′k, v〉| ≤M for
all v ∈ U and all k ∈ {1, 2, . . .}.

Define v′ by 〈v′, v〉 = limk→∞〈v′k, v〉. Obviously, v′ is linear. Observe that for all
v ∈ U we have

|〈v′, v〉| = lim
k→∞

|〈v′k, v〉| ≤M

So v′ is bounded on U and hence continuous (by Corollary 4.16).

Of particular interest are countably–normed spaces such with the property that
bounded sets are limit point compact. These spaces have many wonderful properties,
that do not hold in general for infinite-dimensional normed spaces. We make the
following definition (the terminology comes from Gel’fand [8]):

Definition 4.38. A complete countably–normed space V in which all bounded sets
are limit point compact is called perfect.

Remark 4.39. Since Theorem 4.20 gives us that V is metrizable, limit point compact
can be replaced with compact or sequentially compact in the above definition. There-
fore if V is perfect, the strong topology on V ′ is nothing more than the well known
compact–open topology [23].
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Theorem 4.40. Let V be a perfect space with dual V ′. Then a sequence {v′k}∞k=1 in
V ′ converges strongly if and only if it converges weakly. i.e. weak and strong converge
coincide on the dual space V ′

Proof. Obviously strong convergence implies weak convergence. So take a a sequence
{v′k}∞k=1 in V ′ which converges weakly to v′ ∈ V ′. Without loss of generality we can
take v′ = 0 (replace v′k with v′k − v′). The sequence {v′k}∞k=1 is weakly bounded, being
weakly convergent. Thus by Theorem 4.35 we have that {v′k}∞k=1 is strongly bounded.

To show {v′k}∞k=1 converges strongly we must show 〈v′k, ·〉 goes to 0 uniformly on
each bounded set D ⊂ V . Suppose, by contradiction, that there exist a bounded set
D in V where 〈v′k, ·〉 does not go to 0 uniformly. So for some ε > 0, there is a k1 ≥ 1
such that

∣∣〈v′k1
, v〉
∣∣ ≥ ε for some v ∈ D. Name this v as vk1 . Likewise there an k2 > k1

and vk2 ∈ V such that
∣∣〈v′k2

, vk2〉
∣∣ ≥ ε. Continuing in this manner we form a sequence

{vkj
}∞j=1 in V . This sequence is bounded, being taken from the bounded set D.
Knowing that V is a perfect space we have a subsequence of {vkj

}∞j=1 that converges
to some v in V . Renumbering if necessary we will just take this subsequence to be
{vkj

}∞j=1. Since {vkj
}∞j=1 goes to v in V then the sequence given by wkj

= vkj
− v goes

to 0 in V .
Now for any strongly bounded set B ⊂ V ′, Theorem 4.31 guarantees that 〈v′, wkj

〉
goes to 0 uniformly for all v′ ∈ B. So take B to be the set {v′kj

}∞j=1. Then 〈v′kj
, wkj

〉
goes to 0 and by weak convergence we have that 〈vkj

, v〉 goes to 0. Thus

lim
j→∞

〈v′kj
, vkj

〉 = lim
j→∞

〈v′kj
, wkj

〉+ 〈v′kj
, v〉 = 0

This contradicts the construction of the vkj
and v′kj

.

4.5 Inductive Limit Topology

Given a sequence of normed spaces {(Wn, |·|n);n ≥ 1} withWn continuously imbedded
in Wn+1 for all n, we form the space W =

⋃∞
n=1Wn and endow W with the finest

locally convex vector topology such that for each n the inclusion map in : Wn → W
is continuous. This topology is call the inductive limit topology on W and W is said
to be the inductive limit of the sequence {(Wn, | · |n);n ≥ 1}

4.5.1 Local Base

As always, when discussing a vector topology, we should try to discover what a useful
local base for the topology would be.

Theorem 4.41. Suppose W is the inductive limit of the normed spaces {(Wn, | ·
|n);n ≥ 1}. A local base for W is given by the set B of all balanced convex subsets U
of W such that i−1

n (U) is a neighborhood of 0 in Wn for all n.
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Proof. We first apply Lemma 4.4 to see the set B is in fact a local base for W . Take
U, V ∈ B, then clearly U ∩ V ∈ B. Now if U ∈ B, then it is easy to see that αU ∈ B
for α 6= 0. Finally we show U ∈ B is absorbing. Note that i−1

n (U) is absorbing in Wn

(since Wn is a normed space and i−1
n (U) is open in Wn). Thus U absorbs all the point

of Wn = in(Wn) ⊂ W . Since W =
⋃∞

n=1Wn, U absorbs W . Thus by Lemma 4.4 we
see that B is a base of neighborhoods for a locally convex vector topology on W .

It is fairly straightforward to see that B gives us the finest locally convex vector
topology making all the in : Wn → W continuous: Let τ be a locally convex vector
topology on W making all the in continuous. Take a convex neighborhood (of 0) U
in τ . By Lemma 4.3 we can assume U is balanced. Since each in is continuous, we
have i−1

n (U) is a neighborhood in Wn. Thus U ∈ B.

Corollary 4.42. Suppose W is the inductive limit of the normed spaces {(Wn, | ·
|n);n ≥ 1}. A local base for W is given by the balanced convex hulls of sets of the
form

⋃∞
n=1 in(Bn(εn)) (where Bn(εn) = {x ∈ Wn ; |x|n < εn}).

Proof. Let U be the balanced convex hull of the set
⋃∞

n=1 in(Bn(εn)) in W . Then
Bn(εn) ⊂ i−1

n (U). So i−1
n (U) is a neighborhood of 0 in Wn. By Theorem 4.41 such a

U is a neighborhood in W .
Now if U is any balanced convex neighborhood of 0 in W , then i−1

n (U) contains
a neighborhood Bn(εn). Hence in(Bn(εn)) ⊂ U . Since U is convex and balanced, the
balanced convex hull of

⋃∞
n=1 in(Bn(εn)) is contained in U . Thus the sets described

form a local base for W .

4.5.2 Inductive Limit Topology on V ′

Let V be a countably–normed space. Then V ′, the dual of V , can be regarded as the
inductive limit of the sequence of normed spaces {(V ′

n, | · |−n);n ≥ 1}. Thus V ′ can be
given the inductive limit topology. In light of Proposition 4.24 and Proposition 4.27
we see that the inductive limit topology on V ′ is finer than the strong and weak
topology on V ′. We also have the following useful result about convergence on V ′ in
the inductive topology:

Theorem 4.43. Let V be a countably–normed space. Endow V ′ with the inductive
limit topology. A sequence {v′k}∞k=1 converges to v′ in V ′ if and only if there exists
some n such that vk ∈ V ′

n for all k and limk→∞ |v′k − v|−n = 0 (i.e. v′k converges to v′

in V ′
n).

Proof. (⇐) Using Corollary 4.42, this direction is obvious.
(⇒) Let {v′k}∞k=1 be sequence in V ′ that converges to v′ ∈ V ′. Replacing v′k with

v′k − v′, if necessary, we assume that v′ = 0. Since {v′k}∞k=1 converges to 0 in the
inductive limit topology, by the above discussion, it converges to 0 in the strong
topology on V . Hence {v′k}∞k=1 is strongly bounded. Thus by Theorem 4.31 we have
that there is an n such that {v′k}∞k=1 ⊂ V ′

n.
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Now we must show that |v′k|−n goes to 0 as k tends to infinity. That is for a given
ε > 0 we need to find a K > 0 such that for all k ≥ K we have |v′k|−n < ε. Consider
the base neighborhood U of V ′ given by the balanced convex hull of

⋃∞
l=1Bl where

for l = n we take
Bn = {v′ ∈ V ′

n ; |v′|−n < ε}

For l < n, Bl = {v′ ∈ V ′
l ; |v′|−l < εl} where εl > 0 is chosen so that Bl is contained in

i′−1
l,n (Bn). (Such an εl > 0 exist by the continuity of the inclusion map i′l,n : V ′

l → V ′
n.)

And for l > n we first note that the restricted inclusion ĩn,l : V ′
n → in,l(V

′
n) =

V ′
n ⊂ V ′

l is a homeomorphism (since V ′
n is continuously imbedded into V ′

n+1 for each
n). This gives us i′n,l(Bn) ∩ V ′

n = W ∩ V ′
n where W is open in V ′

l . Thus take Bl =
{v′ ∈ V ′

l ; |v′|−l < εl} where εl > 0 is chosen so that Bl ⊂ W .
Now since U is open, there is a K such that for all k ≥ K we have that v′k ∈ U .

We will show that v′k ∈ Bn for k ≥ K. Let k ≥ K and consider the element v′k. Since
v′k ∈ U we can write v′k as v′k =

∑m
j=1 λjyj where

∑m
j=1 |λj| ≤ 1 and yj ∈ Bj. Observe

that each yj with λj 6= 0 is in V ′
n. (If there is an yj not in V ′

n with λj 6= 0, then v′k
could not be V ′

n.) Thus we have

(4.4) |v′k|−n ≤
m∑

j=1

|λ||yj|−n

Observe for j ≤ n, yj ∈ Bj ⊂ i′−1
j,n (Bn). So |yj|−n < ε. Also for j > n we have

that yj ∈ Bj. Since yj ∈ V ′
n we get that yj ∈ Bj ∩ V ′

n ⊂ i′n,j(Bn) ∩ V ′
n. So |yj|−n < ε.

Therefore in (4.4) we have that

|v′k|−n ≤
∞∑

j=1

|λ||yj|−n <
∞∑

j=1

|λj|ε ≤ ε

Thus v′k is in Bn for all k ≥ K and we are done.

4.6 Comparing the Three Topologies

In this section we compare the three topologies on the dual V ′ of a countably–normed
space V . In order to do this efficiently we first introduce a fourth topology on V ′. It
is the Mackey topology on V ′.

4.6.1 Mackey Topology

In order to talk about the Mackey topology we need the following notion:
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Definition 4.44. Let D be a set of bounded subsets of a topological vector space E
with dual E ′. The topology of uniform convergence on the sets of D is the topology
with subbasis neighborhoods of 0 given by

N(D; ε) =
{
v′ ∈ E ′ ; sup

v∈D
|〈v′, v〉| < ε

}
where D ∈ D and ε > 0. This is also referred to as the topology of D–convergence
on E ′.

From the definition we see that a local base neighborhood for the topology of
D–convergence on a vector space E with dual E ′ looks like

N(D1; ε1) ∩N(D2; ε2) ∩ · · ·N(Dk; εk)

where Dj ∈ D and εj > 0 for all 1 ≤ j ≤ k. We now state the following theorem
without proof:

Theorem 4.45 (Mackey-Arens). Suppose that under a locally convex vector topology
τ , E is a Hausdorff space. Then E has dual E ′ under τ if and only if τ is a topology
of uniform convergence on a set of balanced convex weakly–compact subsets of E ′.

For a proof of this results see [29], [32], or [15]. Using this theorem we can define
the Mackey topology as follows:

Definition 4.46. Let E be a topological vector space with dual E ′. The Mackey
topology on E is the topology on uniform convergence on all balanced convex weakly–
compact subsets of E ′.

Remark 4.47. From this discussion we see that the Mackey topology on V ′ has a local
base given by

N(C; ε) =
{
v′ ∈ V ′ ; sup

v∈C
|〈v′, v〉| < ε

}
where ε > 0 and C is a balanced convex weakly–compact set in V .

Remark 4.48. Although we have not defined the term weakly–compact, it is nothing
to fret about. Just as we have defined the weak topology on V ′, we can define an
analogous topology on V . This topology has as its local base sets of the form

N(v′1, v
′
2, . . . , v

′
k; ε) =

{
v ∈ V ; |〈v′j, v〉| < ε, 1 ≤ j ≤ k

}
When a set in V is said to be weakly–compact, it simply means that the set is compact
with respect to the weak topology on V .
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4.6.2 The Topologies on V ′

Let us make the following notational convention throughout this section:

Notation. Let V be a countably–normed space with dual V ′. The weak topology,
strong topology, inductive limit topology, and Mackey topology on V ′ with be denoted
by τw, τs, τi, and τm, respectively.

Proposition 4.49. Let V be a countably–normed space. Suppose C ⊂ V is weakly–
compact, then C is weakly bounded.

Proof. Let v′ ∈ V ′ and ε > 0 be given. We have to show there exists a k such that
C ⊂ kN(v′; ε) (see Definition 4.17). Cover C by the sets {kN(v′; ε)}∞k=1. Since C is
weakly–compact, C ⊂ kN(v′; ε) for some k.

Corollary 4.50. Let V be a countably–normed space with dual V ′. Then the strong
topology τs is finer than the Mackey topology τm on V ′.

Proof. The topology τs is by definition the topology of uniform convergence on all
bounded sets in V . But by Theorem 4.18 every bounded set in V is weakly bounded.
And by Proposition 4.49, we have that every weakly–compact set is weakly bounded.
Thus τm ⊂ τs.

Lemma 4.51. Let V be a countably–normed space with dual V ′. Then V ′ is Haus-
dorff in the weak topology tw, and hence in the strong, Mackey, and inductive limit
topologies.

Proof. Take u′ ∈ V ′. We must find a neighborhood of 0 in τw that does not contain u′.
Take v ∈ V such that |〈u′, v〉| 6= 0. Let |〈u′, v〉| = λ 6= 0. Consider the set N(v; λ

2
) ={

v′ ∈ V ′; |〈v′, v〉| < λ
2

}
. This set cannot contain u′. Thus V ′ is Hausdorff in the weak

topology (and hence in the finer strong, Mackey, and inductive topologies).

Lemma 4.52. Let V be a countably–Hilbert space with dual V ′. Then the dual of V ′

is V when V ′ is given the weak, strong, Mackey, or inductive limit topology.

Proof. Consider v ∈ V and the corresponding linear functional v̂ on V ′ given by

〈v̂, v′〉 = 〈v′, v〉 where v′ ∈ V ′

Observe that 〈v̂, ·〉 is continuous since 〈v̂, ·〉−1(−ε, ε) = {v′ ∈ V ′; |〈v′, v〉| < ε} which
is open in the weak topology (and hence the strong, Mackey, and inductive limit
topologies) on V ′.

Also note that if û = v̂, then 〈v′, v〉 = 〈v′, u〉 for all v′ ∈ V ′. Thus v = u. Therefore
the correspondence v → v̂ is injective.

We now show that the correspondence v → v̂ is surjective. Take v′′ ∈ V ′′, the
dual of V ′. Then v′′ is continuous on V ′. Since V ′ =

⋃∞
n=1 V

′
n by Proposition 4.14,

we have that v′′ ∈ V ′′
n for all n. But Vn = V ′′

n since Vn is a Hilbert space. Thus
v′′ can be considered as an element of Vn for all n. Since V is a complete we have
that

⋂∞
n=1 Vn = V by Proposition 4.9. Thus v′′ ∈ V and we have that v → v̂ is

surjective.
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Theorem 4.53. Let V be a countably–Hilbert space with dual V ′. Then the inductive,
strong, and Mackey topologies on V ′ are equivalent (i.e. τs = τi = τm).

Proof. By Lemma 4.51 and Lemma 4.52 we have that V ′ is Hausdorff and has dual V
under the topologies ts, ti, and tm. Thus we can apply Theorem 4.45 to V ′. (In the
theorem we are taking V ′ as E and V as E ′.) This gives us that ti and ts are topologies
of uniform convergence on a set of balanced convex weakly–compact subsets of V .
However, by definition, the Mackey topology, τm, is the finest such topology. Thus
τs ⊂ τm and τi ⊂ τm. However, by Corollary 4.50 we have τm ⊂ τs. Thus τs = τm.
Likewise, we have τi ⊂ τm = τs; and, by Proposition 4.27 and the definition of the
inductive limit topology on V ′ we have τs ⊂ τi. Therefore τs = τm = τi.

4.7 Borel Field

In this section our aim is to discuss the σ–field on V ′ generated by the three topologies
(strong, weak, and inductive). We will see that under certain conditions the three
σ–fields coincide. The standing assumption throughout this section is that V is a
countably–Hilbert space with a countable dense subset Qo. On each V ′

n ⊂ V ′ define
the sets Fn

(
1
k

)
for all k as:

Fn

(
1
k

)
=
{
v′ ∈ V ′

n ; supv∈Q |〈v′, v
|v|n 〉| <

1
k

}
where Q = Qo − {0}.

Recall that the local base for the topology of V ′
n is given by the sets

Nn(ε) = {v′ ∈ V ′
n ; |v′|n < ε}

where ε > 0.

Lemma 4.54. In V ′
n we have that Fn

(
1
k

)
= Nn

(
1
k

)
for all k.

Proof. Recall that |v′|−n = supv∈Vn−{0} |〈v′,
v
|v|n 〉|. It is enough to show that for any

v′ ∈ V ′
n we have |v′|−n = supv∈Q |〈v′, v

|v|n 〉|. This is quite easy to see: for any non-zero

v ∈ Vn we have a sequence {vl}∞l=1 in Q that converges to v (since Q is dense in V
and V is dense in Vn). Thus 〈v′, v〉 = liml→∞〈v′, vl〉.

Proposition 4.55. The collection {Fn

(
1
k

)
}∞k=1 forms a local base in V ′

n. That is, V ′
n

is first countable.

Proof. Take an open set U ⊂ V ′
n containing 0. Then Nn(ε) ⊂ U for some ε > 0.

Choose k so that 1
k
< ε. Then by Lemma 4.54 we have Fn

(
1
k

)
= Nn

(
1
k

)
⊂ Nn(ε).

Since each Vn is a separable Hilbert space, so is its dual V ′
n. Let Q′

n be a countable
dense subset in V ′

n.
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Proposition 4.56. The collection {x′ +Fn

(
1
k

)
| x′ ∈ Q′

n , 1 ≤ k <∞} is a basis for
V ′

n. That is, V ′
n is second countable.

Proof. Consider an open set U ⊂ V ′
n and an element v′ in U . By Proposition 4.55

there is a k such that v′ + Fn

(
1
k

)
⊂ U . Take x′ ∈ Q′

n such that |x′ − v′|−n <
1
2k

.
Observe that x′ + Fn

(
1
2k

)
⊂ v′ + Fn

(
1
k

)
: Take any w′ ∈ Fn

(
1
2k

)
and we have

sup
v∈Q

|〈x′ − v′ + w′, v
|v|n 〉| ≤ |x′ − v′|−n + sup

v∈Q
|〈w′, v

|v|n 〉|

<
1

2k
+

1

2k
=

1

k

This gives us that x′− v′ +Fn

(
1
2k

)
⊂ Fn

(
1
k

)
or equivalently x′ +Fn

(
1
2k

)
⊂ v′ +Fn

(
1
k

)
.

Also v′ ∈ x′ + Fn

(
1
2k

)
since |x′ − v′|−n <

1
2k

.
In summary we have that v′ ∈ x′ + Fn

(
1
2k

)
⊂ v′ + Fn

(
1
k

)
⊂ U . Therefore the

collection {x′ + Fn

(
1
k

)
| x′ ∈ Q′

n , 1 ≤ k <∞} is basis for V ′
n

Lemma 4.57. Let σ(τw) be the Borel σ–field on V ′ induced by the weak topology.
Then Fn( 1

k
) is in σ(τw) for all positive integers k and n.

