[Seminar on Continuity in Semilattices](https://repository.lsu.edu/scs)

[Volume 1](https://repository.lsu.edu/scs/vol1) | [Issue 1](https://repository.lsu.edu/scs/vol1/iss1) Article 14

8-18-1976

SCS 14: SCS Memo of Lawson Dated 7-12-76

Michael Mislove Tulane University, New Orleans, LA USA, mislove@tulane.edu

Follow this and additional works at: [https://repository.lsu.edu/scs](https://repository.lsu.edu/scs?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages)

P Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Mislove, Michael (1976) "SCS 14: SCS Memo of Lawson Dated 7-12-76," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 14. Available at: [https://repository.lsu.edu/scs/vol1/iss1/14](https://repository.lsu.edu/scs/vol1/iss1/14?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages)

Mislove: SCS 14: SCS Memo of Lawson Dated 7-12-76

SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

SCS Memo of Lawson dated 7-12-76 TOPIC

Ditto REFERENCE

In the above mentioned memo, Lawson defines the subset $L(S)$ for a compact semilattice S to be those points of S where S has small semilattices. He shows that L(S) is closed under arbitrary sups, and that, for all $s \in S$, we have $s \in L(S)$ iff $s = \sup \psi s$. The question is then raised as to whether $L(S) \in CL$. The following example shows that such need not be the case:

Step 1. Let $R \in \mathbb{CS}$ such that, for all subsemilattices S of R, int S $\neq \emptyset$ implies that $0 \in S$ (such examples exist, see, e.g., Lawson, "Lattices with no interval homomorphisms" Pac. Jour. 32, 459-465). We let $R' = IN \times R$ in the lexicographic order, where IN has its natural total order. Then, in the product topology, R' is a locally compact semilattice. Moreover, any compact subset of R' intersects at most finitely many of the sets $\{n\}$ x R. Hence, if $R'' = R' \cup \{1\}$ is the one-point compactification of R', it follows that the sets of the form $\mathsf{\Lambda}(n,0)$ form a neigborhood basis for the topology at 1. Thus, if we let 1 act as an identity for R", we have that R" is a compact semilattice. It is readily verified that $Q = ((n, 0), (N+1, 1))$: $N \in IN$ $\cup \Delta(Rⁿ)$ is a closed congruence on R", so that $T = R''/Q$ is a compact semilattice with identity. In "picturesque" language, T is a stack of countably many copies of R with an identity at the top. We wish to determine $L(T)$. Clearly $0 \in L(T)$, and since the sets of the form \uparrow (n,0) form a neighborhood basis at 1 in R", the sets \mathcal{N} [n,0] form a neighborhood basis at 1 in T (where $[n,0]$ denotes the Q-class of $(n,0)$ in T), and so we conclude that $1 \in L(T)$ also. Now. let $r \in R$, and consider $[n, r]$. If U is any semilattice neighborhood of $[n,r]$ in T, then $U \cap (n] \times R)$ is a semilattice neighborhood of $[n, r]$ in the subsemilattice $\{n\} \times R$, which is isomorphic to R. Hence, $[n, 0] \in U$ by the defining property of R. Furthermore, if $n > 0$, then $[n,0] = [n-1,1]$, and the same argument as that just given for $[n,r]$ shows that any semilattice neighborhood of [n,0] must also contain $[n-1,0]$. From these two facts we conclude that, for any n > 0, any semilattice neighborhood of $[n, r]$ must also contain $[0, 0]$, the zero of T. Thus, $L(T) = \{0, 1\}$.

