Seminar on Continuity in Semilattices

Volume 1 | Issue 1

Article 17

9-20-1976

SCS 17: The Space of Lower Semicontinuous Functions into a CL-Object, Applications (Part I): Copowers in CL

Karl Heinrich Hofmann Technische Universitat Darmstadt, Germany, hofmann@mathematik.tu-darmstadt.de

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation

Hofmann, Karl Heinrich (1976) "SCS 17: The Space of Lower Semicontinuous Functions into a CL-Object, Applications (Part I): Copowers in CL," *Seminar on Continuity in Semilattices*: Vol. 1: Iss. 1, Article 17. Available at: https://repository.lsu.edu/scs/vol1/iss1/17

Hofmage MAR homacomport of the series of the

1	DATE I	M D	Ŷ		
NAME(S) HOFMANN	9	20	76		
TOPIC The space of lower semicontinuous functi Applications (part I): Copowers in	ons into CL	a <u>CL</u> -obje	ect		
REFERENCE ^[0] Handwritten notes on discussions by Mislove at Darmstadt in June 1976.	Gierz,H	ofmann,Ke:	imel,		
y .					
[1] Hofmann, K.H. and J.D.Lawson, Irreducibili continuous lattices. Preprint.	ty and g	eneration	in		
[2] Hofmann, K.H. and A.Stralka, ATLAS , Diss.M	ath.137	(1976),1-9	54		
In Darmstadt this summer I raised the que copowers in <u>CL</u> ; we knew at the time that	stion of	calculat:	ing		
$J_2 = \prod(\beta J)$, where $\prod(X)$ for a compact solution of compact subsets and where the <u>CL</u> -t topology. We had no particular idea what such	pace X is opology : simple co	s the U -a is the Hau oproducts	semi- usdorff as		
^M A J might be. Then Keimel had the insight calculated by considering the cone with basis subsets containing the vertex and being star elements of the desired copower with U as oper to be correct as we proved at the time. An ex- this approach is given in an example in [1] wi was needed and serves a useful purpose.	that JI \bigcirc J; t] shaped wo ration. ! plicit d: here this	should be hen the cl ould be th This turne iscussion s informat	e Losed ie ed out of tion		
We thought at the time that arbitrary cop- culated in an essentially similar fashion. How technical difficulties with copowers of <u>CL-ob</u> . The present discussion proposes an approach we accomodates these difficulties; in a philosop approach had been indicated in conversations it was then not seriously attempted.	owers sho wever, th jects wh; hich prob hical way in Darms	ould be ca here are s ich are no bably best y, such ar tadt, alth	il- some ot chain ; n app nough		
We actually develop a theory of function a continuous functions f:X>S, X compact, S of all of these functions ,which we call LC(X,S) continuous lattice in a functorial fashion. The concept is discussed in Section 1. Section 2 Further applications are to be discussed late: is that for any <u>CL</u> -object S we have	spaces of ⊂ <u>CL</u> . The turns of he theory applies r. The re	f lower se totality at to be a mar arour this to c sult on c	emi- r of l nd this copowers copowers		
$^{J}S \stackrel{\scriptscriptstyle \leftarrow}{=} LC(AX,S).$	· · ·	-			
The comproejctions and the universal morphisms	s are exp	plicitly g	;iven.		
West Germany: TH Darmstadt (Gierz, Keimel) U. Tübingen (Mislove, Visit.)			x		
England: U. Oxford (Scott)					
USA: U. California, Riverside (Stra LSU Baton Rouge (Lawson) Tulane U., New Orleans (Hofman Published by LSU Scholarly Repository, 200. Tennessee, Knoxville (Carru	lka) n, Mislo th, Craw	ve) ley)	1		

