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The space of lower semicontinuous functions into a CL-object

TOPIC Applications (part I): Copowers in CL

REFERENCE[O]Handwritten notes on discussions by Gierz, Hofmann,Kbimel,
Mislove at Darmstadt in June 1976.

[1] Hofmann,K.H. and J.D.Lawson, Irreducibility ‘and generation in
continuous lattices. Preprint.

[2] Hofmann,K.H. and A. Stralka, ATIAS ,Diss. Math 137 (1976),1-54

- In Darmstadt this summer I raised the question of cslculating
copowers in CL;'we knew at the time,that

Jo = PJSJ) , where . [7(X) for a compact space X is the U -semi-
lattice of cdompact subsets and where the CL-topology is the Hausdorff
topology We had no particular 1dea what such simple coproducts as

mﬁ JI might be. Then Keimel had the insight that JI should be

’ calculated by considering the cone with basis ©J 3 then the closed
subsets containing the vertex and being star shaped would be the
elements of the desired copowdr with U as operation. This turned out
"to be correct as we proved at the time. An explicit discussion of
this approach is given in an example in [1] where this information
was needed and serves a useful purpose.

: " We thought at the time that arbitrary copowers should be cal-
culated in an essentially similar fashion. However, there are some
. technical difficulties with copowers of CL-objects which are not chain:
' The present” discussion proposes an approach which probably best
accomodates “these difficulties; in a phi]osophical way, such an ARp
. -approach had been indicated in conversations in Darmstadt, although
: 1t was then not seriously attempted

: We .acthally develop a-theory of function Spaces of lower semi-
~continuous functions f-X———qS , X compact, S € CL. The totallty of

all of these functions ,which we call LC(X S) turns out to be a
continuous lattice in a functorial fashion. The theory m£ around this
concept 1s discussed in Section 1 . Section 2 applies this to copowers
Further applications are to be discussed later. The result on copowers
is that for any CL-object S we have

/s Is £ 10(pX,8).
' The cojpproejctions and the universal morphisms are explicitly given.
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T e ““l 1. LFMMA T Let” X“be a topologica'l space and S € CL . ’Let”x € X

e b v
.

, and let Z( deno'te the filter‘basis of open neighborhoods N oS SRR
e ~-in Xe- Then-—the following ~condi‘bions are*equivalen‘l:r .

e e e q.—..__‘_..-‘k

—a— R

T T e *(1) ‘1“im T(x") >'”"f(x) for every net x in X converging to 3 X-

i v o a2

e = f~-~-—~~—~~~.-~-(z)-—~e¢-f(x) 2N HWT e YT T T

A il i a2 “(3)  For eaCh s << f(X) there is am U E Z( such that jvt-”_‘

L smes R
W e (8% - For each s<<7"5=) /““J o UC&-‘“&& /‘4"‘/"—3«7(["’) 7"""“’(]

bl Now we denote with mm m(f) ~[;he_se:t;w 5

{(x 's)« f(x) < s} Then the following condi‘tions are. equivalent

(I) Conditions - (1) (3) ‘above hold- for all :x e X.;_“:_‘ i
(II) W (int fs) is open for all s e S. 'Z

(III) G(f) is closed.

Proof. (3) =>(2): For eaoh s << 'f(x)'we know from (3) that o
. f(U) c 1‘ s-for some U Z{ , hence f£(U)™ = Ts and so- {bf(U) c 1{s.
Since s << f(x) is arbitrary and f(x) = ~sup ; f(x), (2) follows._j "

(2) => (l) ‘Suppose . lim xj Then even'tually

f(].cj) c £(u)~ forrall U el .So every cluster poin‘t of f(x )
is i1"n Ny, £(0)7. Hence (1).
“not (33 => not (1). Suppote there is an s << f(x) suoh' that

P P

T “ e —

for eaoh U € Z( we had £(U) ¢ 4s. Then there exisgts an x; € U

U
for each' U € Z( such that f(xU) % s. Since 1f(x) is in the

interior of " 4s,. not cluster point of f(xU) is in 1f(x),which
implies - lim f(xy) 3 f(x).@ o

(") = (3 ) & ﬁvb—mﬂ @wol (3)= (37 Since for << {lx) .tzama.,s/@:was«s«/m
(IIY <=> (2) for all x'e€ X : Cle&riw v of bt Peo §teS: sty

