[Seminar on Continuity in Semilattices](https://repository.lsu.edu/scs)

[Volume 1](https://repository.lsu.edu/scs/vol1) | [Issue 1](https://repository.lsu.edu/scs/vol1/iss1) Article 10

7-12-1976

SCS 10: Points with Small Semilattices

Jimmie D. Lawson Louisiana State University, Baton Rouge, LA 70803 USA, lawson@math.lsu.edu

Follow this and additional works at: [https://repository.lsu.edu/scs](https://repository.lsu.edu/scs?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages)

P Part of the [Mathematics Commons](https://network.bepress.com/hgg/discipline/174?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Lawson, Jimmie D. (1976) "SCS 10: Points with Small Semilattices," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 10. Available at: [https://repository.lsu.edu/scs/vol1/iss1/10](https://repository.lsu.edu/scs/vol1/iss1/10?utm_source=repository.lsu.edu%2Fscs%2Fvol1%2Fiss1%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages)

(1) First of all I would like to call attention to a preprint I have just submitted for publication entitled "Spaces which force a basis of subsemilattices." In this paper it is shown that a topological semilattice has small semilattices at a point p if p has a compact, finite-dimensional, "wellfitted" neighborhood, where "well-fitted" is a technical term describing the behavior of components in a neighborhood of a point. It is defined below. Points in # locally connected, totally disconnected, and locally connected X totally disconnected spaces have well-fitted neighborhoods. In fact a rather far-reaching class of finite-dimensional spaces are included.

It is convenient for our purposes to introduce a component operator. Let X be a topological space, $A \subseteq X$, and $p \in A$. Then $C_n(A)$ denotes the component (i.e., maximal connected set) of p in the subspace A.

Definition. Let S be a topological space. If $A \subseteq B \subseteq S$, then A is said to be fitted within B if for each $p \in A$, $C_p(A) = C_p(B) \cap A.$

A neighborhood W of a point p E A is a fitted neighborhood

of p if W is compact and p has a basis of compact neighborhoods, each of which is fitted within W.

A neighborhood W of a point p & S is a well-fitted neighborhood of p if (i) for each q in the interior of W, W is a fitted neighborhood of q, and (ii) for any $A \subseteq W$, if $\mathtt{C}_p(\mathtt{W}) \ \cap \ \bigl(\ \cup\limits_{a \in A} \mathtt{C}_a(\mathtt{W})\bigr)\ast \neq \emptyset, \quad \mathtt{then} \quad \mathtt{p} \ \in \ \bigl(\ \cup\limits_{a \in A} \mathtt{C}_a(\mathtt{W})\bigr)\ast.$

(2) Let me at this point throw in a couple of conjectures. First a definition. The space \overline{X} is said to have local component convergence (l.c.c.) at p if for any neighborhood W of p, there exist neighborhoods V and U of p such that

- (1) $V \subseteq U \subseteq W$.
- (2) If $Q \subseteq V$ and $C_p(U) \cap (\bigcup_{q \in Q} C_q(W) \neq \emptyset$, then
	- $p \in (\bigcup_{q \in Q} C_q(W))$ *. Roughly speaking, we are requiring

that if components approach the component of p locally, then they actually approach p.

Conjecture 1. Let S E CS. If p E S, S is l.c.c. at and p has a finite-dimensional neighborhood in which $p,$ components are locally connected, then S has small semilattices at p.

Conjecture 2. Let S E CS, S finite-dimensional, and suppose the peripheral points in S are closed. Then S E CL.

2

County Committee

 $\overline{2}$

Proofs or counter-examples are not easily forthcoming on such problems if past experience is any quide.

3

(3) Let $S \in CS$. Let $\Lambda(S) \subset CS$ be all elements of S at which S has small semilattices.

Proposition 1. $\Lambda(S)$ is a sup-subsemilattice of S containing 0 closed under arbitrary sup5. Hence in its own order, $\Lambda(S)$ is a complete lattice.