·1 1:	i	
1		Seminar on Continuity in Semilattices, Vol. 1, Iss 1 [2023], Art. 17-
·	17 . uduanadiensi danamade nohis tereni dan Par	1. Lower semicontinuous functions.
	.)	
*		1.1. LEMMA . Let X be a topological space and $S \in CL$. Let $X \in X$
بہ وسمہ عمر ع	ու ստերանելուն է , պատումներուն՝ որդերաքունը։ շներ, ն	and let \mathcal{U} denote the filter basis of open neighborhoods of x
ta fangantaka in sak m	ու տարապատություն է առաջանություն է է ենք է է ենքանի	in X. Then-the-following conditions are equivalent:
	ம அண்டுவன் கூடுவலை கூறில் கைகியலாம் அண்டிலால் அழுவூர் திடி கண்டையலாக்	
v aldamesk	v i n≫aara, aan saat aan 'an a	(1) $\underline{\lim} I(x_j) = I(x)$ for every net x_j in x converging to x_i
p	المی ایندی این این این این این این این این این ای	$(2) \uparrow f(x) \geq \prod \{f(U)^{-} : U \in \mathcal{U} \}.$
•	s anterna e anterna de sues a	(3) For each s << $f(x)$ there is an $U \in \mathcal{U}$ such that
		$f(\pi) = f_{\alpha}$
-	under aller forungsamlige invegen for 14	13' For each see for there is a UEU such that see for for net,
~ ,		Now we denote with a management a(f) the set
		$\{(x,s): f(x) \le s\}$. Then the following conditions are equivalent:
	• _ •	(I) Conditions (1)-(3) above hold for all $x \in X$.
		(II) $f^{-1}(int fs)$ is open for all $s \in S$.
••	· .	
		(III) G(f) is closed.
	·	Proof. (3) =>(2): For each s << $f(x)$ we know from (3) that
		$f(U) \subset \uparrow$ s for some $U \in \mathbb{Z}$, hence $f(U) \subset \uparrow$ s and so $f(U) \subset \uparrow$ s.
		Since s << $f(x)$ is arbitrary and $f(x) = \sup \frac{1}{x} f(x)$; (2) follows.
· ·	• • • <i>•</i> •	(2) => (1). Suppose $x = \lim_{x \to \infty} x$. Then eventually
		$f(X_{i}) \subset f(U)$ for all $U \subset V$. So even aluston point of (X_{i})
	• • • • •	is in $\bigcap_{j} f(U)^{-}$. Hence (1).
· · ·		\mathcal{U}
:	2	for each $U = 2$ we had $f(U) \neq 4$ Then there exists an $x < I(x)$ such that
	• •	for each $U = 2$
		for each $U \in \mathcal{U}$ such that $f(x_U) \notin s$. Since $f(x)$ is in the
		Interior of $f(x)$, not cluster point of $f(x_U)$ is in $f(x)$, which
		$\begin{array}{llllllllllllllllllllllllllllllllllll$
		(1) for all $x \in X \Rightarrow$ (III): Suppose that $(x,s) = \lim (x_j,s_j)$
		with $f(x_j) \leq s_j$. Then there is a subnet such that $\underline{\lim}(x_j, s_j)$
	,	= lim $(x_{j(k)}, \mu_{j(k)})$. The validity of (1) for x implies $f(x)$
	×	$= \underbrace{\operatorname{lim} x \widehat{f} (x_{j})}_{j(k)} \leq \underline{\lim} f(x_{j}) = \lim f(x_{j(k)}) \leq s.$

-----******** م.روسد، تعديد د. ق

> https://repository.lsu.edu/scs/(d_{T}) for all x. Suppose x = lim.x in X. Let s be any cluster point of $f(x_i)$ in S, say $s = \lim_{x \to \infty} f(x_i)$) The

2

Hofmann: SCS 17: The Space of Lower Semicontinuous Functions into a CL-Object, Applications (Part I): Copowers in CL (2)