(1) for all x e X e (I11)2 Suppose -that (x48) = 1lim (xj,s L)
with f(x )< sJ » Then there 1is a subnet such that Iim (xJ,s )

= lim (xj(k),n sj(k)) The validity of (1) for x implies ij_(“x”)“

= Fxmxﬂmxxr;§@ & l:Lm f(x ) = lim f(xj(k)) < S«

https://repository.lsu. eé&&?clﬁ?ﬂﬁi’) for all X. ] ﬁ‘iSuppoee’ Xi =limxj in X. Let s be 2
in S ;

. any cluster point of f P

- S
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(x s) lim (xj(k)’ f(xj(k)) and obviously (xj(k)’f(xj(k)) EG(f)

Thus (III) implies (x s) € G(f), 1. e f(x) < Se This means,.

f(x) < lim f(x ) since s was an arbitrary cluster point [] ; :
S (S 2. DEEINIIIQN A function f x——-> s is callai lg er sem_ggn—-

I_imgy._s iff the equivalent conditions (I) — (III) of 1. 1 E

- are satisfied. -The ' set- of all 1ower semicontinuous functions

a will be denoted with IC(X S)

:“jwtiiwl.B. LFMMAm"iét Fc sX Tihen G(supd) = N{G(f): £ & F .
‘ o Proof. ‘Since f < sup 5?, we have' G(supg‘F) c g(f) for all f e,

whence G(supc'F) & :-F g(f). If (x s) n\;,_,G(f) then f(x) <s

~for all f € ?"— thus (sup }-)'(X)"S s, whence (X,s) € G(sup &F).[]’

% le4. LEMMA. Let f,g € IC(X,S). Then fg e LC(X S) where
(fg) (x) = £(x)a(x) = f(x)/\ g(x). - -
Proof. Let 'x € X~ and s << %(x) @Ken_xhexexxxxanxsxmx 3 |

ﬁxnxzxmxtxxxxxgni):ﬂ Since @ f g e LC(X S) by 1.1.(3) there is
an open neighborhood U.of x in X such that =B f(U) U -g(U) c ‘[‘s
" Then sH < f(u)g(u) fg(u) for all v € U, which verifies ‘

' 1.1.(3) for fg. [ -

' 1.5. PROPOSITION. Let X be topological space and S € CL . Then .°
"LC(X':S): is a sublattice of sk containing the identity and zero, .
- and Ic(X,8) is closed under the formation of arbitrary sups. In

f particular, IC(X ,S) is'a complete lattice. ' o j
‘Proof In view:of - 1. 1 (III), Lemma l.3 shows that LC(X S) is

closed under abbltrary sups.Lemma 1. 1+ shows that IC(X, S) is closed
under finite Anfs.[] . ‘ o . o

- REMARK. In general, 1C(X,8) 1is not closed under arbitrary infs: ]

‘ ﬁia'_ll_%%p_& ;

Let x € X be a non—-isolated point in some topoIOgJ.ca space, S =2. |

" Then the inf i) of the characteristic functions ' '}IU’ U EZ( _ (where
92/ is the set of open neighborhoods of x) is 1{ 3 which

" is not lower semicontinuous. :
Published by LSU Scholarly Repository, 2023 =~ ™~ . o - ' 3
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_functions of subsets of X:
~1.6.NOTATION . "',If" xf is a set_and_S[fmd] <-: CL, fiihe for each Y C

~ the funotlon ~)yiX—">S'1s defined by ¥ (x) =1 1f x G Y and

, function X—-——>S with value 8 and write /TY for the func’cion

o

~- -Seminar on Continuity-in-Semitattices;Vol: 1, 1ss.-1 {2023} Art: 1-7~~ G 5B W RN S gl
It is very convenient for the following to consider charaeteristi

ts e v ety S e e - s

-0 otherwise.u-va 8 -€-8; we‘maidentify 8 with the constant -

taking the value 8 on Y and 0 elsewhere @ 0

Note that XU 7= LC(X,,S) for a. topological space X and

an open subset U C X.

| |
i 7 PROPOSITION. Iet X be -aytopological space and S « CL.

If f,g € LC(X,S) then the followling statements are equivalent::

(1) f<<g . (2) For each x € X there is an open neighborhood

U=U(x) of x in X and" ‘an s = 8(x) €S such that
f(u) < s << ,g(u) for all u € U “
(i.e. f(U) o \Ls ~énd g(U)ﬁ C@ int Ts})'"“

(3) alg) C int a(2).