1

Step 2. The semilattice in which we are interested is a subsemilattice of $T \times T$. Let $S = \bigcup_{n} (\{(n, 0), [m, r]) : n \subseteq m \in \mathbb{N} \} \cup \{([m, r], [n, 0]) : n \subseteq m \in \mathbb{N} \}) \cup \Delta(\mathbb{T})$ $=\bigcup_{n} (\binom{-1}{p_1}(\lfloor n,0 \rfloor) \cap \hat{\mathcal{N}}(\lfloor n,0 \rfloor, [n,0]) \cup (\binom{-1}{p_2}(\lfloor n,0 \rfloor) \cap \hat{\mathcal{N}}(\lfloor n,0 \rfloor, [n,0])) \cup \Delta^{(n)}(\mathbb{R})$

where p_i : T x T -- T is the projection on the ith factor. Then, from the second definition, it is clear that S is a countable union of closed subsemilattices of T x T. Moreover, for each n E IN, all but finitely many of these subsemilattices are contained in $\{\{n,0\},\{n,0\}\}\$, and these upper sets form a neighborhood basis at $(1,1)$. It then follows that S is a closed subset of T x T. To see that S is a subsemilattice, we choose s, s' \in 5, and we assume that $s = (\lfloor n, 0 \rfloor, \lfloor m, r \rfloor)$ and $s' = (\lfloor k, t \rfloor, \lfloor j, 0 \rfloor)$ with $n \leq m$ and $j \leq k$. Either $j \leq n$ or $n \leq j$, and we assume the former. Then, $j \leq n \leq \pi$, so that $[m, r][j, 0] = [j, 0]$. Also, $j \le k, n$ implies that $[j, 0] \le [n, 0][k, r]$. Hence, ss' = $(\lceil i, 0 \rceil, \lceil j, 0 \rceil)$ with $j \leq \inf k, n = i$, so that ss' \in S in this case. Similar arguments take care of the other possibilities, so that S is indeed a subsemilattice of T x T. Hence, S ϵ CS, and we want to determine L(S). First we give a picture of S :

Now, clearly $(0,0) \in L(S)$, and since $(1,1) = \sup_{n} ([n,0],[n,0])$ and $([n,0],[n,0]) < \frac{1}{S}$ $(1,1)$ (this is not true in T x T!) for each n ϵ IN, we have that $(1,1) \in L(S)$ also. Now, if $n \in \mathbb{N}$, then it follows that $([n,0],[n,0]) \leq \left([n,0],1 \right)$, and so $([n,0],[m,0])$ $\zeta \in \left(\left[n,0\right], 1\right)$ for each $m > n$. Hence $\left(\left[n,0\right], 1\right)$ = sup $\bigvee_{S}^{\sim}\left(\left[n,0\right], 1\right)$, so that $\left(\left[n,0\right], 1\right)$ $\in L(S)$, and a similar argument shows that $(1,\lceil n,0\rceil) \in L(S)$ for each $n \in \mathbb{N}$. Finally, for each $n \in \mathbb{N}$, $p_1^{-1}([n,0]) \cap \hat{\mathcal{T}}([n,0], [n,0])$ is isomorphic to T, so that the only possible points of L(S) in this subsemilattice are $(\lceil n,0\rceil,1)$ and $(\lceil n,0\rceil,0)$. We have already seen that $(\lceil n,0\rceil,1) \in L(S)$, and since $(\lceil n,0\rceil,0) = (\lceil n,0\rceil, \lceil n,0\rceil) \in \Delta(T)$, and $\Delta(T)$ is also isomorphic to T, we conclude that $(\lceil n,0\rceil,0) \in L(S)$ implies that $n=0$. A similar argument works for the points of the form $(\lceil m,r \rceil,\lceil n,0 \rceil)$ with $n \in \mathfrak{m}$, and we conclude that $L(S) = \{([n, 0], 1), (1, [n, 0]) : n \in IN\} \cup \{(1, 1), (0, 0)\}$. Fix $m \in IN$. Then, for all $n \in$ IK, $(\lceil n, 0 \rceil, 1)(1, \lceil m, 0 \rceil) = (0, 0)$ (this product is in $L(S)$). Hence, since $(1,1)$ = sup $(\lceil n,0\rceil,1)$, it follows that $L(S)$ is not lower continuous, and so $L(S)$ cannot have a compact semilattice topology.

Question: Let S \in CS, and suppose that $L(S) \in$ CS. Is then $L(S) \in$ CL?

2