n the state of the	
$(x,s) = \lim (x_{i(k)}, f(x_{i(k)}))$ and obviously $(x_{i(k)}, f(x_{i(k)}) \in G(f))$	•
Thus (III) implies $(x,s) \in G(f)$, i.e. $f(x) < s$. This means,	
$f(x) < \lim f(x_i)$ since s was an arbitrary cluster point.	
1.2. DEFINITION. A function f: X> S is called lower semicon-	
<u>tinuous</u> iff the equivalent conditions (I) - (III) of 1.1	
are satisfied. The set of all lower semicontinuous functions	
will be denoted with LC(X,S).	
1.3. LEMMA. Let $\mathcal{F} \subseteq S^X$, then $G(\sup \mathcal{F}) = \bigcap \{G(f) : f \in \mathcal{F} \}$.	8
Proof. Since $f \leq \sup \mathcal{F}$, we have $G(\sup \mathcal{F}) \subseteq g(f)$ for all $f \in \mathcal{F}$	3
whence $G(\sup \mathcal{F}) \subseteq \bigcap_{\mathcal{F}} g(f)$. If $(x,s) \in \bigcap_{\mathcal{F}} G(f)$ then $f(x) \leq s$	
for all $f \in \mathcal{F}$, thus $(\sup \mathcal{F})(x) \leq s$, whence $(x,s) \in G(\sup \mathcal{F})$.	
1.4. LEMMA. Let $f,g \in LC(X,S)$. Then $fg \in LC(X,S)$ where	
$(fg)(x) = f(x)g(x) = f(x) \land g(x).$	
Proof. Let $x \in X$ and $s \ll fg(x)$. Then there is an $x \in X$	
With XEXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	,
an open neighborhood U of x in X such that \Box f(U) U g(U) \subseteq \uparrow s.	
Then $s^{\blacksquare} \leq f(u)g(u) = fg(u)$ for all $u \in U$, which verifies	,
1.1.(3) for fg. []	
1.5. PROPOSITION. Let X be topological space and $S \in CL$. Then	
$LC(X,S)$ is a sublattice of S^X containing the identity and zero,	
and LC(X,S) is closed under the formation of arbitrary sups. In	
particular, LC(X,S) is a complete lattice.	
Proof. In view of 1.1.(III), Lemma 1.3 shows that LC(X,S) is	T. Brann
closed under arbitrary sups.Lemma 1.4 shows that LC(X,S) is closed	-
under finite infs.[]	
REMARK. In general, LC(X,S) is not closed under arbitrary infs:	
Let $x \in X$ be a non-isolated point in some topological/space, S =2.	
Then the inf \blacksquare of the characteristic functions χ_U , $U \in \mathcal{U}$ (where	2
$\mathcal U$ is the set of open neighborhoods of x) is $-\chi_{\{x\}}$, which	

· ·

3

is not lower semicontinuous. Published by LSU Scholarly Repository, 2023

e sanger en er

- - -

. . . .

- -Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art: 17----

It is very convenient for the following to consider characteristi

functions of subsets of X:

Note that $S \nearrow U \subseteq LC(X,S)$ for a topological space X and an open subset $U \subseteq X$. 1.7. PROPOSITION. Let X be a topological space and $S \subseteq \underline{CL}$. If f,g $\in LC(X,S)$ then the following statements are equivalent: (1) f \ll g . (2) For each $x \in X$ there is an open neighborhood

U=U(x) of x in X and an $s = s(x) \subseteq S$ such that

 $f(u) \leq s \ll g(u)$ for all $u \subseteq U$

(i.e. $f(U) \subseteq \downarrow s$ and $g(U) \sqsubseteq \subseteq Int (s)$ (3) $G(g) \subseteq Int G(f)$.

Proof. (3) $\langle = \rangle$ (2) : (3) means that for every $x \in X$ there is a of the special form basic open set $U \times int \uparrow s$ containing $V \times X \times g(x)$ and being contained in G(f). But this is precisely (2).

(for each $x \in X$ there is an $i \in \{1, \ldots, n\}$ with)