Proof. Observe Fn

(
1
k

)
=
{
v′ ∈ V ′

n ; |v′|n < 1
k

}
=
{
v′ ∈ V ′ ; |v′|−n <

1
k

}
. (If v′ ∈ V ′

satisfies supv∈Q |〈v′, v
|v|n 〉| <

1
k
, then v′ ∈ V ′

n.)

Now note that Fn

(
1
k

)
can be expressed as

Fn

(
1
k

)
=
⋃
r∈S

⋂
v∈Q′

n

N
(

v
|v|n ; r

)
where N

(
v
|v|n ; r

)
= {v′ ∈ V ′; |〈v′, v

|v|n 〉| < r} and S = {r ∈ Q ; 0 < r < 1
k
}. Therefore

Fn

(
1
k

)
can be expressed as the countable intersection of the weakly open setsN

(
v
|v|n ; r

)
.

Hence Fn

(
1
k

)
is in σ(τw).

Theorem 4.58. Let V ′ be endowed with a topology τ . If τ is finer than τw and the
inclusion map i′n : V ′

n → V ′ is continuous for all n, then the σ–fields generated by τ
and τw are equal. (i.e. σ(τw) = σ(τ))

Proof. Let U be a set in τ . Then Un = i′−1
n (U) is open in V ′

n. By Proposition 4.56,
Un can be expressed as Un =

⋃
l∈T x

′
nl

+ Fn( 1
kl

) where x′nl
∈ Q′

n and T is countable.
Then

U ∩ V ′ = U ∩
( ∞⋃

n=1

V ′
n

)
=

∞⋃
n=1

U ∩ V ′
n

=
∞⋃

n=1

Un =
∞⋃

n=1

⋃
l∈T

x′nl
+ Fn

(
1
kl

)
Thus U can be expressed as a countable union of sets in σ(τw). Hence U is in σ(τw).
Therefore σ(τw) = σ(τ).
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Corollary 4.59. The σ–fields generated by the inductive, strong, and weak topologies
on V ′ are equivalent. (i.e. σ(τw) = σ(τs) = σ(τi))

Proof. We can apply Theorem 4.58 since i′n is continuous with respect to τi and τs
and also both τi and τs are finer than τw.

The σ–field on V ′ generated by the weak, strong, or inductive topology is referred
to as the Borel field on V ′.

4.8 A Word on Nuclear Spaces

Let V be a countably–Hilbert space associated with an increasing sequence of inner-
product norms {| · |n;n ≥ 1}. Again let Vn be the completion of V with respect to
the norm | · |n.

Definition 4.60. The countably–Hilbert space V is called a nuclear space if for any n,
there exists m ≥ n such that the inclusion map from Vm into Vn is a Hilbert-Schmidt
operator (i.e. there is an orthonormal basis {ek}∞k=1 for Vm such that

∑∞
k=1 |ek|2n <∞).

Remark 4.61. Note that a trace class operator is also a Hilbert-Schmidt operator and
that the product of two Hilbert-Schmidt operators is a trace class operator. Thus V
is a nuclear space if and only if for any n, there exists m ≥ n such that the inclusion
map from Vm into Vn is a trace class operator.

Proposition 4.62. Let V be a perfect space. Then V has a countable dense subset
(i.e. V is separable).

Proof. Recall V =
⋂∞

n=1 Vn. We can divide this into two cases: either each Vn is
separable or there exists a k such that Vk is not separable.

In the first scenario, since V ⊂ V1 and V1 is separable, we can find a countable set
Q1 ⊂ V such that Q1 is dense in V in the norm | · |1. Likewise, we can find Q2 ⊂ V
that is dense in V with respect to the norm | · |2. Continuing in this manner, we form
Qn ⊂ V for all n ∈ {1, 2, . . .}. Let Q =

⋃∞
n=1Qn. We will now show Q is dense in V .

Let v ∈ V . For each n we can find a vn ∈ Qn such that |v − vn|n < 1
n
. Then for any

k < n we have that

|v − vn|k ≤ |v − vn|n <
1

n

Therefore, the sequence {vn}∞n=1 will converge to v in the space V .
In the second case, without loss of generality we can take V1 to be nonseparable.

Using the Axiom of Choice we can find an uncountable set S1 in V of points bounded
in the norm | · |1 with the distance between any two points being larger than a
positive constant M . (That is, for x, y ∈ S1, we have |x− y|1 ≥ M .) Likewise, since
V =

⋃∞
n=1{v ∈ V ; |v|2 ≤ n}, there is an uncountable set S2 ⊂ S1, which is bounded

in the norm | · |2. Continuing in this manner, for each n we form an uncountable set
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Sn ⊂ Sn−1 such that Sn is bounded in the norm | · |n. Note that for any x, y ∈ Sn, we
have that

|x− y|n ≥ |x− y|1 ≥M

From each Sk take an arbitrary point vk and form the set {vk}∞k=1. Note that
{vk}∞k=1 is bounded in V . However, by construction {vk}∞k=1 cannot contain a Cauchy
sequence. Therefore, V cannot be perfect, a contradiction.

Proposition 4.63. If V is a nuclear space, then V is perfect.

Proof. Let B be a bounded set in V . Denote the set B considered as a subset of Vn

by Bn. Since B is bounded, each Bn is bounded in Vn. For m < n, let in,m : Vn → Vm

be the inclusion map. Note that in,m(Bn) = Bm. Since V is a nuclear space the image
of the bounded set Bn has compact closure in Vm. For m = 1, taking a sequence of
elements {vk}∞k=1 in B, there is a subsequence {vk1}∞k1=1 that is Cauchy in the norm
| · |1. Taking m = 2, we can find subsequence {vk2}∞k2=1 of {vk1}∞k1=1 that is Cauchy in
the norm | · |2. Continuing in this way and forming the diagonal sequence {vkj

}∞j=1 we
see that {vkj

}∞j=1 is Cauchy in every norm | · |k. Thus {vkj
}∞j=1 is Cauchy in V . Since

V is complete, this sequence has a limit in V . Thus B is limit point compact.

Combining the last two propositions, we see that all the results proved through-
out this article apply to nuclear spaces. Most importantly, for a nuclear space, the
strong and inductive topologies on the dual coincide and the σ–fields generated by
the inductive, strong, and weak topologies are equal.
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Chapter 5

White Noise Analysis

In this chapter we present an overview of the subject of White Noise Analysis or
Infinite Dimensional Distribution Theory. We begin by constructing the infinite di-
mensional Gaussian measure and formalizing the concepts of test functions and gen-
eralized functions. We then highlight some of the major results of the subject.

5.1 Gaussian Measure on the Dual of a Nuclear

Space

Let E be a real separable Hilbert space with norm | · |0, and let A be a operator on
E. Suppose further that there is an orthonormal basis {en}∞n=1 on E of eigenvectors
of A satisfying

(1) Aen = λnen

(2) 1 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · ·
(3)

∑∞
n=1 λ

−2
n <∞

Remark 5.1. In the sections to come the reason for having the condition 1 < λ1 will
not be immediately clear. However, let us mention that this condition is important
in ensuring that the test functions we develop are continuous (or at least have a
continuous version almost everywhere).

Applying conditions (1) and (2) we see that A−1 is a bounded operator with
operator norm ‖A−1‖ = 1

λ1
. By condition (3), we see that A−1 is also Hilbert–Schmidt

on E with

(5.1) ‖A−1‖2
HS =

∞∑
n=1

λ−2
n <∞

From this operator A and the Hilbert space E we proceed to construct a nuclear
space.
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Using the notation W = {0, 1, 2, ...}, we have the coordinate map

I : E 7→ RW : f 7→
(
〈f, en〉

)
n∈W

Let

(5.2) F0 = I(E) =
{

(xn)n∈W :
∑
n∈W

x2
n <∞

}
Now, for each p ∈ W , let

(5.3) Fp =
{

(xn)n∈W :
∑
n∈W

λ2p
n x

2
n <∞

}
On Fp we have the inner–product 〈·, ·〉p given by

〈a, b〉p =
∑
n∈W

λ2p
n anbn

This makes Fp a real Hilbert space, unitarily isomorphic to L2(W, νp) where νp is the
measure on W specified by νp({n}) = λ2p

n . Moreover, we have

(5.4) F
def
= ∩p∈WFp ⊂ · · ·F2 ⊂ F1 ⊂ F0 = L2(W, ν0)

and each inclusion Fp+1 ↪→ Fp is Hilbert–Schmidt.
Now we pull this back to E. First set

(5.5) Ep = I−1(Fp) =
{
x ∈ E :

∑
n≥0

λ2p
n |〈x, en〉|2 <∞

}
It is readily checked that

(5.6) Ep = A−p(E)

On Ep we have the pull back inner-product 〈·, ·〉p, which works out to be

(5.7) 〈f, g〉p = 〈Apf, Apg〉

and that induces a norm |f |p = |Apf |0. Then we have the chain

(5.8) E def
= ∩p∈WEp ⊂ · · · E2 ⊂ E1 ⊂ E,

with each inclusion Ep+1 ↪→ Ep being Hilbert–Schmidt.
Equip E with the topology generated by the norms {| · |p}∞p=0 . Then E is, by

definition, a nuclear space. The vectors en all lie in E and the set of all rational–
linear combinations of these vectors produces a countable dense subspace of E . Since
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E is a nuclear space, the topological dual E ′ is the union of the duals E ′p. In fact, we
have:

(5.9) E ′ = ∪p∈WE ′p ⊃ · · · E ′2 ⊃ E ′1 ⊃ E ′ ' E,

where in the last step we used the usual Hilbert space isomorphism between E and
its dual E ′.

Going over to the sequence space, E ′p corresponds to

(5.10) F−p
def
= {(xn)n∈W :

∑
n∈W

λ−2p
n x2

n <∞}

The element y ∈ F−p corresponds to the linear functional on Fp given by

x 7→
∑
n∈W

xnyn

which, by Cauchy–Schwartz, is well–defined and does define an element of the dual
F ′

p with norm equal to the square root of
∑

n∈W λ−2p
n y2

n <∞. This gives us the pull
back inner–product 〈·, ·〉−p, which works out to

(5.11) 〈f, g〉−p = 〈A−pf, A−pg〉

and that induces a norm |f |−p = |A−pf |0.
Combining (5.8) and (5.9) we can get the triple

E ⊂ E ⊂ E ′

where E is a nuclear space dense in E relative to the norm | · |0. Such a triple is called
a Gel’fand triple.

Consider now the product space RW , along with the coordinate projection maps

X̂j : RW → R : x 7→ xj

for each j ∈ W . Equip RW with the product σ–algebra, i.e. the smallest σ–algebra
with respect to which each projection map X̂j is measurable. A fundamental result
in probability measure theory (a special case of Kolmogorov’s theorem, for instance)
says that for a given σ > 0 there is a unique probability measure ν on the product
σ–algebra such that each function X̂j, viewed as a random variable, has Gaussian
distribution with variance σ. Thus,∫

RW

eitX̂j dν = e−t2σ2/2

for t ∈ R, and every j ∈ W . The measure ν is the product of the Gaussian measure
e−x2/2σ2

(2πσ2)−1/2dx on each component R of the product space RW .
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Since, for any p ≥ 1, we have∫
RW

∑
j∈W

λ−2p
j x2

j dν(x) =
∑
j∈W

λ−2p
j <∞,

it follows that
ν(F−p) = 1

for all p ≥ 1. Thus ν(F ′) = 1.
We can, therefore, transfer the measure ν back to E ′, obtaining a probability

measure µσ on the σ–algebra of subsets of E ′ generated by the maps

êj : E ′ → R : f 7→ f(ej),

where {ej}j∈W is the orthonormal basis of E we started with (note that each ej lies
in E =

⋂
p≥0 Ep). This is clearly the σ–algebra generated by the weak topology on

E ′, which, by Corollary 4.59, is equal to the σ–algebras generated by the strong or
inductive–limit topologies.

The above discussion gives a simple direct description of the measure µσ.
To summarize, we are at the starting point of much of infinite–dimensional dis-

tribution theory (white noise analysis): Given a real, separable Hilbert space E and
an operator A on E, we have constructed a nuclear space E and a unique probability
measure µσ on the Borel σ–algebra of the dual E ′ such that there is a linear map

E → L2(E ′, µ) : ξ 7→ ξ̂,

satisfying ∫
E ′
eitξ̂(x) dµσ(x) = e−t2σ2|ξ|20/2

for every real t and ξ ∈ E. The measure µ = µ1 is often called the (standard) Gaussian
measure or the white noise measure and is the principal measure used white–noise
analysis. Also the probability space (E ′, µ) is called the white–noise space.

Remark 5.2. The existence of the Gaussian measure µσ is also obtainable by applying
the Minlos Theorem (see Theorem 7.1). In this setting, we have∫

E ′
ei〈x,ξ〉 dµσ(x) =

∫
E ′
eiξ̂(x) dµσ(x) = e−|ξ|

2
0σ2/2

for any ξ ∈ E .

5.1.1 Properties of the Gaussian Measure

Here we present some standard results about the Gaussian measure µ defined on the
dual of a nuclear space.
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Notation. For a real vector space V , we denote the complexification of V by Vc, where
as usual Vc = {v1 + iv2 ; v1, v2 ∈ V }. In particular, the complexification of the nuclear
space E and its dual E ′ is denoted by Ec and E ′c, respectively. Moreover, the bilinear
pairing 〈·, ·〉 between E and E ′ extends to a bilinear pairing 〈·, ·〉c between Ec and E ′c
where

〈x1 + ix2, ξ1 + iξ2〉c = 〈x1, ξ1〉 − 〈x2, ξ2〉+ i(〈x1, ξ2〉+ 〈x2, ξ1〉)

for x1, x2 ∈ E ′ and ξ1, ξ2 ∈ E . Also, for ξ = ξ1 + iξ2 ∈ Ec we have the norm | · |0 on E
extends to Ec by

|ξ|20 = |ξ1|20 + |ξ2|20

Lemma 5.3. Let ξ1, ξ2, . . . , ξn ∈ E be an orthonormal system for E. Then the image
of the Gaussian measure µ under the map

x 7→ (〈x, ξ1〉, · · · , 〈x, ξn〉) ∈ Rn, x ∈ E ′

is the standard Gaussian measure on Rn (i.e. the probability measure with distribution
function (2π)−n/2e−|t|

2/2). That is ξ̂1, ξ̂2, . . . , ξ̂n are independent identically distributed
standard Gaussian random variables.

Proof. Let ν denote the image of µ under the above map. So ν is a probability
measure on Rn. Computing the characteristic function of ν we see

ν̂(s) =

∫
Rn

ei〈s,t〉dν(t) =

∫
E ′

exp
(
i

n∑
k=1

sk〈x, ξk〉
)
dµ(x)

= exp
(
− 1

2

∣∣∣ n∑
k=1

skξk

∣∣∣2
0

)
= exp

(
− 1

2

n∑
i,j=1

sisj〈ξi, ξj〉
)

= exp
(
−1

2
|s|2
)

which is the characteristic function of the standard Gaussian measure on Rn.

Lemma 5.4. Let ξ1, ξ2, . . . , ξn ∈ E be an orthonormal system for E. For any Gaus-
sian integrable functions f1, f2, . . . , fn on R we have∫

E ′
f1(〈x, ξ1〉) . . . fn(〈x, ξn〉) dµ(x) =

n∏
k=1

∫
E ′
fk(〈x, ξk〉) dµ(x)

Proof. Apply Lemma 5.3.

Lemma 5.5. For any ξ ∈ Ec and n = 0, 1, 2, . . . we have the following:

(a)

∫
E ′
|〈x, ξ〉c|2 dµ(x) = |ξ|20
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(b)

∫
E ′
〈x, ξ〉2n

c dµ(x) =
(2n)!

2nn!
〈ξ, ξ〉nc

(c)

∫
E ′
〈x, ξ〉2n+1

c dµ(x) = 0

(d)

∫
E ′
e〈x,ξ〉c dµ(x) = e〈ξ,ξ〉c/2

Proof. The identities obviously hold when ξ = 0. So we take ξ ∈ E with ξ 6= 0. By
Lemma 5.3 we have that∫

E ′
|〈x, ξ〉|2 dµ(x) = |ξ|20

∫
E ′

∣∣∣〈x, ξ

|ξ|0

〉∣∣∣2dµ(x) =
|ξ|20√
2π

∫
R
t2e−

t2

2 dt = |ξ|20

Thus we have the first identity for ξ ∈ E . Using this, we take ξ = ξ1 + iξ2 ∈ Ec and
observe that∫

E ′
|〈x, ξ〉c|2 dµ(x) =

∫
E ′

(
〈x, ξ1〉2 + 〈x, ξ2〉2

)
dµ(x) = |ξ1|20 + |ξ2|20 = |ξ|20

which proves the first identity. The second and third identity can be proved by a
similar argument.

For the last identity we again write ξ = ξ1 + iξ2 where ξ1, ξ2 ∈ E . Now use the
orthogonal decomposition ξ2 = ξ′2 + 〈ξ2, ξ1

|ξ1|20
〉ξ1 along with Lemma 5.4 to see that∫

E ′
e〈x,ξ1+iξ2〉c dµ(x) = e〈ξ1+iξ2,ξ1+iξ2〉c/2

To prove identities (b) and (c) one can use an argument similar to that which we
used to prove (a). We can also use the indentity in (d) to prove (b) and (c). Let t be
a real number. Substituting tξ for ξ in (d) we have

∫
E ′ e

〈x,tξ〉c dµ(x) = e〈tξ,tξ〉c/2. We

can expand e〈tξ,tξ〉c/2 and e〈x,tξ〉c as follows:

e〈x,tξ〉c =
∞∑

k=0

tk

k!
〈x, ξ〉kc e〈tξ,tξ〉c/2 =

∞∑
n=0

t2n

2nn!
〈ξ, ξ〉nc

Thus (d) becomes ∫
E ′

∞∑
k=0

tk

k!
〈x, ξ〉kc dµ(x) =

∞∑
n=0

t2n

2nn!
〈ξ, ξ〉nc

and after interchanging the integral with the sum we get

∞∑
k=0

tk

k!

∫
E ′
〈x, ξ〉kc dµ(x) =

∞∑
n=0

t2n

2nn!
〈ξ, ξ〉nc
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Taking t = 1 and comparing terms in the power series expansions we see that for
k = 2n we get

1

(2n)!

∫
E ′
〈x, ξ〉k dµ(x) =

1

2nn!
〈ξ, ξ〉nc

and for k = 2n+ 1 we get

1

(2n)!

∫
E ′
〈x, ξ〉k dµ(x) = 0

which proves (b) and (c).

We can now define 〈·, ξ〉c for any ξ ∈ Ec as a µ–almost everywhere defined function
of x ∈ E ′ in L2(E ′, µ), the space of all functions f : E ′ → C which are L2 integrable
with respect to µ. Take a sequence {ξn}∞n=1 in Ec such that limn→∞ |ξ − ξn|0 = 0.
Using Lemma 5.5 we can see that the functions {〈·, ξn〉c}∞n=1 form a Cauchy sequence
in L2(E ′, µ). Thus there exists a φ ∈ L2(E ′, µ) such that limn→∞〈·, ξn〉c = φ. We
denote such a φ by 〈·, ξ〉c.