- Proof. (3) <=> (2) : (3) means that for every x €@ X there 1s a

iof the special form-

" basic open set  Emmf)/ U x Ant Ts , containing @gg(x) and
'being contained in :G(f) .But this is »precisely (2).

(2) = (1): Suppose that hJ is an up-directed net in Lg(X,S)
g(x)
whose sup h doxnina‘ges ‘g. "I“hen for each/ x we have [RZXE h(x)

=

= 1lim hJ(x)@ . Thus ‘there is a J(x) with s(x) <<‘:hj(x), and

Since MMU}IXE“ hJ is lower semicontinuous thére is an epen

set V=v(x') C U(x) such §H| that s <<vhj(v)_ for all v € V. By the

-compactness of X we .find finitely many XyseeesXy such that
X = V(x;) U....U0 V(x,). Let k be an index with k> 3(xg)see08(xy).

Since hy is up-directed, we ‘conclude that, f(x) < s(x;) << h, (x)

A : 4

https://repository.lsu. edu/scs/vol1/|ss1 j
for each x € X there is an 1 c;{l,...,n} wit
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s g 4 e be et = .,,A.<~.-< PO - Ay

e 2 % ->(2)-~Let ﬂg) be-the set of -all functions 8 ;(U such that

s s e

(i) ‘U.1s.open inX - (ii)ﬁ << g(x) for all x.€ U, (H) By . (i)

iy

iwe have ?(g) c 1C6(X, S) Since = is . regular and 1. l (3) ppplies to'g,’

| TS T

e know that (111) g - sup f’(g) in LC(X s)« Hence,»— *by the definitior

| of. ..£. << g there is. a. finite collection [si (U ‘. -l,...,n} C ;}’f(g)_
with (iv) £ < sup:.L ilui'..Now let us take an arbitrarz x € X.
Let I(x) (i: 1 < {1,...,n} and x & U ] Since '<<@'g(y) for
all y € U by (11) above, 1 & I(x) implies -8y << g(x). If we set
,s(x) = sup {si: 1 © I(x)) then alsom ‘(v) s(x) << g(x) since
:i g(x) is closed under finite sups.
s_@x_)_«_s___é(—g—%x—}—\ @3 The set- @) X\ U[Ui iG'.{l,...,n}\I(x)

is a'xm open neighborhood of: x..By 8 L(3) an. P A open .

‘neighborhorod ‘U(x) C V(x) such that = u & U(x)' implies {st<-g{u)s ’
‘henee} s(x) B << - g(u) But u € U(x) implies that u ¢ U; for i€ 1(x)
whence  f(u) < sup {si)cﬁ/ —1,...,n} = sup {si Vi c I(x)}

:= s(x). This proves condition (3).0
Note i:hat it 1s possible that I(x) = 2.
- "_‘1 8 -LEMIVIA Let X be x oou;paat and f < LC(X 3). ‘Then

v~\,w P

L f sup{g < LC(X,S) g KL fl.

e g it <

- --Proof,- -As was observed earlier, f is the sup of the family of T P

e

all s ©'16(X,S) such that s € S, U is- ppen" in X and
U

8 L f(u) for all u.c.U. (Use 1.1. (3).) But by Proposition 1.7
every such .S/KU satisfies ’che relation SXU < f. This proves the
1.9. RECALL. ILet T & CL and .m €T, and t, a net. Then the )
_'folloiyring statements are equivalent: (ljt - 1im t . (2) t =

’isupi "inf[tk§ J<k };[}

Then . .
(1) e(x,8) 1s'a oL -object,

(ii) chat 3 iff -for each-x € X there 4s an open set U and
~ an s C S such that f(u) < s << g(u) for all u € U;

(111) iffa LC(X s) @ and fj 1s a net in LC(X,S) then

Publlshed by LSU Scholarly Reposﬂory 2023 5
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. f o ? -X——->S is lower semicontinuous. Let f 'L'a(ﬂ,s)

be the function defined- by f*(f) fo o Then p¥* & CL °P,

. Aff (f(x)) < ;- 1;’1' (x,s) < (;o*(f))!)

https //repos'fory Fsu edu/scs/voHAss”I N7 s
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If X is zero dimensional, then f <<g iff there is