Hofmann The Barteleuration (Part I): Copowers in C(4) (1) =>(2): Let $\mathcal{F}(g)$ be the set of all functions - s χ_U such that (i) U is open in X, (ii) $s \ll g(x)$ for all $x \in \overline{U}$ (!!). By (i) we have $\mathcal{F}(g) \subseteq LC(X,S)$. Since X is regular and 1.1.(3) applies to g, we know that (111) $g = \sup \mathcal{F}(g)$ in LC(X,S). Hence, by the definition of f << g there is a finite collection $\{s_i \neq u_i, i=1, ..., n\} \subseteq \mathcal{F}(g)$ with (iv) $f \leq \sup_{i=1}^{\infty} s_{i} \int_{U_{i}} \dots$ Now let us take an arbitrarz $x \in X$. Let $I(x) = \{i: i \in \{1, ..., n\} \text{ and } x \in \overline{U}_i\}$. Since $s_i \ll \overline{g}(y)$ for all $y \subseteq \overline{U}_i$ by (ii) above, $i \subseteq I(x)$ implies $s_i \ll g(x)$. If we set $s(x) = \sup \{s_i : i \in I(x)\}$ then also $x \in x \in I(x)$ ince $\frac{1}{2}$ g(x) is closed under finite sups. Where is an s' \subset S with $s(x) \ll s' \ll g(x)$ The set $V(x) = x \setminus \bigcup \{\overline{U}_i: i \in \{1, \dots, n\} \setminus I(x)\}$ is an open neighborhood of x. By 1.1.(3) we find an open neighborhood $U(x) \subset V(x)$ such that $u \in U(x)$ implies $\frac{fs' \leq g(u)}{fs' \leq g(u)}$, hence $s(x) \boxtimes \ll g(u)$. But $u \subseteq U(x)$ implies that $u \notin U_i$ for $i \notin I(x)$ $f(u) \le \sup \{s_i \neq \bigcup_{i=1,...,n}\} = \sup \{s_i \neq \bigcup_{i=1}^{u} : i \in I(x)\}$ whence = s(x). This proves condition (3). Note that it is possible that $I(x) = \emptyset$. 1.8. LEMMA.Let X be x compact and $f \in LC(X, S)$. Then $f = \sup\{g \in LC(X,S): g \ll f\}$ Proof. As was observed earlier, f is the sup of the family of all $s \chi_U \in LC(X,S)$ such that $s \in S$, U is open in X and $s \ll f(u)$ for all $u \in U$. (Use 1.1.(3).) But by Proposition 1.7 every such s χ_{II} satisfies the relation s $\chi_{II} \ll$ f. This proves the Lemma.[] 1.9. RECALL. Let $T \subseteq CL$ and $a \in T$, and t, a net. Then the following statements are equivalent: (1)t = $\lim t_i$. (2) t = $\sup_{j \in k} \inf\{t_k: j \leq k\}$ 1.10. THEOREM. Let X be a compact Hausdorff space and S a CL-objec6. Then (i) LC(X,S) is a CL -object; (ii) f \ll g iff for each x \subseteq X there is an open set U and an s \subseteq S such that $f(u) \leq s \ll g(u)$ for all $u \in U$; (111) if $f \in LC(X,S)$ and f_j is a net in LC(X,S) then Published by LSU Scholarly Repository, 2023 $f = \lim_{j \to j} \inf^{LC} \{f_k: j \le k\}.$ 5

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 17

If X is zero dimensional, then $f \ll g$ iff there is a locally constant function h with $f(x) \leq h(x) \ll g(x)$ for all $x \in X$. Proof. (i) follows from 1.5 and 1.8. (ii) is a portion of 1.7. (iii) follows from 1.9. If X is zero dimensional, then there is a f cover of X by disjoint compact open sets V_1, \ldots, V_n which refines the cover $\{U(x): x \in X\}$ (f is zero hard to hard to

We conclude the section with some remarks on the functorial properties of (X,S) -----> LC(X,S): Comp x CL ---->CL

1.11.LEMMA. Let $\varphi: X \longrightarrow Y$ be a continuous function of compact spaces. **DERNSTRXWITTAXXXXXXX** For every $f \in LC(Y,S)$ the function $f \circ \varphi: X \longrightarrow S$ is lower semicontinuous. Let $\varphi: LC(H,S) \longrightarrow LC(H,S)$ be the function defined by $\varphi^*(f) = f \circ \varphi$. Then $\varphi^* \in \underline{CL}^{\operatorname{op}}$. Proof. From 11.(II), $f \circ \varphi$ is lower semicontinuous if f is. Thus φ^* is well-defined. Since sups are calculated pointwise in LC(Y,S) and LC(X,S), clearly φ^* preserves arbitrary sups. $|\overline{F}|$ It remains to show that $f \ll g$ in LC(Y,S) implies $\varphi^*(f) \ll \varphi^*(g)$ in LC(X,S). We consider the commutative diagram

 $\mathtt{G}^{\mathtt{X}}$

 $LC(Y,S) \longrightarrow LC(X,S)$

GY .