Proposition 5.6. For any ξ ∈ Ec and n = 0, 1, 2, . . . we have the following:

(a)

∫
E ′
|〈x, ξ〉c|2 dµ(x) = |ξ|20

(b)

∫
E ′
〈x, ξ〉2n

c dµ(x) =
(2n)!

2nn!
〈ξ, ξ〉nc

(c)

∫
E ′
〈x, ξ〉2n+1

c dµ(x) = 0

(d)

∫
E ′
e〈x,ξ〉c dµ(x) = e〈ξ,ξ〉c/2

Proof. It is easily shown that Lemmas 5.3 and 5.4 are true when ξ1, ξ2, . . . , ξn are in
E. Using this, we can mimic the proof of Lemma 5.5 to get the identities.

Proposition 5.7. Let ξ, η ∈ Ec, Then∫
E ′
〈x, ξ〉c〈x, η〉c dµ(x) = 〈ξ, η〉c

Proof. First take ξ, η ∈ E. If ξ = 0, the identity holds trivially, so assume ξ 6= 0 and
let ηξ = 〈η, ξ

|ξ|20
〉ξ be the orthogonal projection of η onto ξ. Then∫

E ′
〈x, ξ〉〈x, η〉 dµ(x) =

∫
E ′
〈x, ξ〉〈x, η − ηξ + ηξ〉 dµ(x)

=

∫
E ′
〈x, ξ〉〈x, η − ηξ〉 dµ(x) +

∫
E ′
〈x, ξ〉〈x, ηξ〉 dµ(x)
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Since ξ and η − ηξ are orthogonal we can apply Lemma 5.4 and Proposition 5.6 to
see that

∫
E ′〈x, ξ〉〈x, η − ηξ〉 dµ(x) = 0. Using that ηξ = 〈η, ξ

|ξ|20
〉ξ we have∫

E ′
〈x, ξ〉〈x, ηξ〉 dµ(x) =

〈η, ξ〉
|ξ|20

∫
E ′
〈x, ξ〉〈x, ξ〉 dµ(x) = 〈η, ξ〉

where the last equality was derived using Proposition 5.6.
To get the identity for ξ, η ∈ Ec simply write ξ = ξ1 + iξ2 and η = η1 + iη2 where

ξ1, ξ2, η1, η2 ∈ E. Then expand and multiply 〈x, ξ〉c〈x, η〉c accordingly.

5.2 Construction of Test Functions and General-

ized Functions

5.2.1 Terminology and Notation

Let X be a nuclear space or a Hilbert space. For ξ1, ξ2, . . . , ξn ∈ X we define the
symmetrization of ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn to be

(5.12) ξ1⊗̂ξ2⊗̂ · · · ⊗̂ξn =
1

n!

∑
σ∈Sn

ξσ(1) ⊗ ξσ(2) ⊗ · · · ⊗ ξσ(n)

where Sn is the group of permutations of {1, 2, . . . , n}. We define the set X b⊗n to be
the closed subspace of X⊗n spanned by ξ1⊗̂ξ2⊗̂ · · · ⊗̂ξn where ξ1, ξ2, . . . , ξn run over
X.

For an F ∈ (X⊗n)′ and σ ∈ Sn we define F σ to be the element in (X⊗n)′ uniquely
determined by

〈F σ, ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξn〉 = 〈F, ξσ(1) ⊗ ξσ(2) ⊗ · · · ⊗ ξσ(n)〉, ξ1, · · · , ξn ∈ X

For F ∈ (X⊗n)′ we define the symmetrization F̂ of F by

(5.13) F̂ =
1

n!

∑
σ∈Sn

F σ

If F = F̂ , we say that F is symmetric. Let (X⊗n)′σ denote the subspace of (X⊗n)′

consisting of symmetric elements. Since

(f1 ⊗ · · · ⊗ fn)b= f1⊗̂ · · · ⊗̂fn, f1, · · · , fn ∈ X ′

the defintions in equations (5.12) and (5.13) are consistent. For F ∈ (X⊗m)′ and
G ∈ (X⊗n)′ we denote the symmetrization of F ⊗ G by F ⊗̂G. Also note that
(X⊗n)′ ∼= X ′⊗n. This is clear when X is a Hilbert space and it is also true when X

is a nuclear space (see Theorem 1.3.10 in [25]). Therefore, we have (X⊗n)′σ
∼= X ′b⊗n,

and this is the notation we will use throughout this work.
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5.2.2 Construction

We denote the space of all sequences f = (fn)∞n=0 with fn ∈ E b⊗n and
∑∞

n=0 n!|fn|20 <
∞ by Γ(E). (Here | · |0 denotes the norm on E b⊗n induced by the norm on E.) Then
Γ(E) is a Hilbert space with norm

‖f‖2
Γ(E) =

∞∑
n=0

n!|fn|20 <∞

and inner–product

〈〈f ,g〉〉Γ(E) =
∞∑

n=0

n!〈f, g〉0

It is typically called the Fock space or symmetric Hilbert space over E. The Fock
space Γ(Ec) can be defined similarly.

Having developed the Gaussian measure µ on the space E ′, we form the real Hilbert
space L2(E ′, µ). We denote the norm on L2(E ′, µ) by ‖ · ‖0. It turns out that by using
the multiple Wiener–Itô integral

In : E b⊗n
c → L2(E ′, µ),

L2(E ′, µ) is canonically ismorphic to Γ(Ec).

Theorem 5.8 (Wiener–Itô). Each φ ∈ L2(E ′, µ) can be uniquely expressed as

(5.14) φ =
∞∑

n=0

In(fn)

where (fn)∞n=0 ∈ Γ(Ec). Conversely, for any (fn)∞n=0 ∈ Γ(Ec) we have that (5.14)
defines a function in L2(E ′, µ). Moreover,

‖φ‖2
0 =

∞∑
n=0

n!|fn|20

For a proof refer to Obata’s book [25]. The map which identifies φ ∈ L2(E ′, µ) with
its corresponding (fn)∞n=0 ∈ Γ(Ec) is call the Wiener–Itô isomorphism and is uniquely
specified by

I : L2(E ′, µ) → Γ(Ec) :
∞∑

n=0

x⊗n

n!
7→ ex̂− 1

2
|x|20

Remark 5.9. We will not delve too deeply into the theory of Wiener integrals, as
much of this theory will not be needed for our later work. We just mention that the
multiple Wiener integral In can be defined as the linear functional on E b⊗n

c such that
for any n1 + n2 + · · · = n, we have

(5.15) In(e⊗n1
1 ⊗̂e⊗n2

2 ⊗̂ · · · ) = Hn1(〈·, e1〉)Hn2(〈·, e2〉) · · · ,

where Hn = (−1)ex2/2Dn
xe

−x2/2 is the Hermite polynomial of degree n.
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Using the operator A on E we form a densely defined operator Γ(A) on L2(E ′, µ).
If φ =

∑∞
n=0 In(fn), then

Γ(A)φ =
∞∑

n=0

In(A⊗nfn)

The operator Γ(A) has the same properties as A. To see this let

(5.16) φn1,n2,... ≡
1√

n1!n2! . . .
In(e⊗n1

1 ⊗̂e⊗n2
2 ⊗̂ · · · ), n1 + n2 + · · · = n

Then the collection {φn1,n2,... ; n1 +n2 + · · · = n, n = 0, 1, 2 . . . } forms an orthonormal
basis for L2(E ′, µ) and

Γ(A)φn1,n2,... = (λn1
1 λ

n2
2 · · · )φn1,n2,...

Therefore conditions (2) and (3) from Section 5.1 can be checked to hold for the
operator Γ(A) on L2(E ′, µ). In fact Γ(A)−1 is a Hilbert–Schmidt operator with

‖Γ(A)−1‖2
HS =

( ∞∏
n=1

(1− λ−2
j )
)−1

Now we can apply the same method used in Section 5.1 to construct a Gel’fand
triple with Γ(A) and L2(E ′, µ). For each integer p ≥ 0, define

‖φ‖p = ‖Γ(A)pφ‖0

and let
(Ep) = {φ ∈ L2(E ′, µ) ; ‖φ‖p <∞}

With this definition it is clear that (Eq) ⊂ (Ep) when q ≤ p and the inclusion map
from (Ep+1) to (Ep) is a Hilbert–Schmidt operator. Now we can form the nuclear space

(E) =
∞⋂

p=0

(Ep)

with topology given by the norms {‖ · ‖p}∞p=0. Likewise, we form the dual (E)′ of (E),
which is equal to

⋃∞
p=1(E ′p), where the norm on (E ′p) is easily checked to be

‖φ‖−p = ‖Γ(A)−pφ‖0

Therefore, we have formed the Gel’fand triple

(E) ⊂ L2(E ′, µ) ⊂ (E)′

where (E) is called the space of test function and (E)′ is called the space of generalized
functions (or Hida distributions). Also, we denote the natural bilinear pairing between
(E) and (E)′ by 〈〈·, ·〉〉.
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5.3 Wick Tensors

The trace operator τ plays a very important role in White Noise Analysis. The trace
operator is in (E ′c)

b⊗2 and is defined by

〈τ, ξ ⊗ η〉c = 〈ξ, η〉c ξ, η ∈ Ec

It can be represented by
∞∑

k=1

ek ⊗ ek

where {ek}∞k=1 are the eigenvectors of the operator A and form an orthonormal basis

for E. To see that τ is in (E ′c)
b⊗2, observe that for any integer p > 0 we have:

|τ |2−p =
∞∑

k=1

|(A−p)⊗2(ek ⊗ ek)|20

=
∞∑

k=1

|A−pek|40

=
∞∑

k=1

λ−4p
k

≤
∞∑

k=1

λ−2
k

and the last sum is finite by (5.1).

5.3.1 Hermite Polynomials

We now review some concepts and properties concerning Hermite polynomials. The
function defined by

:xn:σ2 ≡ Hσ
n (x) = (−σ2)ne

x2

2σ2Dn
xe

− x2

2σ2

is the Hermite polynomial of degree n with parameter σ2. They can also be defined
by the generating function:

(5.17) etx−1
2

σ2t2 =
∞∑

n=0

tn

n!
:xn:σ2

Using this one can derive that

(5.18)
1√

2πσ2

∫
R
Hσ

n (x)Hσ
m(x) e−x2/2σ2

dx = (σ2n)n!δmn
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where δmn is 1 if m = n and 0 otherwise.
We have the following formulas for Hermite polynomials

:xn:σ2 =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−σ2)kxn−2k(5.19)

xn =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!σ2k :xn−2k:σ2(5.20)

5.3.2 Definition

The formula given in (5.19) provides the motivation for the following definition:

Definition 5.10. Given an element x ∈ E ′, we define the Wick tensor for x of order
n to be

:x⊗n: =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−1)kx⊗(n−2k)⊗̂τ⊗k

For example, if x ∈ E−p, then :x⊗n: is in E−p.

Remark 5.11. For an element x ∈ E ′, we can also define :x⊗n: inductively as follows:
:x⊗0: = 1

:x⊗1: = x

:x⊗n: = x⊗̂ :x⊗(n−1): −(n− 1)τ⊗̂ :x⊗(n−2): for n ≥ 2

Similar to the formula in (5.20) for the Hermite polynomials, we have the following
formula for Wick tensors:

x⊗n =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!! :x⊗(n−2k): ⊗̂τ⊗k

Proposition 5.12. For any x ∈ E ′ and ξ ∈ E we have

〈:x⊗n:, ξ⊗n〉 =:〈x, ξ〉n:|ξ|20 and ‖〈:x⊗n:, ξ⊗n〉‖0 =
√
n!|ξ|n0

Remark 5.13. In the second equality, 〈: x⊗n:, ξ⊗n〉 is viewed as a function of x ∈ E ′
and norm ‖ · ‖0 is from L2(E ′, µ)

Proof. First we use the definition :x⊗n: to see that

(5.21) 〈:x⊗n:, ξ⊗n〉 =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−|ξ|20)k〈x, ξ〉n−2k
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Comparing this with (5.19) we have 〈:x⊗n:, ξ⊗n〉 =:〈x, ξ〉n:|ξ|20
For the second equality, we use equation (5.19) and observe that for ξ 6= 0

:〈x, ξ〉n:|ξ|20 =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−|ξ|20)k〈x, ξ〉n−2k

= |ξ|n0
[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−1)k〈x, ξ

|ξ|0 〉
n−2k

= |ξ|n0 :〈x, ξ
|ξ|0 〉

n:

Now we can apply Lemma 5.3 and (5.18) to see that

‖〈:x⊗n:, ξ⊗n〉‖2
0 =

|ξ|2n
0√
2π

∫
R

:xn:1 :xn:1 e
−x2/2 dx = n!|ξ|2n

0

which gives us the desired equality.

Corollary 5.14. Let ξ1, ξ2, · · · ∈ E be orthogonal vectors in E. Then for any x ∈ E ′
we have

〈:x⊗n:, ξ⊗n1
1 ⊗̂ ξ⊗n2

2 ⊗̂ · · · 〉 =:〈x, ξ1〉n1:|ξ1|20 :〈x, ξ2〉
n2:|ξ2|20 · · ·

where n1 + n2 + · · · = n. Moreover, the following holds

‖〈: ·⊗n:, ξ⊗n1
1 ⊗̂ ξ⊗n1

2 ⊗̂ · · · 〉‖0 =
√
n1!n2! · · ·|ξ1|n1

0 |ξ2|n2
0 · · ·

Proof. The first identity can be derived from the defintion of Wick tensor, much like
as in Proposition 5.12. For the second identity we can combine the first identity with
Lemma 5.4 to get

‖〈: ·⊗n:, ξ⊗n1
1 ⊗̂ ξ⊗n1

2 ⊗̂ · · · 〉‖2
0 = ‖ :〈x, ξ1〉n1:|ξ1|20 ‖

2
0 · ‖ :〈x, ξ2〉n2:|ξ2|20 ‖

2
0 · · ·

We can now use Proposition 5.12 to arrive at

‖〈: ·⊗n:, ξ⊗n1
1 ⊗̂ ξ⊗n1

2 ⊗̂ · · · 〉‖0 =
√
n1!n2! · · ·|ξ1|n1

0 |ξ2|n2
0 · · ·

By Corollary 5.14 one can see that if g ∈ E b⊗n, then

‖〈: ·⊗n:, g〉‖0 =
√
n!|g|0

Using this, we take a function f ∈ E b⊗n and a sequence {gk} in E b⊗n with gk → f in

E b⊗n. Then, by the equality above, {〈: ·⊗n:, gk〉} is Cauchy in L2(E ′, µ). Therefore we
can define the function 〈: ·⊗n:, f〉 µ–almost everywhere as the limit in L2(E ′, µ) of the
functions {〈: ·⊗n:, gk〉}. Defined in this way we have

(5.22) ‖〈: ·⊗n:, f〉‖0 =
√
n!|f |0
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Of course, for f = f1 + if2 ∈ E b⊗n
c we can define for almost every x ∈ E ′,

〈: ·⊗n:, f〉c = 〈: ·⊗n:, f1〉+ i〈: ·⊗n:, f2〉

and equation (5.22) still holds.

Corollary 5.15. Let ξ1, ξ2, · · · ∈ E be orthogonal vectors in E. Then for almost
every x ∈ E ′ we have

〈:x⊗n:, ξ⊗n1
1 ⊗̂ ξ⊗n2

2 ⊗̂ · · · 〉 =:〈x, ξ1〉n1:|ξ1|20 :〈x, ξ2〉
n2:|ξ2|20 · · ·

where n1 + n2 + · · · = n.

Proof. It suffices to show that for any ξ ∈ E we have

〈:x⊗n:, ξ⊗n〉 =:〈x, ξ〉n:|ξ|20

for almost all x ∈ E ′. Take a sequence {ξk} in E of non–zero elements such that
ξk → ξ in E. Replacing {ξk} with {|ξ|0 ξk

|ξk|0
}, we can assume that |ξk|0 = |ξ|0 for all

k. Then by Proposition 5.12 we have that

〈:x⊗n:, ξ⊗n〉 = lim
k→∞

〈:x⊗n:, ξ⊗n
k 〉

= lim
k→∞

:〈x, ξk〉n:|ξ|20
= lim

k→∞
:〈x, ξ〉n:|ξ|20

5.3.3 Relationship to Multiple Wiener Integrals

The next theorem gives an explicit relationship between the multiple Wiener integrals
In introduced in section 5.2 and the Wick tensors of elements in E ′.

Theorem 5.16. For any f ∈ E b⊗n
c we have that

In(f)(x) = 〈:x⊗n:, f〉c

holds for almost all x ∈ E ′

Proof. Recalling that H1
n(x) =: xn:1, we can use equation (5.15) and Corollary 5.14

to see that
In(e⊗n1

1 ⊗̂ e⊗n2
2 ⊗̂ · · · )(x) = 〈:x⊗n:, e⊗n1

1 ⊗̂ e⊗n2
2 ⊗̂ · · · 〉

holds for the orthonormal basis elements {ek}. Therefore the equality holds for any

f ∈ E b⊗n
c . Using that E b⊗n

c is dense in E b⊗n
c , we have that In(f)(x) = 〈:x⊗n:, f〉 for any

f ∈ E b⊗n
c .

68



Combining Theorems 5.8 and 5.16 we have that any element φ ∈ L2(E ′, µ) can
expressed in terms of Wick tensors as

(5.23) φ(x) =
∞∑

n=0

In(fn)(x) =
∞∑

n=0

〈:x⊗n:, fn〉c, µ–a.e. for x ∈ E ′

where fn ∈ E b⊗n
c . Moreover, for any positive integer p we have

(5.24) ‖φ‖2
p = ‖Γ(A)pφ‖2

0 =
∞∑

n=0

n!|fn|2p

where |fn|p = |(Ap)⊗nfn|0 for fn ∈ E b⊗n
c . This implies that if φ ∈ (Ep), then fn ∈ E b⊗n

p,c

for all n.
Conversely, it is easy to see that given any f = (fn)∞n=0 ∈ Γ(Ep,c), we have that

equation (5.23) defines a unique function φ in (Ep).
The expression in (5.23) is called the Wiener–Itô expansion for φ. This type of

representation can be extended to functions Φ in (E)′.

Theorem 5.17. Given a Φ ∈ (E ′p), there exists a unique element F = (Fn)∞n=0 ∈
Γ(E ′p,c) such that

(5.25) 〈〈Φ, φ〉〉 =
∞∑

n=0

n!〈Fn, fn〉c for all φ ∈ (Ep)

where φ(x) =
∑∞

n=0〈: x⊗n:, fn〉 µ–a.e. Conversely, given a sequence F = (Fn)∞n=0 ∈
Γ(E ′p,c) we can define a Φ ∈ (E ′p) by (5.25). Moreover, we have that

(5.26) ‖Φ‖2
−p = ‖Γ(A)−pΦ‖2

0 =
∞∑

n=0

n!|Fn|2−p = ‖F‖2
Γ(E ′p,c)

Proof. Take an arbitrary f ∈ E⊗n
p,c and let Sn denote the group of permutations of the

set {1, 2, · · · , n}. For each σ ∈ Sn let fσ be the element in E⊗n
p,c uniquely determined

by
〈fσ, ξ1 ⊗ · · · ⊗ ξn〉c = 〈f, ξσ−1(1) ⊗ · · · ⊗ ξσ−1(n)〉c

and define the symmetrization of f by

f̂ =
1

n!