~a locally oonstant‘ffﬁnction h with fxH f(x) < h(x) <g(x) for

all X @ Xo - - oo e

- Proof. (i) follows :t‘rom 1. 5 ‘and 1.8. . (11) is a portion of 1.T.
' (‘111) follows from 1.9. If X is zero dimensional s then there is

a & cover of X by dis,join’c compact open sets Vl,...,V which

: notation as .in 1.7 and ‘

refines the cover {U(x)- xc X}(

1ts proof). For each J € (1,...,n) find x 50 that vy € U(x) and

set 8 4= s(x). Then v <V implies f(v) < 8 << g(v). Define

hiX—>S by  h(x) = s, 1ff x vy @

We econsilude—the-seetion—wlth some remarks on the functorial

properties of (X,S)F———) LG(X,S): Comp x 9_11 —>CL

1.11.1LEMMA. Let 50 ~X—-—>Y be a continuous f‘unction of compact

spaces. Iﬂmxxmxkxxxixm.ﬂ For every f < LC(Y,S) the function _
5LC(B 83 =

[y

o Proof "~ From 11. (II) s, f o f’ Sis lower semicontinuous if f is.

Thus gp* is well- defined. Since sups are calculated pointwise in
1c(Y,8) and LC(X,8), clearly /»* preserves arbitrary sups. ¥ It
remains to show that f << g in Lc(Y,S) implies P*(f)(( ?p*(g)
in Lo(X, S) ‘We consider the commutative diagram

“Lo(r,8) ? > LC(X,8) :
. ) ., ) ' GY(f)={(Y,S$€YX S:f(y)Ss},
A GY‘ e _ o GX
o : ' - GX defined similarly.
N(¥x 8) ——— j' >I”(x,< s)

Al (?xl ) 1(a)

- (1ndeed e (x,s) = (gmcl )‘1( (f)) 108 (/w(x), 5) GGY(:E)

N
Te

N ':"..’43
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~ Now rif M,N are compact spaces and % VM;>‘N‘ is3a”continuoue'r_nap
rhe_n;tnewmnction fY» 'F(N)————-> P(M) given by *{,« (A) —'}&\"l(A)
-satisfies ‘the condition - 4.f~ (A) <<'Y~'(B),whenever ‘A< B
:g where | A << Bmeans B Cint A ; séaaee % “lm B) c:1a1(1nt a)
= 1nt qf« l(A) by the continuity of 1& ..»‘Since the mmgm maps B

GY and GX are in,jective .and -preserve << Dby --1.T-we conclude that

5& preserves << .0 . j;“f."_i o
| B lﬁ.NOTATION. In the antext ‘of 1.11 the 1left adjoint of’ 50*
- »--—which As- given—by—»f}-—> sup {-g-& Lc(m Y,S) g o 5» < f}, f& LC(X s),
| >LC(Y,S) (somewhat contrary

wili be denoted by LC(So,S) LC(X,S)
to the custo,z‘mary notation used in the case of the functor c(-,2). )

i 13 LEMMA. Let X be a compact space and T(° S--—>'I' a- CL-—morphism.
Then LC(X,‘TF) Lc(x,s) —>1C(X, T) 3 LC(X,T(’)(f,) Mo T

1s well -defined-and-a’ CL-moxphism. e
Proof. Let [ $T—=>S be the right adjoint of & : Then '77‘(8) >t
R 1ff 8- > J(t) for (s t)B < S x ki) hence ....... Tof > g iff

f > Sdog for' (f.8) € S . TX ‘Now 5T———>S 18 lower semAic'ontinu-

‘ous [ 2/ ATLAS 1. 2() sP- 15) .Hence S og £ LC(X S) for’

o O Préserbes <€ )Y
(3) £ also preserves the way ‘below ‘relation << . Hence

g;]_Lg S Lo(X,T). Since (preserves sups, so does g}-——) &o g.
SBire

gl— {o et TO(X,T)—>LC(X,8) 1s a cIoP-morp snism| 2, ATIAS 1. 20]
Thus its 1eft adjoint ILC(X,=n ) is a CL-morphism.[].
‘ As a consequence of 1.11-1. 13 We record:

1 14 . PROPOSITION. - LC(— - ) Comp x CL —>' CL 1s a functor 0

Note that it is a bit curious that we have COVARIANCE in both .