Proof. Let $x, y \in \Lambda(S)$. Then $x \in \text{sup}\{a: x \in (\Lambda(a))^{\circ}\}\$ and $y = \sup\{b \pmb{\pmb{\ell}}; y \in (\pmb{\wedge} b)^{\circ}\}\$, and both of these are up-directed sets. Hence $xvy = sup{avb: x \in (\uparrow a) \circ and y \in (\uparrow b) \circ}$ and $xvy \in (\uparrow a)$ \circ $\uparrow (\uparrow b)$ \circ = $(\uparrow avb)$ \circ . Thus $xvy \in \Lambda(S)$.

Now suppose x_{α} is an up-directed net in $\Lambda(S)$ and $x = \sup x_{\alpha}$. If U is open, $x \in U$, $\exists x_{\alpha} \in U$. Since x_{β} $\delta \wedge (s)$, $\exists y \in U$ such that x_{β} $\delta (\uparrow y)^{\circ}$. Hence $x \in (\uparrow y)^{\circ}$. \Box

Note that this proposition applies nicely to some of the considerations of H and M, Memo 6-28-76, e.g. Proposition 11.

Question: Is $\Lambda(S) \in CL$?

 (4) Definition. Let A be a topological semilattice, $x \in S$. $\{U_{n\hat{\mathbf{a}}}^*$ n=1,2,.....} is a <u>fundamental system</u> for x if

- (1) Each U_n is open;
- (2) u_n . $u_n \n\subset u_{n-1}$, $\overline{u}_n \n\subset u_{n-1}$

(3) $x \in U_n$ for each n.

Proposition 2. (1) If $\{U_n\}_{n=1}^{\infty}$ is a fundamental system for x, $\bigcap_{n=1}^{\infty}$ U_n is a closed semilattice containing x.

 (2) Each neighborhood of x contains a fundamental system for x.

Proposition 3. If $S \in CS$, then for $x \in S$ and each fundamental system $\lambda = {\{v_n\}}_{n=1}^{\infty}$, let $x_{\lambda} = \inf_{n=1}^{\infty} {\{n \atop n=1}^{\infty} v_n}$. Then if the fundamental systems are ordered by inclusion, x_{λ} is a net converging upwards to x.

Definition. $y \ll\ll x$ if whenever $VA \geq x$, there exists $F^{\text{finite}} \subset A \rightarrow V \ll V$ F.

Proposition 4. Let S e CS. Then $y \ll \ll$ $x \Leftrightarrow x \in (\gamma y)^{\circ}$.

Proof. E Straightforward the organ. E By Prop. 3 $x = \sup x_{\lambda}$ where λ is a fundamental system. Hence $\exists \lambda = \{v_n\}_{n=1}^{\infty}$ 3 $y \ll x_{\lambda}$.

For each U_i in λ , pick $x_i \in U_i \setminus \mathcal{L}$ (we can do this if $x \notin (ry)^{\circ}$. Now

 $x_i x_{i+1} \cdots x_{i+j} \in U_i U_{i+1} \cdots U_{i+j}$ \in σ_i σ_{i+1} \dots $(\sigma_{i+j-1})^2$ \subset u_i^2 \subset u_{i-1}

https://repository.lsu.edu/scs/vol1/iss1/10

Now w_i is an increasing sequence which must converge up to some w. Since $w_i \in U_{i-2}$, $w \in \bigcap_{i=1}^{\infty} U_i$. Thus $w \geq x_{\lambda}$.

Since $y \ll x_{\lambda}$, I w_j $y \le w_j$. But $w_j \le x_j$ and $y \ne x_j$, a contradiction. So $x \in (\uparrow y)$ ^o. \Box

Corollary $\overline{\mathbf{3}}$. If $x \ll y \ll z$, then $x \ll z$. Hence $w \in \Lambda(S)$ if $w = \sup\{x: x \leq w\}$.