 $G_{Y}(f) = \{(y, s) \in Y \times S: f(y \le s),$

Gy defined similarly.

$$\begin{array}{c} (\mathbf{Y} \times \mathbf{S}) \xrightarrow{} & & \\ & A \mapsto (\varphi \times \mathbf{1}_{\mathbf{S}})^{-1}(\mathbf{A}) \end{array} \end{array}$$

(Indeed $(x,s) \in (\varphi \times l_S)^{-1}(G_Y(f))$ iff $(\varphi(x), s) \in G_Y(f)$ iff $f(\varphi(x)) \leq s$ iff $(x,s) \in G_X(\varphi^*(f))$;) https://repository.lsu.edu/scs/vol1/iss1/17 (5)

Hofmann: SCS 17: The Space of Lower Semicontinuous Functions into a CL=Object, Applications (Part 1): Copowers in CL

Now if M, N are compact spaces and $\chi:M\longrightarrow N$ is a continuous map Then the function $q': [^{n}(N) \longrightarrow f^{n}(M)$ given by $\gamma'(A) = \gamma^{-1}(A)$ satisfies the condition $q': (A) \ll \gamma'(B)$, whenever $A \ll B$ where $A \ll B$ means $B \subseteq int A$; since $q'^{-1}(M = B) \subseteq \varphi^{-1}(int A)$ $\subseteq int q'^{-1}(A)$ by the continuity of φ . Since the **Hingra** maps G_{Y} and G_{X} are injective and preserve $\ll \gamma$ by 1.7 we conclude that φ^{*} preserves $\ll .]$

(6)

1.12.NOTATION. In the antext of 1.11 the left adjoint of \mathcal{G}^* , which is given by $f \models \mathcal{G} \subseteq LC(\mathbf{M} \times \mathcal{G})$: $g \circ \varphi \leq f$, $f \in LC(\mathcal{X}, S)$, will be denoted by $LC(\varphi, S): LC(\mathcal{X}, S) \longrightarrow LC(\mathcal{Y}, S)$ (somewhat contrary to the custor mary notation used in the case of the functor C(-,Z).)

1.13. LEMMA. Let X be a compact space and $\pi : S \longrightarrow T$ a CL-morphism. Then $LC(X, \pi): LC(X,S) \longrightarrow LC(X,T)$, $LC(X,\pi)(f) = \pi \circ f$ is well -defined and a CL-morphism. Proof. Let $\int :T \longrightarrow S$ be the right adjoint of π . Then $\pi(s) \ge t$ iff $s \ge \delta(t)$ for $(s,t) \boxtimes \subseteq S \times T$; hence $\pi \circ f \ge g$ iff $f \ge \delta \circ g$ for $(f,g) \in S^X \times T^X$. Now $\int :T \longrightarrow S$ is lower semicontinuous [2, ATLAS 1.29, p.15]. Hence $\int \circ g \in LC(X,S)$ for all $g \in LC(X,T)$. Since δ preserves sups, so does $g \longmapsto \delta \circ g$. Since δ preserves the way below relation \ll . Hence $g \longmapsto \delta \circ g: LC(X,T) \longrightarrow LC(X,S)$ is a CL^{OD}-morphism[2, ATLAS 1.20] Thus its left adjoint $LC(X,\pi)$ is a CL-morphism.[] As a consequence of 1.11-1.13 we record:

1.14. PROPOSITION. LC(-,-): <u>Comp</u> \times <u>CL</u> \longrightarrow <u>CL</u> is a functor.[] Note that it is a bit curious that we have COVARIANCE in both

arguments; you would normally expect contravariance in the left hand argument.

Published by LSU-Scholarly Repository, 2023

Seminar on Continuity in Semilattices, Vol. 1, Iss. 1 [2023], Art. 17

(7)

1.13. PROPOSITION. The map L: $[^{1}(X \times S) \longrightarrow LC(X,S)$ -given by $L(A)(x) = \sup \{f(x): f \in LC(X,S) \text{ with } A \subseteq G(f)\}, x \in X$ is a surjective <u>CL</u> -morphism.[]

1.16LEMMA. Let S, $T \subseteq \underline{CL}$, then any monotone Scott continuous function $f:S \longrightarrow T$ is lower-semicontinuous. Proof. Let $x \in S$ and $t \ll f(x)$. Since $x = \sup \bigvee x$ and f preserves sups of up-directed sets we have $f(x) = \sup \{f(y): y \ll x\}$. By the definition of \ll there is a $y \ll x$ with $t \leq f(y)$. Let U be the open set int fy. Then U is a neighborhood of x and $u \in U$ implies $x \ t \leq f(y) \leq f(u)$. Thus by 1.1(3) the assertion follows.[]