arguments; you would normally expect contravariance in the left hand

— et G R R -

argument R - J T L

T O R T . pam———




:The map G- LC(X, ) —————>_ﬂf7(X>< S) . G(f)— [(x,s) f(x)< 8}

P e e 28+ bmne o o, e v ot | @ e wn L w g e e e e

One further‘ remark' S “‘“—f"" . ”“ " TS S "": .

| jpreservesvarbitrary sups by 1 L. and the Way below relation '
i by l s Hence it is a CL p--morphism for what it is.worth;

>

What is its left adjoint» ~Lpk= A-C~ r'(ch s) -Define tL(A-):X———)S’

s e A S e e T s S AN A8 e e

this 1s the reciuiired”left‘ ‘adjoint (Thus

1.15. PROPOSI‘I‘ION.‘ The ‘map-L: l"(x X s)———> LC(X s) given—-by

AL(A)(x) = sup {f(x) f.c LC(X S) with A € G(f)} , x € X

is a 'surjective CL —morphism.ﬂ

-

) laLEMMA Let S, T € CL 3 then any monotone Secott - contlnuous

o gfeLie B e 2

function f S——~>T is lower-semicontinuous.

Proof. Let x €5 and t << f(x) Since x = sup é x and f preserves

sups . of up-directed sets we have f(x) sup {f(y) y << x}.By the

| definition of << there 1is a y K xwith t< f(y) Iet U be the

open set int Ty - Then U is a neighborhood .of -x and us’yu

_ implies x t < f(y) < f(u) " Thus by 1.1(3) the assertion follows. ]

: t,‘d.iZCOROLLARY. '[s—-->T] gc Lc(s,T). vt] a 5

In a later memo we should'discuss this inclusion further

and resolve such questions as’: the following 'Is [S———>T ] closed

1n LC(S T) 2 There -are probably 1inkts to such matters as.

the random unit intervalnfgbs Hofmann and Liukkonen 9- 176)

- L
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Hofmann: SCS 17: The Space of Lower §emicohtiﬁ00us F'unctions into a CL-Object, Applicatiéﬁs (ParI l): Copbwers in E@)
2. APPLICATIONS I . The copowers.

f 2 1. DEFINITION. Let x be a compact space and S CL , TC CL .
6 - Aowser Sepri~
A hemimorphism F° X x S-——> T is. aYconﬁinuous :f‘unction such that

8 —> .F(x,s).S——-—>T is'in CL for a1_1 x € X.

~ For each pair (x,8) we d.énéte with A(x,8): X—>S the function

given by B B ,sifAy-;-:x o
(x,S)(Y) { SR
: ‘ 1 otherwise - ‘
v2~.'2.REMARK g ﬂ A X x S—>IC(X,S) is a hemimorphism. '

2 Proo’f * We -have G(A(x,s)) = (X x [1}) U ({x} x Ps). Clearly
(x,8) —> 6( A (x,8)) = X x 5—> [(xx5) %ﬁmus- Now
La(A (x,8)) = A(x,s) dere L is as' in e e £ Since L is continuous,
4 1is continuous. The rest 1s clear.[] |

.o g L e A |
2., 5. PROPOSITION. i Let X be a compact space, S, T & CL.  For

each hemimorphism ‘F xx s——-—> T and each fe LC(X s) we' write

e _.....

Cb(‘f) (l)F(f) = in F(X,f_(x)) CT. Then : o , : e i

I...,‘.<-

© (11) the diagram -

‘ commutes,' '

(iii) ¢ 4s the onl'y CL—morphism making ‘the diagram in (ii)

commutative. e e o e e

_ PYBEXX In other words, @hex\‘evvis a canon90a1 bijection F— ()F

Hem(x KS,‘T) ‘;““CIJ"(LC(X 'S'), i e wRS—— e . S48 & £ & hs

.4 e GRS R gy, Vo

S & g oTo) ~TFirst we‘prove (iﬁ :“‘"“F(y, A('S“‘X) (y) ) F(:x, B ) iy S
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(9)

'and 1 if y+ x i. ‘Thus (A (x,8) = F(x,s) Assertion (iii) is

clear from the fact that @ {A(x s) (x,s) < Xx S} is an order
generating set of LC(X S) (and in particular a. generaxting set)
Remains to show »(i)' We calculate "che ‘left adjoint d: T—-——>LC(X,S)
of q) let | £ € ILe(X,S) , t €T . Then ¢(£) > t 1ff inf GxF(x,f(x))