∑
σ∈Sn

fσ

Obviously, f̂ is in E b⊗n
p,c . Therefore, by Theorem 5.16 and the discussion that follows,

we have 〈:x⊗n:, f̂〉c ∈ (Ep). So we let

φf (x) = 〈:x⊗n:, f̂〉c

69



The linear functional given by

f 7→ 〈〈Φ, φf〉〉 f ∈ E⊗n
p,c

is continuous since

|〈〈Φ, φf〉〉| ≤ ‖Φ‖−p‖φf‖p =
√
n!‖Φ‖−p|f̂ |p ≤

√
n!‖Φ‖−p|f |p

Thus, there exists Fn ∈ E
′⊗n
p,c such that

〈〈Φ, φf〉〉 = n!〈Fn, f〉c

Observe that since φf = φf̂ , we have 〈Fn, f〉c = 〈Fn, f̂〉c for all f ∈ E⊗n
p,c . Therefore

Fn ∈ E ′ b⊗n
p,c . Doing this for all n = 0, 1, 2 . . . gives us a F ∈ Γ(E ′p,c) such that (5.25)

holds. The converse is easily verified.
To prove (5.26) we let n = (n1, n2, · · · ) with |n| = n1 + n2 + · · · = n and consider

the functions given by

φn(x) =
1√

n1!n2! · · ·
〈:x⊗n:, e⊗n1

1 ⊗̂e⊗n2
2 ⊗̂ · · · 〉

These functions form a complete orthonormal basis of L2(E ′, µ) by (5.16) and Theo-
rem 5.16. Therefore

‖Φ‖2
−p = ‖Γ(A)−pΦ‖2

0

=
∞∑

n=1

∑
|n|=n

〈〈Γ(A)−pΦ, φn〉〉2

=
∞∑

n=1

∑
|n|=n

〈〈Φ,Γ(A)−pφn〉〉2

Now observe that

Γ(A)−pφn(x) =
1√

n1!n2! · · ·
〈:x⊗n:, (A⊗n)−p(e⊗n1

1 ⊗̂e⊗n2
2 ⊗̂ · · · )〉c

So we can apply (5.25) to see that

〈〈Φ,Γ(A)−pφn〉〉 =
n!√

n1!n2! · · ·
〈Fn, (A

⊗n)−p(e⊗n1
1 ⊗̂e⊗n2

2 ⊗̂ · · · )〉c
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Therefore we have that

‖Φ‖2
−p =

∞∑
n=1

n!
∑
|n|=n

n!√
n1!n2! · · ·

∣∣〈Fn, (A
⊗n)−p(e⊗n1

1 ⊗̂e⊗n2
2 ⊗̂ · · · )〉c

∣∣2
=

∞∑
n=1

n!
∑
|n|=n

∣∣∣〈(A⊗n)−pFn,
√

n!
n1!n2!···(e

⊗n1
1 ⊗̂e⊗n2

2 ⊗̂ · · · )〉c
∣∣∣2

=
∞∑

n=1

n!|(A⊗n)−pFn|20

=
∞∑

n=1

n!|Fn|2−p

which gives us (5.26).

Using the previous theorem we can adopt a formal expression for Φ ∈ (E)′ as
follows:

(5.27) Φ(x) =
∞∑

n=0

〈:x⊗n:, Fn〉c

Here 〈:x⊗n:, Fn〉c is not a functions of x ∈ E ′, but a generalized function. It can only
be understood through the pairing with a test function in (E). The expression given
by (5.27) is called the Wiener–Itô expansion of Φ.

5.4 S–transform

In this section we introduce a fundamental tool in White Noise Analysis. We begin
by defining a special type of exponential function in L2(E ′, µ).

Definition 5.18. For any ξ ∈ Ec we define the function : e〈·,ξ〉c : in L2(E ′, µ) by the
Wiener–Itô expansion

:e〈·,ξ〉c:=
∞∑

n=0

1

n!
〈:x⊗n:, ξ⊗n〉c

The following verifies that the right side is convergent in L2(E ′, µ).

Lemma 5.19. For ξ, η ∈ Ec we have that

〈〈:e〈·,ξ〉c:, :e〈·,η〉c:〉〉 = e〈ξ,η〉c and ‖ :e〈·,ξ〉c:‖0 = e|ξ|
2
0/2

(i.e. :e〈·,ξ〉c:∈ L2(E ′, µ) whenever ξ ∈ Ec)
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Proof. Using the definition given above we have

〈〈:e〈·,ξ〉c:, :e〈·,η〉c:〉〉 =
∞∑

n=0

n!

(n!)2
〈ξ⊗n, η⊗n〉c =

∞∑
n=0

1

n!
〈ξ, η〉nc = e〈ξ,η〉c

This gives us the first identity. Using :e〈·,ξ〉c: = :e〈·,ξ〉c: we can get the second identity.

Lemma 5.20. The function : e〈·,ξ〉c : is in (Ep) if and only if ξ ∈ (Ep). For such a
function we have

‖ :e〈·,ξ〉c:‖p = exp(1
2
|ξ|2p)

Proof. For the given p we have

‖ :e〈·,ξ〉c:‖2
p =

∞∑
n=0

n!

(n!)2
|ξ⊗n|2p =

∞∑
n=0

1

n!
|ξ|2n

p = e|ξ|
2
p

Corollary 5.21. The function :e〈·,ξ〉c: is in (E) if and only if ξ ∈ Ec.

Proposition 5.22. For any ξ ∈ E we have :e〈x,ξ〉:= e〈x,ξ〉−〈ξ,ξ〉/2.

Proof. For ξ = 0 the assertion is obvious. So we take ξ 6= 0 and apply Corollary 5.15
to see that

:e〈x,ξ〉: =
∞∑

n=0

1

n!
〈:x⊗n:, ξ⊗n〉 =

∞∑
n=0

1

n!
:〈x, ξ〉n:|ξ|20

The last sum is the generating series for the Hermite polynomials with parameter |ξ|20
(see equation (5.17)). Therefore :e〈x,ξ〉c:= e〈x,ξ〉−〈ξ,ξ〉/2.

Definition 5.23. The S–transform of a function Φ ∈ (E)′ is defined to be the function
on Ec given by

SΦ(ξ) = 〈〈Φ, :e〈·,ξ〉c:〉〉, ξ ∈ Ec

Proposition 5.24. If Φ ∈ (E)′ has Wiener–Itô expansion given by Φ =
∑∞

n=0〈:x⊗n:
, Fn〉c, then the S–transform of Φ is given by

SΦ(ξ) =
∞∑

n=0

〈Fn, ξ
⊗n〉c for all ξ ∈ Ec

Proof. Apply Definition 5.23 and Theorem 5.17.

The S–transform is one of the most important tools used in the study of White
Noise Analysis. As we will see, many properties of a generalized function can be
deduced from its S–transform. The next theorem justifies the importance of this
map.
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Theorem 5.25. Let Φ,Ψ be arbitrary functions in (E)′. If SΦ = SΨ, then Φ = Ψ.

Proof. It is sufficient to show that SΦ = 0 implies Φ = 0. Suppose Φ has Wiener–Itô
expansion given by Φ =

∑∞
n=0〈:x⊗n:, Fn〉c. Then by Proposition 5.24 the S–transform

of Φ is given by

SΦ(ξ) =
∞∑

n=0

〈Fn, ξ
⊗n〉c, ξ ∈ E

Since SΦ = 0, we have for any real t

SΦ(tξ) =
∞∑

n=0

tn〈Fn, ξ
⊗n〉c = 0

Therefore F0 = 0 and 〈Fn, ξ
⊗n〉c = 0 for all ξ ∈ E . Since Fn is a symmetric n–linear

map we can apply the polarization identity to see that

〈F, ξ1⊗̂ · · · ⊗̂ξn〉c =
1

n!

n∑
k=1

(−1)n−k
∑

j1<···<jk

〈Fn, (ξj1 + · · · ξjk
)⊗n〉c = 0

So Fn = 0 for all n ≥ 0. Hence Φ = 0.

In the course of proving the above theorem we have shown:

Corollary 5.26. The linear span of the set {:e〈·,ξ〉: ; ξ ∈ E} (or {:e〈·,ξ〉c: ; ξ ∈ Ec}) is
dense in (E).

Proof. For any φ ∈ (Ep), if 〈〈φ, :e〈·,ξ〉:〉〉 = 0 for all ξ ∈ E , then φ = 0 by Theorem 5.25.
Hence the orthogonal complement of the closed linear space of {:e〈·,ξ〉: ; ξ ∈ E} is {0}
in (Ep). Since p is arbitrary, {:e〈·,ξ〉: ; ξ ∈ E} is dense in (Ep) for all p. Recall that the
topology on (E) is induced by the topologies on each (Ep). Hence { :e〈·,ξ〉: ; ξ ∈ E} is
dense in (E).

We can now extend Proposition 5.22 to the case where ξ ∈ Ec.

Proposition 5.27. For any ξ ∈ Ec we have :e〈x,ξ〉c:= e〈x,ξ〉c−〈ξ,ξ〉c/2.

Proof. Let ξ ∈ Ec. It follows from Lemma 5.19 that

S(:e〈·,ξ〉c:)(η) = e〈ξ,η〉c

Now consider the L2(E ′, µ) function e〈x,ξ〉c−〈ξ,ξ〉c/2. Taking the S–transform with η ∈ E
we have

S(e〈x,ξ〉c−〈ξ,ξ〉c/2)(η) = 〈〈e〈x,ξ〉c−〈ξ,ξ〉c/2, :e〈·,η〉c:〉〉

=

∫
E ′
e〈x,ξ〉c−〈ξ,ξ〉c/2e〈x,η〉−〈η,η〉/2 dµ(x) by Proposition 5.22

= e−〈ξ,ξ〉c/2−〈η,η〉c/2e〈ξ+η,ξ+η〉c/2 by Lemma 5.5

= e〈ξ,η〉c
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So we have shown that

〈〈e〈x,ξ〉c−〈ξ,ξ〉c/2, :e〈·,η〉c:〉〉 = S(e〈x,ξ〉c−〈ξ,ξ〉c/2)(η) = S(:e〈·,ξ〉c:)(η) = 〈〈:e〈·,ξ〉c:, :e〈·,η〉c:〉〉

for all η ∈ E . Therefore by Corollary 5.26 we have that :e〈·,ξ〉c:= e〈x,ξ〉c−〈ξ,ξ〉c/2.

5.4.1 Renormalized Exponential Functions

Using the S–transform we can extend Definition 5.18 slightly to include vectors y ∈ E ′c.

Definition 5.28. For any y ∈ E ′c we define the function : e〈·,y〉c : in (E)′ by the
Wiener–Itô expansion

:e〈·,y〉c:=
∞∑

n=0

1

n!
〈:x⊗n:, y⊗n〉c

This definition coincides with that of Definition 5.18 if y ∈ Ec. We now show that
:e〈·,y〉c: is indeed a generalized function.

Theorem 5.29. For y ∈ E ′c we have :e〈·,y〉c:∈ (E)′ with S–transform given by

S(:e〈·,y〉c:)(ξ) = e〈y,ξ〉c , ξ ∈ E ′c

Moreover, if y ∈ E ′p,c, then :e〈·,y〉c:∈ (E ′p) with

‖ :e〈·,y〉c:‖−p = e|y|
2
−p/2

Proof. Since E ′c =
⋃∞

p=0 E ′p,c, there exist some p ≥ 0 for which |y|−p <∞. For such a
p, we have

‖ :e〈·,y〉c:‖2
−p =

∞∑
n=0

n!
1

(n!)2
|y⊗n|2−p =

∞∑
n=0

1

n!
|y|2n

−p = e|y|
2
−p

Hence we have :e〈·,y〉c:∈ (E ′p).
To compute the S–transform we use Definition 5.28 and Proposition 5.24 to see

that

S(:e〈·,y〉c:)(ξ) =
∞∑

n=0

n!
1

(n!)2
〈y⊗n, ξ⊗n〉c =

∞∑
n=0

1

n!
〈y, ξ〉nc = e〈y,ξ〉c

5.4.2 Characterization and Convergence Theorems

One of the most important applications of the S–transform is the ability to charac-
terize test and generalized functions through their respective S–transforms. These
characterizations are summarized in the following two theorems, which we present
without proof.
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Theorem 5.30. Let F be a complex valued function on Ec. Then F = SΦ for some
Φ ∈ (E)′ if and only if

(a) for fixed ξ, η ∈ Ec, the function F (zξ + η) is an entire function of z ∈ C
(b) there exists nonnegative constants K, a, and p such that

|F (ξ)| ≤ K exp[a|ξ|2p], for all ξ ∈ Ec

Moreover, for any q satisfying 2ae2‖A−(q−p)‖HS < 1 we have the following

‖Φ‖−q ≤ K(1− 2ae2‖A−(q−p)‖HS)−1/2

For a proof see page 65, Theorem 3.6.1 in [25] or page 79, Theorem 8.2 in [17].

Theorem 5.31. Let F be a complex valued function on Ec. Then F = SΦ for some
Φ ∈ (E) if and only if

(a) for fixed ξ, η ∈ Ec, the function F (zξ + η) is an entire function of z ∈ C
(b) for any constants a > 0 and p ≥ 0, there exists a K > 0 such that

|F (ξ)| ≤ K exp[a|ξ|2p], for all ξ ∈ Ec

For a proof see page 65, Theorem 3.6.2 in [25] or page 89, Theorem 8.9 in [17].
Having that generalized (and test) functions can be characterized by their S–

transform, we observe that convergence of generalized functions can also be deduced
in terms of the S–transform.

Theorem 5.32. Let {Φn}∞n=0 be a sequence in (E)′ and let Fn = SΦn. Then Φn

converges strongly to Φ in (E)′ if and only if

(a) For each ξ ∈ Ec, limn→∞ Fn(ξ) = F (ξ), where F (ξ) = S(Φ)(ξ).

(b) There exists nonnegative constants K, a, and p (independent of n) such that

|Fn(ξ)| ≤ K exp[a|ξ|2p], for all ξ ∈ Ec and n ∈ N

Proof. Suppose Φn converges strongly to Φ in (E)′. Then for any ξ ∈ Ec,

lim
n→∞

Fn(ξ) = lim
n→∞

〈〈Φn, :e
〈·,ξ〉c:〉〉

= 〈〈Φ, :e〈·,ξ〉c:〉〉
= F (ξ)

Also, since Φn converges strongly to Φ, the sequence {Φn}∞n=0 is strongly bounded in
(E)′. Therefore, by Theorem 4.31, there is a positive integer p and a constant K > 0
such that supn ‖Φn‖−p < K. Hence

|Fn(ξ)| = |〈〈Φn, :e
〈·,ξ〉c:〉〉| ≤ ‖Φn‖−p‖ :e〈·,ξ〉c:‖p ≤ K exp (1

2
|ξ|2p)
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Therefore condition (b) is satisfied.
To see that the converse holds, let Φn ∈ (E)′ and assume that Fn = SΦn satisfies

conditions (a) and (b). By condition (a) we have that

lim
n→∞

Fn(ξ) = F (ξ)

exist for each ξ ∈ Ec. We would like to apply Theorem 5.30 to see F is the S–transform
of a generalized function. To show that F (zξ + η) is entire for any ξ, η ∈ Ec, we can
use conditions (a) and (b) to and observe that for any closed contour C in C∫

C

F (zξ + η) dz =

∫
C

lim
n→∞

Fn(zξ + η) dz = lim
n→∞

∫
C

Fn(zξ + η) dz = 0

where the last equality uses Morera’s theorem (since Fn(zξ + η) is entire). Thus we
can apply Morera’s theorem to F (zξ + η) to say that it is entire. Moreover, using
conditions (a) and (b) it is easy to see that

|F (ξ)| ≤ K exp[a|ξ|2p]

for all ξ ∈ Ec. Thus, we can apply Theorem 5.30 to show that there exists a unique
Φ ∈ (E)′ such that F = SΦ.

Now we have left to show that Φn converges strongly to Φ. First of all, condition
(a) gives us that

〈〈Φ, :e〈·,ξ〉c:〉〉 = lim
n→∞

〈〈Φn, :e
〈·,ξ〉c:〉〉

for all ξ ∈ Ec. So for any φ in the linear span of {:e〈·,ξ〉c: ; ξ ∈ Ec} we have

〈〈Φ, φ〉〉 = lim
n→∞

〈〈Φn, φ〉〉

Thus for any φ ∈ (E) we apply Corollary 5.26 to find a sequence {φk}∞k=0 in the linear
span of {:e〈·,ξ〉c: ; ξ ∈ Ec} with φk → φ in (E). We then write 〈〈Φ, φ〉〉 − 〈〈Φn, φ〉〉 as

〈〈Φ, φ〉〉 − 〈〈Φn, φ〉〉 =

(〈〈Φ, φ〉〉 − 〈〈Φ, φk〉〉) + (〈〈Φ, φk〉〉 − 〈〈Φn, φk〉〉) + (〈〈Φn, φk〉〉 − 〈〈Φn, φ〉〉)

to see that
〈〈Φ, φ〉〉 = lim

n→∞
〈〈Φn, φ〉〉

for all φ ∈ (E). Hence Φn converges weakly to Φ. Therefore, by Theorem 4.40, we
have φn converges strongly to Φ in (E)′.
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5.4.3 Fourier Transform

The S–transform can also be used to define a Fourier transform on the space of
generalized functions (E)′. In the finite dimensional setting the Fourier transform can
be written as

F(f)(y) = (2π)−n/2

∫
Rn

e−i〈x,y〉+|x|2/2f(x)e−|x|
2/2 dx

=

∫
Rn

e−i〈x,y〉+|x|2/2f(x) dµn(x)

where µn is the standard Gaussian measure on Rn. We would like to define the Fourier
transform of a generalized function Φ ∈ (E)′ in an analogous manner. Namely as,

FΦ(y) =

∫
E ′

:e−i〈x,y〉: Φ(x) dµ(x)

However, this is a purely symbolic integral. But, if we informally take the S–transform
of FΦ we get

S(FΦ)(ξ) =

∫
E ′
e−i〈x,ξ〉cΦ(x) dµ(x) = 〈〈Φ, e−i〈x,ξ〉c〉〉

for ξ ∈ Ec. It is easily verified that

(5.28) 〈〈Φ, e−i〈·,ξ〉c〉〉 = S(Φ)(−iξ)e−〈ξ,ξ〉c/2

For a generalized function Φ ∈ (E)′, the function given by (5.28) satisfies conditions
(a) and (b) of Theorem 5.30. Therefore there is a unique element Ψ ∈ (E)′ with
S–transform given by (5.28). With this in mind we define the Fourier transform of
generalized function as follows:

Definition 5.33. The Fourier transform of a generalized function Φ ∈ (E)′ is the
unique element FΦ in (E)′ with S–transform given by

S(FΦ)(ξ) = 〈〈Φ, e−i〈·,ξ〉c〉〉 = S(Φ)(−iξ)e−〈ξ,ξ〉c/2

It turns out that defined in this way the Fourier transform is a continuous linear
operator from (E)′ into itself. (For a proof, see page 141 in [25] or page 152 in [17].)