1.17 COROLLARY. $[S \longrightarrow T] \blacksquare \subseteq LC(S,T)$.

In a later memo we should discuss this inclusion further and resolve such questions as the following: Is $[S \longrightarrow T]$ closed in LC(S,T)? There are probably linkts to such matters as the random unit interval (SCS Hofmann and Liukkonen 9-1-76).

https://repository.lsu.edu/scs/vol1/iss1/17

Hofmann: SCS 17: The Space of Lower Semicontinuous Functions into a CL-Object, Applications (Part I): Copowers in (19)

2. APPLICATIONS I. The copowers.

22

2.1. <u>DEFINITION</u>. Let X be a compact space and $S \subseteq \underline{CL}$, $T \subseteq \underline{CL}$. A hemimorphism F: X × S → T is a continuous function such that $s \longrightarrow F(x,s):S \longrightarrow T$ is in \underline{CL} for all $x \in X$.

For each pair (x,s) we denote with $\Delta(x,s): X \longrightarrow S$ the function given by (s if y = x

$$\Delta(x,s)(y) = \begin{cases} \\ 1 & \text{otherwise} \end{cases}$$

2.2. <u>REMARK</u>. \bigtriangleup $\triangle : X \times S \longrightarrow LC(X,S)$ is a hemimorphism. Proof. We have $G(\triangle(x,s)) = (X \times \{1\}) \cup (\{x\} \times \uparrow s\})$. Clearly $(x,s) \longmapsto G(\triangle(x,s)) : X \times S \longrightarrow \Gamma(X \times S)$ is continuous. Now $LG(\triangle(x,s)) = \triangle(x,s)$ have L is as in 1.15. Since L is continuous, \triangle is continuous. The rest is clear.

3 2.5. <u>PROPOSITION</u>. Let X be a compact space, S, $T \subseteq \underline{CL}$. For each hemimorphism F: X × S → T and each $f \in LC(X,S)$ we write $D(f) = \phi_{f}(f) = \inf_{X \in X} F(x, f(x)) \in T$. Then

(1) ϕ : LC(X,S) \rightarrow T is a <u>CL</u>-morphism,

(11) the diagram

commutes,

(iii) ϕ is the only <u>CL</u>-morphism making the diagram in (ii)

commutative.

Fraction F is a canon@cal bijection $F \rightarrow \Phi$: Hem(X×S,T) = <u>CL</u> (LC(X,S),T).

Proof. First we prove (11): $F(y, \Delta(s,x)(y)) = F(x,s)$ if y = xPublished by LSU Scholarly Repository, 2023

(9)

and = 1 if $y \neq x$. Thus $\phi(\Delta(x,s) = F(x,s)$. Assertion (111) is clear from the fact that $f(\Delta(x,s): (x,s) \in X \times S)$ is an order generating set of LC(X,S) (and in particular a generating set). Remains to show (1): We calculate the left adjoint d:T—>LC(X,S) of ϕ . Let $f \in LC(X,S)$, $t \in T$. Then $\phi(f) \geq t$ iff $\inf_{X \in X} F(x,f(x))$ $\geq t$ iff $\boxed{\text{EEE}} F(x,f(x)) \geq t$ for all x_{ϕ} iff $f(x) \geq inf$ (see S: $F(x,s) \geq t$)/[since $s \rightarrow F(x,s)$ is in <u>CL</u>]. So we define $d(t)x = \inf \{s \in S:F(x,s) \geq t\}$. Since $G(d(t)) = \{(x,s): d(t)(x) \leq s\}$ $= F^{-1}(\uparrow t)$ and since F is/continuous ,G(d(t)) is closed, whence $d(t) \in LC(X,S)$ by 1.1. (III). Since $\phi(f) \geq t$ iff $f \geq d(t)$, d is the left adjoint of ϕ . By [2, ATLAS] it suffices to show now that $t \ll t'$ implies $d(t) \ll d(t')$, which, according to 1.7 is equivalent to $G(d(t') \subseteq \inf G(d(t))$. i.e. to $F^{-1}(\uparrow t') \subseteq F^{-1}(\uparrow t)$. But this follows from the continuity of F in view of $t \ll t'$ iff $t' \in int \uparrow t$, i.e. $\uparrow t' \subseteq int \uparrow t \bigoplus (See 1.1.(TL))$.