> £ iff 12_@ F(x,f(x)) > + for all x, 1ff. £(x) > inf [sc S: -

F(x,s) >t 7} [ since ;

s-]—-> F(x,s) s in CL] So we define

d(tX:x): inf (s ¥ s F(x,s)> t } "Since G(d(t)) = {(x,s) d(t)(x)<s}

= F" (ft) and sinee F. is]continuoue _,G(d(t)) is. closed,whence

d(t) c LC(X s) by 1.1. (III) Since - ¢(f) > t 1ff £ > d(t),
is the left adjoint of 4) . By [2, ATLAS] 1t suffices to show now
that t << t' implies d(t) << d(t')_ ,Which according to 1 7 is
equivalent-to G(d(t') C int G(a(t)). i.e. to F l(‘h-,t) CF l(‘[t)

WPW.C&W" .
But this follows from the continuity of F in view of t: ¢t iff

'-'-1;1_; int 'ft,i.e.‘ Tt' C int ftm(sa 11 (:IZ')) 0

e - 4-4' pr r——_

- 4 LEMMA Let J be a set and s & CL Suppose that {f 1J< J}

is. a family of morphisms fJ.S—-—->T. Then there is a unique Cou/,wow.,

hemim&rphism F- J xS———->'1‘ such( that the diagram

';J:s; > .8

th :‘.(:D):

(J:S)Hf (S

commutes. )
: The existence of a continuous function F making (D)commutative
Proofamis immediate from the fact that for a compact S the

space. ﬁJ % S is- canonically homq”gmorphic to f(Jx S) i Let

o x C)@J, then there is a net

;] c J ; converging to.x. (where we .

i identify J Wi’ch a subset of _}J in 't:he obvious fashion) If s tc S

tlim £

Mv~then F(x; s)F(x,t) = 1im F(:Ix,s) 1im- F(J« 1:) =-11m *fl((s)f ('c) =

:L((St)m = F(x,st). @,D_im . i- N
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A H'ofmann SCS 17: The Space of Lower Semlcontlnuous Functlons into a CL- ObJect Appllcatlons (Part N: Copowers inCL™ "’

T )

- Now we are ready to calculate arbiltrary copowers of an arbitrary
CL-object S. S

Js

in CL is canonicallly isomorphic to LC(PJ,S) s and the J th
cop&ject_ionm is :given;by ' {-———> 2 (J,s) a —> LC()_(,‘S)_.

o

Specii‘io‘elij,w iet [y 3 jGI } be a. family of morphisms yJ'S——>T in CL
 Then there ‘is a unique morphism (I) 10(X, S)———>‘I‘ such that fPJ(S)
= §( Aﬁ(j,s)) .for’all.:,j '€ J and s € S; moreover  is glven by.
o(£)= infye 5 Py(£(3)) .
Proof. By 2 4 we obtain a unique hemimorphism F- IXS —>T
extending -the- funetion: (J,s)l-——> 503(5) By 2. 3 there is a unique
: morphism@ $ = (bF LC(X,S)——>T ‘with F = tbA . Thus b 15 a unique
“ morphism sat:[sfying fj(s) = ¢(A(J,s)) for all (J,s) € I~ S.

s+ By 2.3 we._ have 0(£) = inf F(x,f(x)). s.meé J‘ ‘is"den‘se ~1nJSJ,

ot x.e. BT
we: conclude ¢) - -:'Lan F(j,f(J)) = 1nfj ij(fﬁ.j)) ﬁ since

-..._.,.,.__..—..M.._ P S —

f and“hence x1;> F(x,f(x)) is 1ower semiconbinuous 0=

i o g

Le]

e P g

- We should remember -that knowing co-powers give us -a pretty good

_ - _
hold on co—products in general. If J is a set then o

{s 3e.7) ——->l 15 8y ¢ oL ¥ —> CL 15 afurictor. The retraction
. diagram T
e = et ____15{_.> ']—rJ 3

..1 i,

, i T e J__L]s S>> (ﬁJsJ)
theninducesaretragtiondiagram N 4
“which” pretty much“reduces the- question of coproducts to

p"roduc’cs and copowers. In fact in such categories a8 CL the" co-prom'

A —duct.].|;S, 1s: the. identified with that subobject of U(1i=-=]=Js )

P j )
enerated» by-the-18mges of - 8. =% 1] L&——= ~(T7T-
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