5.5 Delta Functions

The White Noise analogue of the finite dimensional Dirac’s delta function is the
Kubo–Yokoi delta function, δ̃x. We would like δ̃x to have the following effect on a
test function φ ∈ (E):

〈〈δ̃x, φ〉〉 = φ(x)

However, in order to do this we need φ(x) to be continuous. Luckily we have the
following theorem:
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Theorem 5.34. For every test function φ ∈ (E) there exist a unique continuous

function φ̂ such that φ(x) = φ̂(x) for µ–almost every x ∈ E ′. Moreover, φ̂ is given by

φ̂(x) =
∞∑

n=0

〈:x⊗n:, fn〉,

the Wiener–Itô expansion for φ.

For a proof of this theorem refer to page 38 in [25] or page 52 in [17].

Remark 5.35. By assuming continuous versions of test functions we can pointwise
multiply two functions φ, ψ ∈ (E). It turns out this operation is continuous (see
Theorem 8.18 on page 98 in [17]).

Thanks to the previous theorem we can now define δ̃x as follows:

Definition 5.36. The Kubo–Yokoi delta function at x is defined to be the generalized
function δ̃x such that

〈〈δ̃x, φ〉〉 = φ(x)

for each φ ∈ (E).

To see that Kubo–Yokoi delta function at x is in (E)′ we take the S–transform of
δ̃x

(5.29) S(δ̃x)(ξ) = 〈〈δ̃x, :e〈·,ξ〉c:〉〉 = e〈x,ξ〉c−〈ξ,ξ〉/2

Clearly, this function satisfies conditions (a) and (b) of Theorem 5.30. So δ̃x is in fact
a generalized function. We now derive the Wiener–Itô expansion of δ̃x.

Theorem 5.37. The Wiener–Itô expansion of the Kubo–Yokoi delta function at x is
given by

δ̃x =
∞∑

n=0

1

n!
〈: ·⊗n:, :x⊗n:〉

Proof. By Theorem 5.17, δ̃x has Wiener–Itô expansion given by

(5.30) δ̃x =
∞∑

n=0

〈: ·⊗n:, Fn〉c

where Fn ∈ E ′⊗n
p,c . For each n consider the function given by φf = 〈: ·⊗n:, f〉c where

f ∈ E b⊗n
c . By the definition of δ̃x we have that

(5.31) 〈〈δ̃x, φf〉〉 = φf (x) = 〈:x⊗n:, f〉c
But, by using (5.30), we have

(5.32) 〈〈δ̃x, φf〉〉 = n!〈Fn, f〉c
Combining equations (5.31) and (5.32) we see that n!〈Fn, f〉c = 〈: x⊗n :, f〉c for all

f ∈ E b⊗n
c . Therefore Fn = 1

n!
: x⊗n : and we have the Wiener–Itô expansion for δ̃x

promised by the theorem.
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5.5.1 Donsker’s Delta Function

Another delta function often used in White Noise Analysis is Donsker’s delta function.
It is defined using the specific Gel’fand triple S(R) ⊂ L2(R) ⊂ S ′(R). Let δa be the
Dirac delta function at a and note that

t 7→ B(t)
def
= 〈·, 1[0,t]〉

is a Brownian motion. The generalized function δa(B(t)) is Donsker’s delta function.
To see that it is in fact an element of (S)′ we need the following theorem:

Theorem 5.38. Let F ∈ S ′c(R) and f ∈ L2(R) with f 6= 0. Then F (〈·, f〉) is a
generalized function and has S–transform given by

SF (〈·, f〉)(ξ) =
1√

2π|f |0

∫
R
F (y) exp

[
− 1

2|f |20
(y − 〈f, ξ〉)2

]
dy, ξ ∈ Sc(R)

where the integral is understood to be the bilinear pairing of S ′c(R) and Sc(R).

For a proof refer to [16] or page 63 in [17].
Using this theorem, we can see that δa(B(t)) is in fact a generalized function.

Moreover, we have the S–transform of δa(B(t)) is given by

S[δa(B(t))](ξ) =
1√
2πt

∫
R
δa(y)e

− 1
2t

(y−〈B(t),ξ〉c)2 dy

=
1√
2πt

exp
[
− 1

2t

(
a−

∫ t

0

ξ(u) du
)2]
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Chapter 6

The Delta Function of a Subspace

Let E be a real Hilbert space with V a subspace of E. We want to make sense of the
identities

(6.1) δV (x) =

∫
V

δ(x− v)Dv =

∫
V ⊥

e2πi〈x,u〉Du

where Dv and Du are the (nonexistent) Lebesgue measure on the subspace V and
V ⊥ of E. This identity was first introduced in equation (3.12)—it is a fundamental
component of the Hidden Subspace Algorithm. The finite dimensional verison of this
equality can be found in [13]. (It is in the proof of Theorem 7.1.25.)

6.1 Motivation

To motivate our definition of the delta function of a subspace we formally demonstrate
that the the equalities in (6.1) hold in the distributional sense. We also formally show
that the S–transform of each of the terms agree.

6.1.1 Formal Calculations

Let f be a function on E. We will show that when any of the terms in (6.1) are
integrated against f , we arrive at the same result. Thus we say the equalities in (6.1)
hold in the distributional sense. Observe:

(1) Essentially by the “definition” of δV we have∫
E

δV (x)f(x)Dx =

∫
V

f(v)Dv

(2) Now for
∫

V
δ(x− v)Dv we calculate∫

E

∫
V

δ(x− v)Dv f(x)Dx =

∫
V

∫
E

δ(x− v)f(x)DxDv =

∫
V

f(v)Dv

This formally verifies the first equation in (6.1).
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(3) For
∫

V ⊥ e
2πi〈x,u〉Du we mimic the finite dimensional case and give meaning to

this integral through “regularization”:∫
V ⊥

e2πi〈x,u〉Du = lim
σ→∞

∫
V ⊥

e2πi〈x,u〉− |u|20
2σ2 Du

= lim
σ→∞

(2πσ2)dim V ⊥/2e
−4π2σ2

2
|x

V ⊥ |20

where xV ⊥ is the projection of x onto V ⊥. Momentarily ignoring the possibility
that V ⊥ is infinite dimensional, we see that this last limit is ∞ if xV ⊥ = 0 and
0 otherwise. So we have∫

E

∫
V ⊥
e2πi〈x,u〉Duf(x)Dx

= lim
σ→∞

∫
E

f(xV + xV ⊥)(2πσ2)dim V ⊥/2e
−4π2σ2

2
|x

V ⊥ |20 D(xV + xV ⊥)

= lim
σ→∞

∫
V

∫
V ⊥

f(xV + xV ⊥)(2πσ2)dim V ⊥/2e
−4π2σ2

2
|x

V ⊥ |20 DxV ⊥DxV

Here we use a change of variables with u = 2πσxV ⊥ andDu = (2πσ)dim V ⊥
DxV ⊥

to get

= lim
σ→∞

∫
V

∫
V ⊥

f
(
xV + u

2πσ

)
e
−|u|20

2
Du

(2π)dim V/2
DxV

=

∫
V

f(xV )DxV

=

∫
V

f(v)Dv

Thus the equalities in (6.1) hold in the distributional sense.

6.1.2 S–transform

Next we formally take the S–transform of each term to see that the common factor
is

(6.2) (2π)− dim V ⊥/2e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉2c

where ξ ∈ Ec and ξV ⊥ is the orthogonal projection of ξ onto V ⊥
c . That is, if ξ =

ξ1 + iξ2 with ξ1, ξ2 ∈ E , then ξV ⊥ = ξ1V ⊥ + ξ2V ⊥ , where ξ1V ⊥ , ξ2V ⊥ are the orthogonal
projections onto V ⊥. Observe
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(1) For δV we have, working formally,

S(δV )(ξ) = 〈〈δV , :e〈·,ξ〉c:〉〉

=

∫
E ′
δV (x) :e〈x,ξ〉c: dµ(x)

=

∫
E

δV (x)e〈x,ξ〉c− 1
2
〈ξ,ξ〉2c− 1

2
|x|20

Dx

(2π)dim E/2

=

∫
V

e〈v,ξ〉c− 1
2
〈ξ,ξ〉2c− 1

2
|v|20

Dv

(2π)dim E/2

= (2π)− dim V ⊥/2

∫
V

e〈v,ξ〉c− 1
2
〈ξ,ξ〉2c− 1

2
|v|20

Dv

(2π)dim V/2

= (2π)− dim V ⊥/2e
1
2
〈ξV ,ξV 〉c− 1

2
〈ξ,ξ〉c

= (2π)− dim V ⊥/2e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c

(2) For
∫

V
δ(x− v)Dv we see that

S
(∫

V

δ(x− v)Dv
)
(ξ) =

∫
E ′

∫
V

δ(x− v)Dv :e〈x,ξ〉c: dµ(x)

=

∫
V

∫
E ′
δ(x− v) :e〈x,ξ〉c: dµ(x)Dv

=

∫
V

∫
E

δ(x− v)e〈x,ξ〉c− 1
2
〈ξ,ξ〉2c− 1

2
|x|20

Dx

(2π)dim E/2
Dv

= (2π)− dim V ⊥/2

∫
V

e〈v,ξ〉c− 1
2
〈ξ,ξ〉2c− 1

2
|v|20

Dv

(2π)dim V/2

= (2π)− dim V ⊥/2e
1
2
〈ξV ,ξV 〉c− 1

2
〈ξ,ξ〉c

= (2π)− dim V ⊥/2e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c

(3) And for
∫

V ⊥ e
2πi〈x,u〉Du we get

S
(∫

V ⊥
e2πi〈x,u〉Du

)
(ξ) =

∫
E ′

∫
V ⊥

e2πi〈x,u〉Du :e〈x,ξ〉c: dµ(x)

=

∫
V ⊥

∫
E ′
e2πi〈x,u〉e〈x,ξ〉c− 1

2
〈ξ,ξ〉c dµ(x)Du

=

∫
V ⊥

∫
E ′
e〈x,2πiu+ξ〉c− 1

2
〈ξ,ξ〉cdµ(x)Du

=

∫
V ⊥

e
1
2
〈2πiu+ξ,2πiu+ξ〉c− 1

2
〈ξ,ξ〉cDu

=

∫
V ⊥

e〈2πiu,ξ〉c−4π2 |u|0
2 Du
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Letting w = 2πu we have

=

∫
V ⊥

ei〈w,ξ〉c− 1
2
|w|0 Dw

(2π)dim V ⊥

= (2π)− dim V ⊥/2

∫
V ⊥

ei〈w,ξ〉c− 1
2
|w|0 Dw

(2π)dim V ⊥/2

= (2π)− dim V ⊥/2e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c

6.2 Definition of Delta Function of a Subspace

Consider the function

(6.3) FV (ξ) = e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c ξ ∈ Ec

We would like to see that FV is the S–transform of some generalized function in
(E)′. To do this we show that FV satisfies the conditions in Theorem 5.30. Letting
ξ = ξ1 + iξ2 where ξ1, ξ2 ∈ E we observe that

|FV (ξ)| = |e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c | = | exp(−1

2
〈P⊥(ξ1 + iξ2), P⊥(ξ1 + iξ2)〉c)|(6.4)

where P⊥ is the orthogonal projection onto V ⊥

= | exp(−1
2
|P⊥ξ1|20 + 1

2
|P⊥ξ2|20 − i〈P⊥ξ1, P⊥ξ2〉)|

= exp(−1
2
|P⊥ξ1|20 + 1

2
|P⊥ξ2|20)

≤ exp(1
2
|P⊥ξ1|20 + 1

2
|P⊥ξ2|20)

≤ e
1
2
|ξ|20

Also for z ∈ C and ξ, η ∈ Ec we have

FV (zξ + η) = e−
1
2
〈zξ

V ⊥+η
V ⊥ ,zξ

V ⊥+η
V ⊥ 〉c = e−

z2

2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c−z〈ξ

V ⊥ ,η
V ⊥ 〉c− 1

2
〈η

V ⊥ ,η
V ⊥ 〉c

Therefore FV (zξ + η) is entire.
Hence by Theorem 5.30 there is a generalized function Φ ∈ (E)′ whose S–transform

is given by FV (ξ) in (6.3). This leads us to the following definition:

Definition 6.1. Let V be a closed subspace of a real Hilbert space E. The delta
function of the subspace V is defined to be the generalized function in (E)′ whose

S–transform is given by e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c where ξ ∈ Ec. This generalized function will be

denoted by δ̃V .

In order to account for the possibility that the codimension of V is infinite, we
have defined δ̃V to be essentially (2π)dim V ⊥/2δV from equation (6.1).
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6.2.1 Relationship with the Kubo–Yokoi Delta Function

As the notation indicates, the delta function of a subspace, δ̃V , is related to the
Kubo–Yokoi delta function from Section 5.5. If we interpret the Kubo–Yokoi delta
function at 0, δ̃0, as the delta function of the subspace V = 0, then observing that
V ⊥ = E, we see from the definition above that the S–transform of δ̃V is given by
e−

1
2
〈ξ,ξ〉c , which is the S–transform of δ̃0 (see equation (5.29)).

6.2.2 Relationship with Donsker’s Delta Function

What is not so apparent is that the delta function of a subspace, δ̃V , is related to
Donsker’s delta function. We saw in Section 5.5.1 that Donsker’s delta function
is defined for the Gel’fand triple S(R) ⊂ L2(R) ⊂ S ′(R) and is usually given by
δa(B(t)) where B(t) = 〈·, 1[0,t]〉 and δa is the Dirac delta function at a. However,
this definition can be extended slightly. In fact, by Theorem 5.38, we have for any
f ∈ L2(R), δa(〈·, f〉) is in S ′(R).

Now given a unit vector f ∈ L2(R) consider the generalized function δ0(〈·, f〉).
Intuitively, this is a function that gives enormous weight to vectors g ∈ L2(R) with
〈f, g〉 = 0 (i.e. vectors g ∈ {f}⊥). So taking V = {f}⊥, the distribution δ0(〈·, f〉)
should be related to δ̃V .

Using Theorem 5.38 to find the S–transform of δ0(〈·, f〉) we see that

S[δ0(〈·, f〉)](ξ) =
1√
2π

∫
R
δ0(y)e

− 1
2
(y−〈f,ξ〉c)2dy =

1√
2π

e−
1
2
〈f,ξ〉2c

Now since V = {f}⊥, we have V ⊥ = {Rf}. Thus the V ⊥ component of ξ, ξV ⊥ , is
given by 〈f, ξ〉cf . Observe

〈f, ξ〉2c = 〈〈f, ξ〉cf, 〈f, ξ〉cf〉c = 〈ξV ⊥ , ξV ⊥〉c

Also since the dimV ⊥ = 1, we have

S(δ0(〈·, f〉))(ξ) = (2π)− dim V ⊥/2e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉2c

Thus, Theorem 5.25 tells us that
√

2π δ0(〈·, f〉) = δ̃V .

6.3 The Wiener–Itô Decomposition of δ̃V

In this section we find the Wiener–Itô decomposition of δ̃V . We begin by generalizing
the definition of the trace operator and Wick tensor found in Section 5.3
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6.3.1 Subspace Trace Operator

As usual, let V be a closed subspace of our Hilbert space E.

Definition 6.2. The V –trace operator, which we denote by τV is the element in (E ′c)
b⊗2

given by
〈τV , ξ ⊗ η〉c = 〈ξV , ηV 〉c ξ, η ∈ Ec

The V –trace operator can be represented as

τV =
∞∑

k=1

ek ⊗ PV ek

where PV is the orthogonal projection onto the subspace V . Observe

〈τV , ξ ⊗ η〉c =
〈 ∞∑

k=1

ek ⊗ PV ek, ξ ⊗ η
〉

c

=
∞∑

k=1

〈ek, ξ〉c〈PV ek, η〉c

=
∞∑

k=1

〈ek, ξ〉c〈ek, ηV 〉c where ηV = PV η

=
〈 ∞∑

k=1

〈ek, ξ〉cek,
∞∑

k=1

〈ek, ηV 〉cek

〉
c

= 〈ξ, ηV 〉c = 〈ξV , ηV 〉c

Remark 6.3. We can also represent τV as
∑∞

k=1 PV ek ⊗PV ek or
∑dim V

k=1 vk ⊗ vk where
{vk}dim V

1 is an orthonormal basis for V . However, we find that the representation of
τV given above is more suitable for our computations.

Now note that τV is in fact in (E ′c)
b⊗2

|τV |2−p =
∞∑

k=1

|(A−p)⊗2(ek ⊗ PV ek)|20 =
∞∑

k=1

|A−pek|20|A−pPV ek|20

Here we use that |A−pPV ek|20 ≤ ‖A−1‖p|PV ek|20 ≤ 1
λp
1
|ek|20 ≤ 1

λp
1

in the above to see

that

|τV |2−p ≤ λ−p
1

∞∑
k=1

|A−pek|20 ≤ λ−p
1

∞∑
k=1

λ−2p
k

where λk is the eigenvalue corresponding to ek. We know that
∑∞

k=1 λ
−2
k < ∞ by

(5.1). So for any p > 0 we have

(6.5) |τV |2−p ≤ λ−p
1

∞∑
k=1

λ−2p
k <∞

and hence τV is in (E ′c)
b⊗2.
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6.3.2 Subspace Wick Tensor

With the notion of a subspace trace operator securely behind us, we can now define
the subspace Wick tensor. Again we let V be a closed subspace of our Hilbert space
E

Definition 6.4. For x ∈ E ′ the V –Wick tensor for x of order n is defined to be

:x⊗n
V :=

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−1)kx⊗(n−2k)⊗̂τ⊗k

V

Proposition 6.5. For any x ∈ E ′ and ξ ∈ E we have

〈:x⊗n
V :, ξ⊗n〉 =:〈x, ξ〉n:|ξV |20

Proof. From the definition we have

〈:x⊗n
V :, ξ⊗n〉 =

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!!(−|ξV |20)k〈x, ξ〉n−2k

Comparing this with (5.19) we see that 〈:x⊗n
V :, ξ⊗n〉 =:〈x, ξ〉n:|ξV |20

6.3.3 Wiener–Itô Expansion

Consider the following function

ΦV
x =

∞∑
n=0

1

n!
〈: ·⊗n:, :x⊗n

V :〉

We would like to see that ΦV
x is in (E)′.

Lemma 6.6. If a, b ∈ E−p for any integer p > 0, then

|a⊗k⊗̂b⊗l|−p ≤ |a|k−p|b|l−p

Proof. Recall

a⊗k⊗̂b⊗l =
1

2

(
a⊗k⊗b⊗l + b⊗l⊗a⊗k

)
Hence

|a⊗k⊗̂b⊗l|−p ≤
1

2

(
|a⊗k⊗b⊗l|−p + |b⊗l⊗a⊗k|−p

)
≤ 1

2

(
|a⊗k|−p|b⊗l|−p + |b⊗l|−p|a⊗k|−p

)
≤ |a⊗k|−p|b⊗l|−p

which proves the inequality.
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Lemma 6.7. For any n ≥ 1 and x ∈ E ′p we have

| :x⊗n
V : |−p ≤

√
n!(|x|−p + |τV |1/2

−p )n

Proof. From the definition of :x⊗n
V : and Lemma 6.6 we see that

| :x⊗n
V : |−p ≤

[n/2]∑
k=0

(
n

2k

)
(2k − 1)!! |x|n−2k

−p |τV |k−p

Now for k ≤ [n/2] we use that (2k − 1)!! ≤ (n− 1)!! ≤
√
n! to get

| :x⊗n
V : |−p ≤

√
n!