2.4. LEMMA. Let J be a set and $S \subseteq CL$. Suppose that $\{f_j: j \in J\}$ is a family of morphisms $f_j: S \longrightarrow T$. Then there is a unique continuous hemimorphism F: $J \times S \longrightarrow T$ such that the diagram

commutes.

The existence of a continuous function F making (D)commutative Proof. **FAIR** is immediate from the fact that for a compact S the space $\beta J \times S$ is canonically homogenorphic to $\beta(J \times S)$. If Let $x \in \beta J$, then there is a net $j_x \in J$ converging to x (where we identify J with a subset of βJ in the obvious fashion). If s,t $\in S$ then $F(x,s)F(x,t) = \lim F(j_x,s) \lim F(j_x,t) = \lim f_{j_x}(s)f_{j_x}(t) =$ $\lim f_{j_x}(st) = F(x,st)$.

-https://repository.lsu.edu/scs/vol1/iss1/17-

* Hofmann: SCS 17: The Space of Lower Semicontinuous Functions into a CL-Object, Applications (Part 1): Copowers in CL

Now we are ready to calculate arbitrary copowers of an arbitrary CL-object S.

(10)

2.5 .<u>THEOREM</u>. Let J be a set and $S \subseteq \underline{CL}$. Then the copower JSin \underline{CL} is canonically isomorphic to $LC(\beta J, S)$, and the j-th copressions is given by $S \xrightarrow{I} \longrightarrow \Delta(J, S): \mathbb{N} \longrightarrow LC(X, S)$.

Specifically, let $\{ \Psi_j : j \in J \}$ be a family of morphisms $\Psi_j : S \longrightarrow T$ in <u>CL</u>. Then there is a unique morphism $\phi: LC(X, S) \longrightarrow T$ such that $\Psi_j(s) = \phi(\Delta(j,s))$ for all $j \in J$ and $s \in S$; moreover ϕ is given by $\phi(f) = \inf_{j \in J} \Psi_j(f(j))$.

Proof. By 2.4 we obtain a unique hemimorphism F: $J \times S \longrightarrow T$ extending the function $(j,s) \longrightarrow \varphi_j(s)$. By 2.3 there is a unique morphism $\varphi = \phi_F$: $LC(X,S) \longrightarrow T$ with $F = \phi \Delta$. Thus ϕ is a unique morphism satisfying $\varphi_j(s) = \phi(\Delta(j,s))$ for all $(j,s) \in J \times S$. By 2.3 we have: $\phi(f) = inf$

By 2.3 we have $\phi(f) = \inf_{x \in \mathcal{F}_J} F(x, f(x))$. Since J is define in β_J , we conclude $\phi(f) = \inf_{j \in J} F(j, f(j)) = \inf_{j \in J} \varphi_j(f(j)), \text{ since}$ f and hence $x \longrightarrow F(x, f(x))$ is lower semicontinuous.

We should remember that knowing co-powers give us a pretty good hold on co-products in general. If J is a set , then

 $\{S_j: j \in J\} \longrightarrow \bigcup_{J} S_j : CL \xrightarrow{J} \longrightarrow CL$ is afunctor. The retraction

$$s_k \xrightarrow{\sigma_{ank}} \uparrow \uparrow_J s$$

then induces a retraction diagram

diagram

which pretty much reduces the question of coproducts to $\Box_J^{S_k}$ products and copowers. In fact in such categories as <u>CL</u> the co-pro duct \Box_JS_k is the identified with that subobject of $J(\Box_JS_j)$ which is generated by the iamges of $S_k \xrightarrow{\varpi_k} \Box_JS_j \xrightarrow{\varpi_k} J(\Box_JS_j)$ which is generated by the iamges of $S_k \xrightarrow{\varpi_k} \Box_JS_j \xrightarrow{\varpi_k} J(\Box_JS_j)$ and by LSS cholarly Repository 2023 we do inst elaborate further what this means in 2.5!