[n/2]∑
k=0

(
n

2k

)
|x|n−2k

−p (|τV |1/2
−p )2k

≤
√
n!

n∑
k=0

(
n

k

)
|x|n−k

−p (|τV |1/2
−p )k

≤
√
n!(|x|−p + |τV |1/2

−p )n

Proposition 6.8. For x ∈ E ′, ΦV
x =

∑∞
n=0

1
n!
〈: ·⊗n:, : x⊗n

V :〉 is a generalized function
(i.e. ΦV

x is in (E)′)

Proof. Since x ∈ E ′, x is in E ′q for q ≥ 0. Thus for any p ≥ q we have

‖ΦV
x ‖2

−p =
∞∑

n=0

n!
1

(n!)2 | :x
⊗n
V : |2−p

≤
∞∑

n=0

1

n!
(
√
n!)2(|x|−p + |τV |1/2

−p )2n by Lemma 6.7

=
∞∑

n=0

(|x|−p + |τV |1/2
−p )2n(6.6)

From (6.5) we have that |τV |2−p ≤ λ−p
1

∑∞
k=1 λ

−2
k . Thus |τV |−p → 0 as p → ∞.

Also for x ∈ E ′, we have |x|−p → 0 as p → ∞. Therefore we can take p so that

|x|−p + |τV |1/2
−p < 1. From (6.6) above this gives us

‖ΦV
x ‖2

−p ≤
1

1−
(
|x|−p + |τV |1/2

−p

)2
Thus ΦV

x ∈ (E)′.

Theorem 6.9. The Wiener–Itô decomposition of δ̃V is given by
∑∞

n=0
1
n!
〈: ·⊗n:, :0⊗n

V ⊥:〉
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Proof. From Proposition 6.8 we know that ΦV ⊥
0 =

∑∞
n=0

1
n!
〈: ·⊗n :, : 0⊗n

V ⊥ :〉 is in (E)′.

Taking the S–transform of ΦV ⊥
0 with ξ ∈ E we get

S(ΦV ⊥

0 )(ξ) =
∞∑

n=0

n!
1

(n!)2 〈:0
⊗n
V ⊥:, ξ⊗n〉

=
∞∑

n=0

1

n!
:0 :|ξ

V ⊥ |20 by Proposition 6.5

=
∞∑

n=0

(2n− 1)!!

(2n)!
(−1)n|ξV ⊥|2n

0 by (5.19)

=
∞∑

n=0

1

n!

(−1)n

2n
|ξV ⊥|2n

0 since (2n− 1)!! =
(2n)!

2nn!

= e−
1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉

Comparing this with the S–transform of δ̃V in Definition 6.1 we see that

〈〈ΦV ⊥

0 , :e〈·,ξ〉:〉〉 = S(ΦV ⊥

0 )(ξ)S(δ̃V )(ξ) = 〈〈δ̃V , :e〈·,ξ〉:〉〉

for all ξ ∈ E . Thus by Corollary 5.26 we have δ̃V = ΦV ⊥
0 µ–almost everywhere.

Therefore δ̃V =
∑∞

n=0
1
n!
〈: ·⊗n:, :0⊗n

V ⊥:〉.

Note that if we take V = 0, and hence V ⊥ = E, we get

δ̃V =
∞∑

n=0

〈: ·⊗n:, :0⊗n:〉

which, as expected, is identical to the Wiener–Itô decompostion for the Kubo–Yokoi
delta function at 0 (see Theorem 5.37).
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Chapter 7

The Measure on a Subspace

Here we define the Gaussian measure on a closed subspace V of E. Recall the Minlos
theorem:

Theorem 7.1 (Minlos). Let E be a nuclear space with dual E ′. If ν is a probability
measure on E ′, then the Fourier transform of ν

Fν(ξ) =

∫
E ′
ei〈x,ξ〉 dν(x), ξ ∈ E

is a characteristic function. That is, Fν(·) is continuous, positive definite, and
Fν(0) = 1. Conversely, given a characteristic function C on E, there exists a unique
probability measure ν on E ′ such that Fν = C.

Consider the function Cσ
V on E given by

Cσ
V (ξ) = exp(−σ2

2
|ξV |20) ξ ∈ E

where σ ≥ 0 and ξV represents the orthogonal projection of ξ onto V . The next
lemma shows that Cσ

V is a characteristic function. That is, Cσ
V is continuous, positive

definite, and Cσ
V (0) = 1.

Lemma 7.2. For σ ≥ 0, Cσ
V is a characteristic function.

Proof. Obviously Cσ
V is continuous on E and Cσ

V (0) = 1. To see that Cσ
V is positive

definite, let ξ1, ξ2, . . . , ξn ∈ E and z1, z2, . . . , zn ∈ C. Now let W be the subspace
of E spanned by {Pξ1, P ξ2, . . . , P ξn}, where P is the orthogonal projection onto V .
Let µW be the gaussian measure on W with mean 0 and variance σ2. Then for any
w ∈ W we have ∫

W

ei〈w,y〉 dµW (y) = exp(−σ2

2
|w|20)
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Therefore

n∑
j,k=1

zjC
σ
V (ξj − ξk)zk =

n∑
j,k=1

∫
W

zje
i〈Pξj−Pξk,y〉zk dµW (y)

=

∫
W

n∑
j,k=1

zje
i〈Pξj−Pξk,y〉zk dµW (y)

=

∫
W

∣∣∣ n∑
j,k=1

zje
i〈Pξj ,y〉

∣∣∣2 dµW (y) ≥ 0

Applying the Minlos theorem leads to the following definition:

Definition 7.3. The probability measure on E ′ corresponding to the characteristic
function Cσ

V (·) for σ ≥ 0 is called the Gaussian measure on the subspace V with
variance σ2 and is denoted by µσ

V . If σ = 1, we denote it by µV and call it the
standard Gaussian measure on the subspace V .

Thus µσ
V is the Borel measure on E ′ which satisfies∫

E ′
ei〈x,ξ〉 dµσ

V (x) = e−
σ2

2
|ξV |20 for all ξ ∈ E

where ξV is the orthogonal projection of ξ onto V .

Remark 7.4. Another formulation of the Gaussian measure on a subspace of a real
Hilbert space can be found in [22].

7.1 Basic Properties of the Measure µV

Here we will list a few properties of the measure µV . Most of these results follow from
the next Lemma:

Lemma 7.5. Let ξ1, ξ2, . . . , ξn ∈ E and V be a closed subspace of E, with P the
orthogonal projection onto V . Then the image of the Gaussian measure µV under the
map

x 7→ (〈x, ξ1〉, · · · , 〈x, ξn〉) ∈ Rn, x ∈ E ′

is the Gaussian measure on Rn with covariance matrix Σ = (〈Pξj, P ξk〉)j,k. (i.e. the

probability measure on Rn with characteristic function e−
1
2
〈t,Σt〉)
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Proof. Let ν denote the image of µV . So ν is a probability measure on Rn. Computing
the characteristic function of ν we see

ν̂(s) =

∫
Rn

ei〈s,t〉dv(t) =

∫
E ′

exp
(
i

n∑
k=1

sk〈x, ξk〉
)
dµV (x)

= exp
(
− 1

2

∣∣∣P n∑
k=1

skξk

∣∣∣2
0

)
= exp

(
− 1

2

∣∣∣ n∑
k=1

skPξk

∣∣∣2
0

)
= exp

(
− 1

2

n∑
i,j=1

sisj〈Pξi, P ξj〉
)

= exp
(
−1

2
〈s,Σs〉

)

Corollary 7.6. Let V be a closed subspace of E. Suppose ξ1, ξ2, . . . , ξn ∈ E have
orthonormal projections in V , then the Gaussian measure in the previous lemma
becomes the standard Gaussian measure on Rn.

Lemma 7.7. Let V be a closed subspace of E, with P the orthogonal projection onto
V . Let ξ1, ξ2, . . . , ξn ∈ E be such that Pξ1, P ξ2, . . . , P ξn is an orthogonal system in E.
For any Gaussian integrable functions f1, f2, . . . , fn on R we have∫

E ′
f1(〈x, ξ1〉) . . . fn(〈x, ξn〉) dµV (x) =

n∏
k=1

∫
E ′
fk(〈x, ξk〉) dµV (x)

Proof. Apply Lemma 7.5.

Lemma 7.8. For any ξ ∈ Ec and n = 0, 1, 2, . . . we have the following:

(a)

∫
E ′
|〈x, ξ〉c|2 dµV (x) = |ξV |20

(b)

∫
E ′
〈x, ξ〉2n

c dµV (x) =
(2n)!

2nn!
〈ξV , ξV 〉nc

(c)

∫
E ′
〈x, ξ〉2n+1

c dµV (x) = 0

Proof. The identities obviously hold when ξ = 0. So we take ξ ∈ E with ξ 6= 0. By
Corollary 7.6 we have that∫

E ′
|〈x, ξ〉|2 dµV (x) = |ξV |20

∫
E ′

∣∣∣〈x, ξ

|ξV |0

〉∣∣∣2dµV (x) =
|ξV |20√

2π

∫
R
t2e−

t2

2 dt = |ξV |20

Thus we have the first identity for ξ ∈ E . Using this, we take ξ = ξ1 + iξ2 ∈ Ec and
observe that∫

E ′
|〈x, ξ〉|2 dµV (x) =

∫
E ′

(
〈x, ξ1〉2 + 〈x, ξ2〉2

)
dµV (x) = |ξ1V |20 + |ξ2V |20 = |ξV |20

which proves the first identity. The second and third identity can be proved by a
similar argument.
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As done in Section 5.1.1, we can define 〈·, ξ〉c for any ξ ∈ Ec as a µ–almost
everywhere defined function of x ∈ E ′ in L2(E ′, µV ), the space of all functions f :
E ′ → C which are L2 integrable with respect to µV . Take a sequence {ξn}∞n=1 in
Ec such that limn→∞ |ξ − ξn|0 = 0. Using Lemma 7.8 we can see that the functions
{〈·, ξn〉c}∞n=1 form a Cauchy sequence in L2(E ′, µV ). Thus there exists a φ ∈ L2(E ′, µV )
such that limn→∞〈·, ξn〉c = φ. We denote such a φ by 〈·, ξ〉c.

Proposition 7.9. For any ξ ∈ Ec and n = 0, 1, 2, . . . we have the following:

(a)

∫
E ′
|〈x, ξ〉c|2 dµV (x) = |ξV |20

(b)

∫
E ′
〈x, ξ〉2n

c dµV (x) =
(2n)!

2nn!
〈ξV , ξV 〉nc

(c)

∫
E ′
〈x, ξ〉2n+1

c dµV (x) = 0

Proof. It is easily shown that Lemmas 7.5 and 7.7 are true when ξ1, ξ2, . . . , ξn are in
E. Using this, we can mimic the proof of Lemma 7.8 to get the identities.

Next we present what is probably the most important identity involving the mea-
sure µV .

Proposition 7.10. For any ξ ∈ Ec we have the following:∫
E ′
e〈x,ξ〉c dµV (x) = e〈ξV ,ξV 〉c/2

where ξV is the orthogonal projection of ξ onto V

Proof. Take ξ, η ∈ E and then ξ + iη ∈ Ec. In light of Proposition 7.9 and the
definition of µV we can assume that ξ, η ∈ V . Write η as η = ξη + η − ξη where
ξη = 〈η, ξ

|ξ|0 〉
ξ
|ξ|0 is the projection of η onto the subspace spanned by ξ. Note that ξ

and η − ξη are orthogonal. Now∫
E ′
e〈x,ξ+iη〉c dµV (x) =

∫
E ′
e〈x,ξ+i(ξη+η−ξη)〉c dµV (x)

Applying Lemma 7.7 we get

=

∫
E ′
e〈x,ξ+iξη〉c dµV (x)

∫
E ′
ei〈x,η−ξη〉 dµV (x)

= e−〈η−ξη ,η−ξη〉/2

∫
E ′

exp
[〈
x, (|ξ|0 + i|ξη|0)

ξ

|ξ|0

〉
c

]
dµV (x)

= e−〈η−ξη ,η−ξη〉/2 exp
[

1
2
(|ξ|0 + i|ξη|0)2

]
= exp 1

2

[
− |η|20 + 2〈η, ξη〉 − |ξη|20 + |ξ|20 + 2i|ξ|0|ξη|0 − |ξη|20

]
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Note that 〈η, ξη〉 = |ξη|20 and |ξ|0|ξη|0 = 〈η, ξ〉 to see that the above gives us

= ε−〈ξ+iη,ξ+iη〉/2

This gives us the identity when ξ 6= 0. If ξ = 0 we can immediately apply Lemma 7.7
to see the conclusion.

7.2 Equivalence of δ̃V and µV

In this section we demonstrate that δ̃V and µV are equal when considered as elements
of (E)′.

7.2.1 Hida Measure

Recall the definition of a Hida Measure:

Definition 7.11. A measure ν on E ′ is called a Hida measure if φ ∈ L1(ν) for all
φ ∈ (E) and the linear functional

φ 7→
∫
E ′
φ(x) dν(x)

is continuous on (E).

We say that a generalized function Φ ∈ (E)′ is induced by a Hida measure ν if for
any φ ∈ (E) we have

〈〈Φ, φ〉〉 =

∫
E ′
φ(x) dν(x)

The following Theorem characterizes those generalized functions which are induced
by a Hida measure.

Theorem 7.12. Let Φ ∈ (E)′. Then the following are equivalent:

(a) For any nonnegative φ ∈ (E), 〈〈Φ, φ〉〉 ≥ 0

(b) T (Φ)(ξ) = 〈〈Φ, ei〈·,ξ〉〉〉 is positive definite on E
(c) Φ is induced by a Hida measure

Proof. That (c) implies (a) is obvious. To see that (a) ⇒ (b), for k = 1, 2, . . . , n, let
ξk ∈ E and zk ∈ C. Then

n∑
j,k=1

zjT (Φ)(ξj − ξk)zk =
n∑

j,k=1

zj〈〈Φ, ei〈·,ξj−ξk〉〉〉zk

=
〈〈

Φ,
n∑

j,k=1

zje
i〈·,ξj−ξk〉zk

〉〉
=
〈〈

Φ,
∣∣∣ n∑

k=1

zke
i〈·,ξk〉

∣∣∣2〉〉
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Since ∣∣∣ n∑
k=1

zke
i〈·,ξk〉

∣∣∣2 =
n∑

j,k=1

zjzke
i〈·,ξj−ξk〉

is a nonnegative test function in (E), we have that

n∑
j,k=1

zjT (Φ)(ξj − ξk)zk ≥ 0

by the positivity of Φ. Thus T (Φ) is positive definite on E .
For (b) ⇒ (c), let T (Φ) be positive definite on E . Note that if ξn → ξ in E , then

ei〈·,ξn〉 → ei〈·,ξ〉 in (E). Thus

lim
n→∞

T (Φ)(ξn) = lim
n→∞

〈〈Φ, ei〈·,ξn〉〉〉 = 〈〈Φ, ei〈·,ξ〉〉〉 = T (Φ)(ξ)

Thus T (Φ) is continuous on E . Hence by the Minlos Theorem (see Theorem 7.1)
there exists a finite measure ν with

(7.1) 〈〈Φ, ei〈·,ξ〉〉〉 =

∫
E ′
ei〈x,ξ〉 dν(x) for all ξ ∈ E

We need to show that (E) ⊂ L1(E ′, ν) and

〈〈Φ, φ〉〉 =

∫
E ′
φ(x) dν(x) for all φ ∈ (E)

Let L be the subspace of (E) consisting of the linear span of {ei〈·,ξ〉 ; ξ ∈ E}. From
(7.1) we see that

〈〈Φ, φ〉〉 =

∫
E ′
φ(x) dν(x) for all φ ∈ L

Observe that if φ, ψ ∈ L, then φψ ∈ L. Most importantly, if φ ∈ L, then φ is in L
and thus |φ|2 ∈ L. By equation (7.1) above we have∫

E ′
|φ(x)|2 dν(x) = 〈〈Φ, |φ|2〉〉 <∞

Thus L ⊂ L2(E ′, ν).
Now take an arbitrary φ ∈ (E). Since L is dense in (E), we can take a sequence

{φn}∞n=0 with φn converging to φ in (E). Since pointwise multiplication is continuous
on (E) (see Remark 5.35) we have that |φn − φ|2 → 0 in (E) as n → ∞. Therefore
|φn − φm|2 → 0 in (E) as n,m→∞. This gives us

lim
n,m→∞

〈〈Φ, |φn − φm|2〉〉 = 0
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So we can apply equation (7.1) above to see that

lim
n,m→∞

∫
E ′
|φn − φm|2 dν(x) = lim

n,m→∞
〈〈Φ, |φn − φm|2〉〉 = 0

Hence {φn}∞n=0 forms a sequence in L2(E ′, ν). Let ψ be the L2(E ′, ν) limit of this
sequence. That is,

ψ = lim
n→∞

φn in L2(E ′, ν)

Since φn → ψ in L2(E ′, ν), there exists a subsequence {φn′}∞n′=0 of {φn}∞n=0 such that
φn′ → ψ, ν–almost everywhere.

Now since δ̃x is in (E)′ for all x ∈ E ′ (see Section 5.5), we have

lim
n→∞

φ(x)− φn(x) = lim
n→∞

〈〈δ̃x, φ− φn)〉〉 = 0 for all x ∈ E ′

Therefore φn′(x) → φ(x) for all x ∈ E ′. Thus φ = ψ, ν–almost everywhere. We have
shown that φ ∈ L2(E ′, ν) which implies (E) ⊂ L2(E ′, ν). We also have

〈〈Φ, φ〉〉 = lim
n′→∞

〈〈Φ, φn′〉〉 = lim
n′→∞

∫
E ′
φn′(x) dν(x)

=

∫
E ′
ψ(x) dν(x)

=

∫
E ′
φ(x) dν(x)

Therefore Φ is induced by ν and the proof is complete.

Corollary 7.13. Let ν be a finite measure on E ′ such that

〈〈Φ, ei〈·,ξ〉〉〉 =

∫
E ′
ei〈x,ξ〉 dν(x)

for some Φ ∈ (E)′. Then Φ is induced by ν, i.e.

〈〈Φ, φ〉〉 =

∫
E ′
φ dν

for all φ ∈ (E).

Proof. Since 〈〈Φ, ei〈·,ξ〉〉〉 =
∫
E ′ e

i〈x,ξ〉 dν(x) it is clear that 〈〈Φ, ei〈·,ξ〉〉〉 is positive defi-
nite. So we can apply Theorem 7.12 to get a finite measure m which is induced by
Φ. Hence for all φ ∈ (E),

〈〈Φ, φ〉〉 =

∫
E ′
φ dm

Letting φ = ei〈·,ξ〉 in the above equation, we see that the characteristic functions for
m and ν are identical. Therefore m = ν and we have that Φ is induced by ν.
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The next Theorem demonstrates the relationship between δ̃V and µV .

Theorem 7.14. The delta function of a subspace V is induced by the Gaussian mea-
sure on the subspace V , i.e. (E) ⊂ L1(µV ) and

〈〈δ̃V , φ〉〉 =

∫
E ′
φ(x) dµV (x) for all φ ∈ (E)

Proof. We can use the S–transform for δ̃V to see that

〈〈δ̃V , ei〈·,ξ〉c〉〉 = e−
1
2
〈ξ,ξ〉cS(δ̃V )(iξ) = e−

1
2
〈ξ,ξ〉c+

1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c = e−

1
2
〈ξV ,ξV 〉c

Thus for any ξ ∈ E we have

〈〈δ̃V , ei〈·,ξ〉c〉〉) = CV (ξ) =

∫
E ′
ei〈x,ξ〉 dµV (x)

Hence, by Corollary 7.13 we have that δ̃V is induced by a Hida measure µV .

This next example provides some insight for the measure µV by comparing it to
the finite dimensional setting.

Example 7.15. Suppose V ⊂ Rn. In this finite dimensional setting we have∫
V

δ(v − y) dv = lim
ε→0

∫
V

1

(2πε2)dim V/2
e−

|v|2
2ε2 dv = lim

ε→0

e−
|y

V ⊥|2

2ε2

(2πε2)dim V ⊥/2

Observe that for a suitably decaying continuous function f we have∫
Rn

∫
V

δ(v − y)f(y) dv dy = lim
ε→0

∫
Rn

f(y)
e−

|y
V ⊥|2

2ε2

(2πε2)dim V ⊥/2
dx

= lim
ε→0

∫
V

∫
V ⊥

f(yV + yV ⊥)
e−

|y
V ⊥|2

2ε2

(2πε2)dim V ⊥/2
dyV ⊥ dyV

Letting yV ⊥ = εx we get

= lim
ε→0

∫
V

∫
V ⊥

f(yV + εx)
e−|x|

2/2

(2π)dim V ⊥/2
dx dyV

Using the dominated convergence theorem we obtain

=

∫
V

∫
V ⊥

f(yV )
e−|x|

2/2

(2π)dim V ⊥/2
dx dyV

=

∫
V

f(yV ) dyV
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For the Gaussian measure on Rn we replace f(y) in the above with f(y)e−
|y|2
2 (2π)−n/2

to get ∫
Rn

∫
V

(2π)dim V ⊥/2δ(v − y)f(y) dv dµ(y) =

∫
V

f(v) dµV (v)

where µ and µV are the Gaussian measures on Rn and V , respectively. (See the
comment just before section 6.2.1.)

What appears to have happened is that as the variance of the Gaussian measure
on V ⊥ heads to 0, the Gaussian measure on V remains unchanged. With this in mind,
we now let V be a possibly infinite dimensional closed subspace of E and consider
the characteristic function

C⊥
t (ξ) = exp(−1

2
|ξV |20 − t2

2
|ξV ⊥|20) ξ ∈ E

Let ρt be the measure on E ′ corresponding to C⊥
t and ρ̃t the corresponding distribu-

tion.
Consider the following

Ft(ξ) = S(ρ̃t)(ξ) = e−
1
2
〈ξ,ξ〉c

∫
E ′
e〈y,ξ〉cdρt(y)

= e−
1
2
〈ξ,ξ〉e

1
2
〈ξV ,ξV 〉c+ t2

2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c

= exp
[
−1

2
(1− t2)〈ξV ⊥ , ξV ⊥〉c

]
So we have limt→0 Ft(ξ) = e−

1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉 = S(δ̃V )(ξ). Also by calculations similar to

those in (6.4) we see that for 0 ≤ t ≤ 1,

|Ft(ξ)| ≤ exp(1
2
|ξ|20)

Therefore we can use Theorem 5.32 to see that ρ̃t → δ̃V in (E)′ as t→ 0.

7.3 Main Result

In this section we prove the main result of this chapter, which is a rigorous formulation
and proof of the identity (6.1) in the infinite dimensional setting. But first we must
build upon the notion of S–transform developed in Section 5.4.

7.3.1 S–transform Extension on (E)

For Φ ∈ (E)′ we have the S–transform of Φ given by

SΦ(ξ) = 〈〈Φ, :e〈·,ξ〉:〉〉 ξ ∈ Ec
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If we apply the S–transform to elements φ ∈ (E) ⊂ (E)′, then we can extend the
domain of Sφ(·) to include all x ∈ E ′c. We denote this extension by S̆φ. That is, for
φ ∈ (E) we define

S̆φ(x) = 〈〈:e〈·,x〉c:, φ〉〉 x ∈ E ′c
Remark 7.16. Note that while we are restricting S to (E), for a φ ∈ (E) the domain
of S̆φ extends the domain of Sφ from Ec to E ′c.
Remark 7.17. Let φ, ψ ∈ (E). If S̆(φ) = S̆(ψ), then φ = ψ. This is a consequence of
S̆(φ) = S̆(ψ) implies S(φ) = S(ψ).

Proposition 7.18. If φ ∈ (E) has Wiener–Itô decomposition given by

φ =
∞∑

n=0

〈: ·⊗n:, fn〉c fn ∈ E b⊗n
c

then we have

S̆(φ)(x) =
∞∑

n=0

〈x⊗n, fn〉c x ∈ E ′c

and the right hand side converges absolutely.

Proof. Using the expansion for φ given above and that the Wiener–Itô expansion for
:e〈·,x〉c: is given by

∑∞
n=0〈: ·⊗n:, x⊗n〉c (see Definition 5.28), we have that

S̆(φ)(x) = 〈〈:e〈·,x〉c:, φ〉〉 =
∞∑

n=0

〈x⊗n, fn〉c

So now if x ∈ E ′p,c, then

∞∑
n=0

∣∣〈x⊗n, fn〉c
∣∣ ≤ ∞∑

n=0

|x|n−p|fn|p

≤

(
∞∑

n=0

|x|2n
−p

n!

)1
2
(

∞∑
n=0

n!|f |2n
p

)1
2

= ‖φ‖p exp(1
2
|x|2−p)

In the proof of the above proposition we have established the following:

Corollary 7.19. Given φ ∈ (E), if x ∈ E ′p,c, then∣∣S̆(φ)(x)
∣∣ ≤ ‖φ‖p exp(1

2
|x|2−p)
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7.3.2 The Main Identity

Now we would like to show that

(7.2)

∫
E ′
φ(x) dµV (x) =

∫
E ′
S̆(φ)(−iy) dµV ⊥(y)

for φ ∈ (E), where µV and µV ⊥ are the Gaussian measures on V and V ⊥, respectively.

Lemma 7.20. Equation (7.2) holds for φ(x) =:e〈x,ξ〉c:, where ξ ∈ Ec.

Proof. For the left–hand side of equation (7.2) we have

(7.3)

∫
E ′

:e〈x,ξ〉c: dµV (x) = e−
1
2
〈ξ,ξ〉ce

1
2
〈ξV ,ξV 〉c = e−

1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c

Now for the right–hand side of equation (7.2) we first observe that

S̆(:e〈·,ξ〉c:)(−iy) = 〈〈:e〈·,−iy〉c:, :e〈·,ξ〉c:〉〉 = e−i〈y,ξ〉c

by Lemma 5.19. This gives us

(7.4)

∫
E ′
S̆(:e〈·,ξ〉c:)(−iy) dµV ⊥(y) =

∫
E ′
e−i〈y,ξ〉c dµV ⊥(y) = e−

1
2
〈ξ

V ⊥ ,ξ
V ⊥ 〉c

by Proposition 7.9

Corollary 7.21. Equation (7.2) holds for functions φ in the linear span of {: e〈·,ξ〉c:
; ξ ∈ Ec}.

We now observe that δ̃V and δ̃V ⊥ are related through the White Noise version of
the Fourier transform (see Section 5.4.3).

Corollary 7.22. The Fourier transform of δ̃V ⊥ is δ̃V .

Proof. From Definition 5.33 we have that S(F δ̃V ⊥)(ξ) = 〈〈δ̃V ⊥ , e−i〈·,ξ〉c〉〉. Now we
apply Theorem 7.14 to get that

〈〈δ̃V ⊥ , e−i〈·,ξ〉c〉〉 =

∫
E ′
e−i〈x,ξ〉c dµV ⊥(x)

=

∫
E ′

:e〈x,ξ〉c: dµV (x) using (7.3) and (7.4)

= S(δ̃V )(ξ) again applying Theorem 7.14

Therefore for any ξ ∈ Ec we have that S(F δ̃V ⊥)(ξ) = S(δ̃V )(ξ), from which we
conclude that F δ̃V ⊥ = δ̃V

In order to prove the main result we need the following theorem:
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Theorem 7.23. Let ν be a Hida measure on E ′. Then ν is supported in E ′p for some
p ≥ 1 and ∫

E ′p
exp

(
1
2
|x|2−p

)
dν(x) <∞

The proof of this theorem can be found on page 332, Theorem 15.15 in [17].
Using this, we can prove the result we are after

Theorem 7.24. Let φ ∈ (E). Then∫
E ′
φ dµV =

∫
E ′
S̆(φ)(−iy) dµV ⊥(y)

Proof. Let L be the linear span of {: e〈·,ξ〉c : ; ξ ∈ E}. Take φn ∈ L such that φn

converges to φ in (E) as n→∞. Then we have

∣∣∣∣ ∫
E ′
S̆(φn)(−iy) dµV ⊥(y)−

∫
E ′
S̆(φ)(−iy) dµV ⊥(y)

∣∣∣∣
(7.5)

≤
∫
E ′

∣∣S̆(φn − φ)(−iy)
∣∣ dµV ⊥(y)

≤ ‖φn − φ‖p

∫
E ′

exp(1
2
|y|2−p) dµV ⊥(y) by Corollary 7.19

By Theorem 7.23 we can choose p so that
∫
E ′p

exp(1
2
|y|2−p) dµV ⊥(y) is finite. With such

a p we see that the last term goes to 0 as n→∞.
Therefore∫

E ′
φ(x) dµV (x) = lim

n→∞

∫
E ′
φn(x) dµV (x) since µV is a Hida measure

= lim
n→∞

∫
E ′
S̆(φn)(−iy) dµV ⊥(y) by Corollary 7.21

=

∫
E ′
S̆(φ)(−iy) dµV ⊥(y) by (7.5) above

7.3.3 A Slight Generalization

Theorem 7.24 can be extended to include all Hida measures. Given a Hida measure
ν on E ′, we can think of ν as an element in (E)′ as follows:

〈〈ν̃, φ〉〉 =

∫
E ′
φ dν(x) φ ∈ (E)
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Thus we can take the Fourier transform F ν̃ of the distribution ν̃. Motivated by
Corollary 7.22 we rewrite the identity in equation (7.2) as follows

(7.6) 〈〈F ν̃, φ〉〉 =

∫
E ′
S̆(φ)(−iy) dν(y)

Lemma 7.25. Equation (7.6) holds for φ(x) =:e〈x,ξ〉c:, where ξ ∈ Ec.

Proof. The left–hand side is

〈〈F ν̃, φ〉〉 = S(F ν̃)(ξ) = 〈〈ν̃, e−i〈·,ξ〉c〉〉
by definition of the Fourier transform. The right–hand side gives∫

E ′
S̆(:e〈·,ξ〉c:)(−iy) dν(y) =

∫
E ′
〈〈:e〈·,−iy〉c:, :e〈·,ξ〉c:〉〉dν(y) =

∫
E ′
e−i〈y,ξ〉c dν(y)

And we have 〈〈ν̃, e−i〈·,ξ〉c〉〉 =
∫
E ′ e

−i〈y,ξ〉c dν(y). Therefore the equation holds.

Corollary 7.26. Equation (7.6) holds for functions φ in the linear span of {: e〈·,ξ〉c:
; ξ ∈ Ec}.

Now we can prove (7.6) for all test functions

Theorem 7.27. Let φ ∈ (E). Then

〈〈F ν̃, φ〉〉 =

∫
E ′
S̆(φ)(−iy) dν(y)

Proof. Let L be the linear span of {: e〈·,ξ〉c : ; ξ ∈ E}. Take φn ∈ L such that φn

converges to φ in (E) as n→∞. Then we see that

∣∣∣∣ ∫
E ′
S̆(φn)(−iy) dν(y)−

∫
E ′
S̆(φ)(−iy) dν(y)

∣∣∣∣
(7.7)

≤
∫
E ′

∣∣S̆(φn − φ)(−iy)
∣∣ dν(y)

≤ ‖φn − φ‖p

∫
E ′p

exp(1
2
|y|2−p) dν(y) by Corollary 7.19

By Theorem 7.23 we can choose p so that
∫
E ′p

exp(1
2
|y|2−p) dν(y) is finite. With such a

p the last term goes to 0 as n→∞
Therefore

〈〈F ν̃, φ〉〉 = lim
n→∞

〈〈F ν̃, φn〉〉

= lim
n→∞

∫
E ′
S̆(φn)(−iy) dν(y) by Corollary 7.26

=

∫
E ′
S̆(φ)(−iy) dν(y) by (7.7) above
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Chapter 8

Rigorous Hidden Subspace
Algorithm

In this chapter we use the theory of white noise analysis to develop a mathemati-
cally rigorous formulation of the quantum hidden subspace algorithm which was first
described in Section 3.6. In order to do this we must develop yet another Gaussian
measure—this time on the space E ′c.

8.1 The Gaussian Measure on E ′c
In Section 5.1 we defined the Hilbert spaces Ep and used them to form the nuclear
space E . Then we were able to construct the Gaussian measure on E ′, the dual of E .

Recall that for each Hilbert space Ep we have the complexification Ep,c and the
norm | · |p on Ep which induces a norm | · |p on Ep,c such that

|ξ + iη|2p = |ξ|2p + |η|2p ξ, η ∈ Ep

Likewise we also have that the inner–product 〈·, ·〉p on Ep induces a real inner–product
〈·, ·〉p on Ep,c given by

〈ξ1 + iη1, ξ2 + iη2〉p = 〈ξ1, ξ2〉p + 〈η1, η2〉p
where ξ1, ξ2, η1, η2 ∈ Ep,c. Having that the inclusion map Ep+1 ↪→ Ep is Hilbert–
Schmidt gives us that each inclusion Ep+1,c ↪→ Ep,c is Hilbert–Schmidt. Therefore,
it follows that Ec, is a nuclear space with topology induced by the norms {| · |p}∞p=0.
Moreover,

Ec =
∞⋂

p=0

Ep,c

We also have the dual E ′c with

E ′c =
∞⋃

p=0

E ′p,c
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The bilinear pairing 〈·, ·〉 between E and E ′ extends to a real bilinear pairing between
Ec and E ′c. Letting z = x+ iy with x, y ∈ E ′ and ζ = ξ + iη with ξ, η ∈ E we see that
this pairing is given by

〈z, ζ〉 = 〈x, ξ〉+ 〈y, η〉
Note that the bilinear pairing given above is simply the real part of 〈z, ζ〉c where ζ
denoes the conjugate of ζ (i.e. if ζ = ξ + iη with ξ, η ∈ E , then ζ = ξ − iη).

We can now use a construction similar to that in Section 5.1 or use the Minlos
theorem (see Theorem 7.1) to get a measure µc on E ′c such that

(8.1)

∫
E ′c
eiζ̂(z) dµc(z) =

∫
E ′c
ei〈z,ζ〉 dµc(z) = e−|ζ|

2
0/4

for all ζ ∈ Ec. Here if ζ = ξ + iη, then ζ̂ denotes the real random variable given by

ζ̂(x+ iy) = 〈x, ξ〉+ 〈η, y〉 for all x, y ∈ E ′

where ξ̂ and η̂ are defined as in Section 5.1.

8.1.1 Properties of the Gaussian Measure on E ′c
Here we present some standard results about the Gaussian measure µc defined on
the dual of Ec. In particular we will see that the product measure µ1/2 ⊗ µ1/2 on
E ′c = E ′ + iE ′ is equivalent to the measure µc.

Lemma 8.1. Let ζ1, ζ2, . . . , ζn ∈ Ec be an orthonormal system for Ec. Then the image
of the Gaussian measure µc under the map

z 7→ (〈z, ζ1〉, · · · , 〈z, ζn〉) ∈ Rn, z ∈ E ′c
is the Gaussian measure on Rn with mean 0 and variance 1

2
(i.e. the probability

measure with distribution function π−n/2e−|t|
2
).

Proof. Let ν denote the image of µc under the above map. So ν is a probability
measure on Rn. Computing the characteristic function of ν we see

ν̂(s) =

∫
Rn

ei〈s,t〉dν(t) =

∫
E ′c

exp
(
i

n∑
k=1

sk〈z, ζk〉
)
dµc(z)

= exp
(
− 1

4

∣∣∣ n∑
k=1

skζk

∣∣∣2
0

)
= exp

(
− 1

4

n∑
i,j=1

sisj〈ζi, ζj〉
)

= exp
(
−1

4
|s|2
)

which is the characteristic function of the Gaussian measure on Rn with mean 0 and
variance 1

2
.
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Lemma 8.2. Let ζ1, ζ2, . . . , ζn ∈ Ec be an orthonormal system for Ec. For any Gaus-
sian integrable functions f1, f2, . . . , fn on R we have∫

E ′c
f1(〈z, ζ1〉) · · · fn(〈z, ζn〉) dµc(z) =

n∏
k=1

∫
E ′c
fk(〈z, ζk〉) dµc(z)

Proof. Apply Lemma 8.1.

Lemma 8.3. For any ζ ∈ Ec and n = 0, 1, 2, . . . we have the following:

(a)

∫
E ′c
|〈z, ζ〉|2 dµc(z) = |ζ|20

(b)

∫
E ′c
e〈z,ζ〉 dµc(z) = e|ζ|

2
0/4

Proof. The identities obviously hold when ζ = 0. So we take ζ ∈ Ec with ζ 6= 0. By
Lemma 8.1 we have that∫

E ′c
|〈z, ζ〉|2 dµc(z) = |ζ|20

∫
E ′c

∣∣∣〈z, ζ

|ζ|0

〉∣∣∣2dµc(z) =
|ζ|20√
π

∫
R
t2e−t2dt

And letting s =
√

2t we have

|ζ|20√
π

∫
R
t2e−t2 dt =

|ζ|20
2
√
π

∫
R
s2e−s2/2

√
2 ds =

|ζ|20√
2π

∫
R
s2e−s2/2 ds = |ζ|20

This gives us the indentity in (a). Using Lemma 8.1 the second identity is obvious.

As before, we can now define 〈·, ζ〉 for any ζ ∈ Ec as a µc–almost everywhere
defined function of z ∈ E ′c in L2(E ′c, µc), the space of all functions f : E ′c → C
which are L2 integrable with respect to µc. Take a sequence {ζn}∞n=1 in Ec such that
limn→∞ |ζ − ζn|0 = 0. Using Lemma 8.3 we can see that the functions {〈·, ζn〉}∞n=1

form a Cauchy sequence in L2(E ′c, µc). Thus there exists a φ ∈ L2(E ′c, µc) such that
limn→∞〈·, ζn〉 = φ. We denote such a φ by 〈·, ζ〉.

Proposition 8.4. For any ζ ∈ Ec and n = 0, 1, 2, . . . we have the following:

(a)

∫
E ′c
|〈z, ζ〉|2 dµc(z) = |ζ|20

(b)

∫
E ′c
e〈z,ζ〉 dµc(z) = e|ζ|

2
0/4

Proof. It is easily shown that Lemmas 8.1 and 8.2 are true when ζ1, ζ2, . . . , ζn are in
Ec. Using this, we can mimic the proof of Lemma 8.3 to get the identities.
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Just as we have formed the measure µ on E ′, we can use the Minlos theorem
(Theorem 7.1) or a construction similar to that found in Section 5.1 to form the
Gaussian measure µ1/2 on E ′ with mean 0 and variance 1

2
. That is,∫

E ′
ei〈x,ξ〉 dµ1/2(x) = e−|ξ|

2
0/4

for all ξ ∈ E . And by making the identification E ′c = E ′ ⊕ E ′ we have the product
measure µ1/2 ⊗ µ1/2 on E ′c. Now observe, letting ζ = ξ + iη with ξ, η ∈ E , we have∫

E ′c
ei〈x+iy,ζ〉 dµ1/2(x)⊗ dµ1/2(y) =

∫
E ′c
ei〈x+iy,ξ+iη〉 dµ1/2(x)⊗ dµ1/2(y)

Using the definition of the real inner–product 〈·, ·〉 we get

=

∫
E ′c
ei〈x,ξ〉ei〈y,η〉 dµ1/2(x)⊗ dµ1/2(y)

Now we apply Fubini’s theorem to arrive at

=

∫
E ′
ei〈x,ξ〉 dµ1/2(x)

∫
E ′
ei〈y,η〉 dµ1/2(y)

= e−|ξ|
2
0/4e−|η|

2
0/4

= e−|ζ|
2
0/4

Comparing this with equation (8.1), we have that the characteristic functions for
µ1/2 ⊗ µ1/2 and µc are equal. Thus µ1/2 ⊗ µ1/2 and µc are equivalent as measures on
E ′c. Let us mention that because the topology on E ′ (and E ′c) has a countable basis,
the Borel σ–algebra on E ′ ⊗ E ′ is equal to the product σ–algebra.

Proposition 8.5. For any ζ1, ζ2 ∈ Ec we have that∫
E ′c
e〈z,ζ1〉ce〈z,ζ2〉c dµc(z) = e〈ζ1,ζ2〉c

Proof. Let ζ1 = ξ1 + iη1 and ζ2 = ξ2 + iη2 where ξ1, ξ2, η1, η2 ∈ E. Then letting
z = x+ iy we have∫

E ′c
e〈z,ζ1〉ce〈z,ζ2〉c dµc(z) =

∫
E ′c
e〈x+iy,ξ1+iη1〉ce〈x+iy,ξ2+iη2〉c dµ1/2(x)⊗ dµ1/2(y)

=

∫
E ′c
e〈x,ξ1〉−〈y,η1〉+i〈x,η1〉+i〈y,ξ1〉e〈x,ξ2〉−〈y,η2〉+i〈x,η2〉+i〈y,ξ2〉 dµ1/2(x)⊗ dµ1/2(y)

=

∫
E ′
e〈x,ξ1+ξ2+iη1−iη2〉c dµ1/2(x)

∫
E ′
e〈y,−η1−η2+iξ1−iξ2〉c dµ1/2(y)

= e
1
4
〈ξ1+ξ2+iη1−iη2,ξ1+ξ2+iη1−iη2〉ce

1
4
〈−η1−η2+iξ1−iξ2,−η1−η2+iξ1−iξ2〉c
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Using the observation that the algebra in the horrid exponent of the last term works
just as if ξ1, ξ2, η1, η2 were real numbers and 〈·, ·〉c were multiplication of ordinary
complex numbers, after a little work the exponent becomes

〈ξ1, ξ2〉+ 〈η1, η2〉+ i
(
〈ξ1, η2〉 − 〈η1, ξ2〉

)
which is equal to 〈ζ1, ζ2〉c. Thus∫

E ′c
e〈z,ζ1〉ce〈z,ζ2〉c dµc(z) = e〈ζ1,ζ2〉c

8.1.2 Relationship with L2(E ′, µ)

Up until now we have developed the space L2(E ′c, µc). However we will be primarily
concerned with a subspace of L2(E ′c, µc). We define this subspace as follows:

HL2(µc) = closed linear span of {e〈·,ζ〉c ; ζ ∈ Ec} in L2(E ′c, µc)

Remark 8.6. The reason for the notation HL2(µc) is that it can be shown that
HL2(µc) contains all L2(E ′c, µc)–functions of the form

H(〈·, ζ1〉c, . . . , 〈·, ζn〉c)

where ζ1, . . . , ζn ∈ Ec and H is a holomorpic function on Cn. (For a proof of this,
refer to [1]).

For Φ ∈ (E)′ we have the S–transform of Φ given by

SΦ(ζ) = 〈〈Φ, :e〈·,ζ〉c:〉〉 ζ ∈ Ec

In Section 7.3.1 we saw that for φ ∈ (E) the S–transform has an extension S̆ where

S̆(φ)(z) = 〈〈φ, :e〈·,z〉c:〉〉 z ∈ E ′c

Taking φ = :e〈·,ζ〉c: for some ζ ∈ Ec we see that

S̆(:e〈·,ζ〉c:)(z) = 〈〈:e〈·,ζ〉c:, :e〈·,z〉c:〉〉 = e〈z,ζ〉c z ∈ E ′c

Thus S̆ maps the linear span of {:e〈·,ζ〉c: ; ζ ∈ Ec} ⊂ L2(E ′, µ) into the linear span
of {e〈·,ζ〉c ; ζ ∈ Ec} ⊂ HL2(µc) by

(8.2) S̆(:e〈·,ζ〉c:) = e〈·,ζ〉c ζ ∈ Ec

It turns out that the S–transform, or more appropriately S̆, can be extended to a
unitary isomorphism between L2(E ′, µ) and HL2(µc), which we denote by US.
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Theorem 8.7. There is a unique unitary isomorphism US : L2(E ′, µ) → HL2(µc)
such that

US(:e〈·,ζ〉c:) = e〈·,ζ〉c for all ζ ∈ Ec

This is called the Segal-Bargmann transform.

Proof. Take ζ1, ζ2 ∈ Ec. Then

〈〈:e〈·,ζ1〉c:, :e〈·,ζ2〉c:〉〉L2(E ′,µ) =

∫
E ′c

:e〈x,ζ1〉c: :e〈x,ζ2〉c: dµ(x)

Using Proposition 5.27 we see that :e〈x,ζ2〉c: =:e〈x,ζ2〉c:. Hence the above becomes

=

∫
E ′c

:e〈x,ζ1〉c::e〈x,ζ2〉c: dµ(x)

= e〈ζ1,ζ2〉c by Lemma 5.19

Thus, by Proposition 8.5 we have

〈〈:e〈·,ζ1〉c:, :e〈·,ζ2〉c:〉〉L2(E ′,µ) = 〈〈e〈·,ζ1〉c , e〈·,ζ2〉c〉〉L2(E ′c,µc)

for any ζ1, ζ2 ∈ Ec. Therefore US is a unitary transformation between the linear span
of {:e〈·,ζ〉c: ; ζ ∈ Ec} ⊂ L2(E ′, µ) and the linear span of {e〈·,ζ〉c ; ζ ∈ Ec} ⊂ HL2(µc).

Recall that the set {: e〈·,ζ〉c : ; ζ ∈ Ec} is dense in L2(E ′, µ) by Corollary 5.26 and
the set {e〈·,ζ〉c ; ζ ∈ Ec} is dense in HL2(µc) by definition. Therefore we have that US

extends to a unitary isomorphism from L2(E ′, µ) onto HL2(µc).
Let ζ ∈ Ec. Using the conitinuity of US we can take a sequence {ζn}∞n=0 in Ec with

ζn → ζ in Ec to see that:

US(:e〈·,ζ〉c:) = lim
n→∞

US(:e〈·,ζn〉c:) = lim
n→∞

e〈·,ζn〉c = e〈·,ζ〉c

8.2 Independence and Products for US

Recall that for each ξ ∈ E we have the µ–almost everywhere defined random variable

ξ̂ = 〈·, ξ〉

with mean and variance given by∫
E ′
〈x, ξ〉 dµ(x) = 0 and

∫
E ′
|〈x, ξ〉|2 dµ(x) = |ξ|20
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respectively (see Proposition 5.6). Now let V be a closed subspace of E and let σV be
the completed σ–algebra generated by the random variables 〈·, v〉 with v ∈ V . Let V
and W be orthogonal subspaces of E. For v ∈ V and w ∈ W , the random variables
〈·, v〉 and 〈·, w〉 are independent by Lemma 5.3. Therefore the σ–algebras generated
by σV and σW are independent relative to µ. It follows that the map

(8.3) jV W : L2(E ′, µ|σV )⊗ L2(E ′, µ|σW ) → L2(E ′, µ) : f ⊗ g 7→ fg

is a unitary ismorphism onto L2(E ′, µ|σV +W ).

Lemma 8.8. The linear span of {:e〈·,v〉: ; v ∈ V } is dense in L2(E ′, µ|σV ).

Proof. Take an arbitrary φ ∈ L2(E ′, µ|σV ). It is sufficient to show that 〈〈φ, :e〈·,v〉:〉〉 =
0 for all v ∈ V implies φ = 0. Suppose φ has Wiener–Itô expansion given by

Φ =
∞∑

n=0

〈:x⊗n:, Fn〉c

. Then by Theorem 5.17 〈〈φ, :e〈·,v〉:〉〉 is given by

〈〈φ, :e〈·,v〉:〉〉 =
∞∑

n=0

〈Fn, v
⊗n〉c, v ∈ V

Since 〈〈φ, :e〈·,tv〉:〉〉 = 0, we have for any real t

〈〈φ, :e〈·,tv〉:〉〉 =
∞∑

n=0

tn〈Fn, v
⊗n〉c = 0

Therefore F0 = 0 and inductively, 〈Fn, v
⊗n〉c = 0 for all v ∈ V . Since Fn is a

symmetric n–linear map we can apply the polarization identity to see that

〈F, v1⊗̂ · · · ⊗̂vn〉c =
1

n!

n∑
k=1

(−1)n−k
∑

j1<···<jk

〈Fn, (vj1 + · · · vjk
)⊗n〉c = 0

So Fn = 0 for all n ≥ 0. Hence φ = 0.

Theorem 8.9. If V and W are closed orthogonal subspaces of E, then for any φV ∈
L2(E ′, µ|σV ) and φW ∈ L2(E ′, µ|σW ),

US(φV φW ) = US(φV )US(φW )

Proof. By Lemma 8.8 {: e〈·,v〉 : ; v ∈ V } spans a dense subspace of L2(E ′, µ|σV ) and
{:e〈·,w〉: ; w ∈ W} spans a dense subspace of L2(E ′, µ|σW ). Since US is continuous we
may assume φV = :e〈·,v〉: and φW = :e〈·,w〉: for some v ∈ V and some w ∈ W . Now

US(φV φW ) = US(:e〈·,v+w〉:) since v and w are orthogonal

= e〈·,v+w〉c by Theorem 8.7

= e〈·,v〉ce〈·,w〉c

= US(:e〈·,v〉:)US(:e〈·,w〉:) again by Theorem 8.7
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8.3 Hidden Subspace Algorithm

Here we use the concepts developed throughout this chapter to present a mathemat-
ically rigorous formulation of the hidden subspace algorithm.

Suppose we have a functional φ : E → Rn with a hidden closed subspace V ⊂ E
such that

φ(ξ + v) = φ(ξ) for all v ∈ V

We would like to determine V to some extent. First we can extend φ to the domain
Ec, as follows: For ζ = ξ + iη with ξ, η ∈ E, we define

φ(ζ) = φ(ξ) + φ(η)

And of course we have

φ(ζ + v) = φ(ζ) for all v ∈ Vc

In the original algorithm we used two rigged Hilbert spaces. The first we denoted
by HE. In our version the space HE becomes the Hilbert space L2(E ′, µ) (or one
of the unitarily isomorphic spaces HL2(µc) or Γ(E)). The original algorithm also
made use of the rigged Hilbert space HRn . We now define HRn to be the space of all
complex functions f on Rn such that f 6= 0 at only a countable number of points and∑

x∈Rn |f(x)|2 <∞. Equip HRn with the inner–product

(f, g) =
∑
x∈Rn

f(x)g(x)

This makes HRn a non–separable Hilbert space. For HRn we have orthonormal basis
given by

|x〉 = 1{x} with 〈x|y〉 = δxy

We will again make use of a black box

Uφ : L2(E ′, µ)⊗HRn → L2(E ′, µ)⊗HRn

which performs the operation

UφΦ⊗ |z〉 = Φ⊗ |z + φ(f1)〉

where we use the unique decomposition Φ(x) =
∑∞

n=0〈:x⊗n:, fn〉c with fn ∈ E b⊗n
c .

We now outline each step of the algorithm in detail:
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8.3.1 Step 0

In the original version we begin in the state |0〉|0〉 ∈ HE ⊗HRn . Here we take a unit
vector Φ in L2(E ′, µ) and begin in the state

|ψ0〉 = Φ |0〉

of L2(E ′, µ) ⊗ HE. The only restriction we place on Φ is that for any subspace
W of E we can decompose Φ into Φ = ΦW ΦW⊥ where ΦW ∈ L2(E ′, µ|σW ) and
ΦW⊥ ∈ L2(E ′, µ|σW⊥) (as in Theorem 8.9). Then, in particular, Φ can be decomposed
into Φ = ΦV ΦV ⊥ , where V is the hidden subspace of the functional φ.

8.3.2 Step 1

This step is the one that is altered the least from the original algorithm. Here we
apply the black box Uφ to |ψ0〉 in order to arrive at

|ψ1〉 = Uφ|ψ0〉 = Φ |φ(f1)〉

where f1 ∈ Ec is the element obtained through the Wiener–Itô decomposition Φ(x) =∑∞
n=0〈:x⊗n:, fn〉c as described above.

8.3.3 Step 2

In place of the Fourier transform in the original algorithm we use US (actually US⊗I)
to get

|ψ2〉 = (US ⊗ I)|ψ1〉 = US(Φ)|φ(f1)〉.

Now we use that
USΦ = US(ΦV ΦV ⊥) = US(ΦV )US(ΦV ⊥)

(from Theorem 8.9) to arrive at

|ψ2〉 = US(ΦV )US(ΦV ⊥)|φ(f1)〉

Since φ(ξ) = φ(ξV ⊥) for all ξ ∈ Ec we have

|ψ2〉 = US(ΦV )US(ΦV ⊥)|φ(PV ⊥f1)〉

where PV ⊥ is the orthogonal projection onto V ⊥.
We can then write |ψ2〉 as

|ψ2〉 = US(ΦV )|Ω(PV ⊥f1)〉

where |Ω(PV ⊥f1)〉 = US(ΦV ⊥)|φ(PV ⊥f1)〉.
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8.3.4 Step 3

Apply U−1
S ⊗ I to get

|ψ3〉 = (U−1
S ⊗ I)|ψ2〉 = U−1

S US(ΦV )|Ω(PV ⊥f1)〉 = ΦV |Ω(PV ⊥f1)〉

8.3.5 Step 4: Measurement

We now need to measure ΦV in some way to obtain information about the subspace
V . Up until this point we let Φ be an arbitrary unit vector in L2(E ′, µ). However, in
order to complete the algorithm, we need to be a bit more specific about our choice
of initial state. We now take a random non-zero vector ξ ∈ E and let Φ be given by

Φ = :e〈·,ξ〉:

Remark 8.10. Technically, by the postulates of quantum mechanics our state should
always be a unit vector in our state space L2(E ′, µ) ⊗ HRn . Of course, we could
accomplish this easily by dividing by the norm of :e〈·,ξ〉:. However, this only confuses
things, and we will leave it off.

With this choice of Φ it is easy to see that ΦV and ΦV ⊥ work out to be

ΦV =:e〈·,ξV 〉: and ΦV ⊥ =:e〈·,ξV ⊥ 〉:

For n = 0, 1, 2, . . . , let Pn be the orthogonal projection onto the closed linear span
of

{〈: ·⊗n:, fn〉c ; fn ∈ E b⊗n
c }

Obviously PnPm = δnmPn. Recalling that

:e〈·,ξV 〉: =
∞∑

n=0

1

n!
〈: ·⊗n:, ξ⊗n

V 〉

we see that Pn(:e〈·,ξV 〉:) = 1
n!
〈: ·⊗n:, ξ⊗n

V 〉.
Therefore measuring with respect to {Pn}∞n=0 produces 1

n!
〈: ·⊗n :, ξ⊗n

V 〉 for some
n. From this we can extract ξV ∈ V . Thus we have a hidden subspace for φ,
namely {RξV }, which runs through the hidden subspace V . And, of course, running
the procedure k times will produce a k–dimensional hidden subspace (provided the
dimension of the hidden subspace is less than equal to k).
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Chapter 9

Concluding Remarks

As we have seen the subject of White Noise Analysis is well suited for making notions
of quantum computation credible when functions over infinite dimensional Hilbert
spaces are involved. Moreover, it also serves as a great means for bringing common
finite dimensional identities and theories over to the infinite dimensional setting.

Although, we have primarily concerned ourselves with the Hidden Subspace Al-
gorithm, which is an adaptation of the Shor period finding algorithm, there are a few
other algorithms which have been constructed for continuous variables. In [26], Pati
and Braunstein develop a Deutsch–Jozsa algorithm for continuous variables. This
algorithm takes a function f : R → {0, 1} which is known to be constant or balanced
and determines which is the case (i.e. if f is constant or balanced). By balanced we
mean that λ({x ∈ R | f(x) = 0}) = λ({x ∈ R | f(x) = 1}), where λ is the Lebesgue
measure. Using the techniques presented here it may be possible to develop such an
algorithm for a suitable function Φ : E ′ → {0, 1} using the Gaussian measure on E ′,
for a suitable function space E .

In [27], Braunstein, Lloyd, and Pati extended Grover’s search algorithm to the
continuous variable setting. Although, perhaps more difficult, this algorithm may
have an extendsion to Hilbert spaces of infinite dimension.

As mentioned by Lomonaco and Kauffman in [21], it may be possible to mod-
ify the Hidden Subspace Algorithm in order to develop a quantum algorithm which
computes the Jones polynomial or other knot invariants. For such an algorithm the
theory of White Noise Analysis is not enough. Non–communtative infinite dimen-
sional distribution theory is needed for this undertaking. In such an algorithm the
Hilbert space E may possibly be replaced by the space A of gauge connections and a
modification of the functional integral

ψ̂(K) =

∫
A
DAψ(A)WK(A)

where WK(A) is the Wilson loop

WK(A) = tr
[
P exp

(∮
K

A
)]

112



may be necessary. If ψ(A) is chosen correctly, the functional integral ψ̂(A) is a knot or
link invariant. For an appropriate choice of gauge group, this invariant can reproduce
the original Jones polynomial or other invariants [12].
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