SCS 10: Points with Small Semilattices

Jimmie D. Lawson
Louisiana State University, Baton Rouge, LA 70803 USA, lawson@math.lsu.edu

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation
Available at: https://repository.lsu.edu/scs/vol1/iss1/10
(1) First of all I would like to call attention to a pre-
print I have just submitted for publication entitled "Spaces
which force a basis of subsemilattices." In this paper it is
shown that a topological semilattice has small semilattices at
a point p if p has a compact, finite-dimensional, "well-
fitted" neighborhood, where "well-fitted" is a technical term
describing the behavior of components in a neighborhood of a
point. It is defined below. Points in \mathfrak{m} locally connected,
totally disconnected, and locally connected X totally discon-
ected spaces have well-fitted neighborhoods. In fact a rather
far-reaching class of finite-dimensional spaces are included.

It is convenient for our purposes to introduce a component
operator. Let X be a topological space, $A \subseteq X$, and $p \in A$.
Then $C_p(A)$ denotes the component (i.e., maximal connected set)
of p in the subspace A.

Definition. Let S be a topological space. If $A \subseteq B \subseteq S$,
then A is said to be fitted within B if for each $p \in A$,

$$C_p(A) = C_p(B) \cap A.$$

A neighborhood W of a point $p \in A$ is a fitted neighborhood

West Germany: TH Darmstadt (Gierz, Keimel)
U. Tübingen (Mislove, Visit.)

England: U. Oxford (Scott)

USA: U. California, Riverside (Stralka)
LSU Baton Rouge (Lawson)
Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)
of p if W is compact and p has a basis of compact neighborhoods, each of which is fitted within W.

A neighborhood W of a point $p \in S$ is a well-fitted neighborhood of p if (i) for each q in the interior of W, W is a fitted neighborhood of q, and (ii) for any $A \subseteq W$, if $C_p(W) \cap (\bigcup_{a \in A} C_a(W))^\ast \neq \emptyset$, then $p \in (\bigcup_{a \in A} C_a(W))^\ast$.

(2) Let me at this point throw in a couple of conjectures.

First a definition. The space X is said to have local component convergence (l.c.c.) at p if for any neighborhood W of p, there exist neighborhoods V and U of p such that

1. $V \subseteq U \subseteq W$,
2. If $Q \subseteq V$ and $C_p(U) \cap (\bigcup_{q \in Q} C_q(U)) \neq \emptyset$, then $p \in (\bigcup_{q \in Q} C_q(W))^\ast$. Roughly speaking, we are requiring that if components approach the component of p locally, then they actually approach p.

Conjecture 1. Let $S \in CS$. If $p \in S$, S is l.c.c. at p, and p has a finite-dimensional neighborhood in which components are locally connected, then S has small semilattices at p.

Conjecture 2. Let $S \in CS$. S finite-dimensional, and suppose the peripheral points in S are closed. Then $S \in CL$.
Proofs or counter-examples are not easily forthcoming on such problems if past experience is any guide.

(3) Let \(S \in \text{CS} \). Let \(\Lambda(S) \subseteq S \) be all elements of \(S \) at which \(S \) has small semilattices.

Proposition 1. \(\Lambda(S) \) is a sup-subsemilattice of \(S \) containing 0 closed under arbitrary sup \(S \). Hence in its own order, \(\Lambda(S) \) is a complete lattice.

Proof. Let \(x, y \in \Lambda(S) \). Then \(x = \sup\{a: x \in (\uparrow a)^{\circ}\} \) and \(y = \sup\{b: y \in (\uparrow b)^{\circ}\} \), and both of these are up-directed sets. Hence \(x y = \sup\{a \vee b: x \in (\uparrow a)^{\circ} \text{ and } y \in (\uparrow b)^{\circ}\} \) and

\[
x y \in (\uparrow a)^{\circ} \cap (\uparrow b)^{\circ} = (\uparrow a \vee b)^{\circ}.
\]

Thus \(x y \in \Lambda(S) \).

Now suppose \(x_\alpha \) is an up-directed net in \(\Lambda(S) \) and \(x = \sup x_\alpha \). If \(U \) is open, \(x \in U \), \(\exists x \in U \). Since \(x_\beta \in \Lambda(S) \), \(\exists y \in U \) such that \(x_\beta \in (\uparrow y)^{\circ} \). Hence \(x \in (\uparrow y)^{\circ} \). □

Note that this proposition applies nicely to some of the considerations of \(H \) and \(M \), Memo 6-28-76, e.g. Proposition 11.

Question: Is \(\Lambda(S) \in \text{CL} \)?

(4) **Definition.** Let \(\Lambda \) be a topological semilattice. \(x \in S \). \(\{U_n: n=1,2,\ldots\} \) is a fundamental system for \(x \) if

1. Each \(U_n \) is open;
2. \(U_n \cdot U_n \subseteq U_{n-1}, \overline{U_n} \subseteq U_{n-1} \)
(3) \(x \in U_n \) for each \(n \).

Proposition 2. (1) If \(\{U_n\}_{n=1}^{\infty} \) is a fundamental system for \(x \), \(\bigcap_{n=1}^{\infty} U_n \) is a closed semilattice containing \(x \).

(2) Each neighborhood of \(x \) contains a fundamental system for \(x \).

Proposition 3. If \(S \in CS \), then for \(x \in S \) and each fundamental system \(\lambda = \{U_n\}_{n=1}^{\infty} \), let \(x_{\lambda} = \inf(\bigcap_{n=1}^{\infty} U_n) \). Then if the fundamental systems are ordered by inclusion, \(x_{\lambda} \) is a net converging upwards to \(x \).

Definition. \(y \ll\ll x \) if whenever \(\forall \lambda \geq x \), there exists \(\text{finite} \subset \lambda \exists y \ll y' \).

Proposition 4. Let \(S \in CS \). Then \(y \ll\ll \emptyset \iff x \in (\uparrow y)^o \).

Proof. \(\square \) Straightforward.

\(\square \) By Prop. 3 \(x = \sup x_{\lambda} \) where \(\lambda \) is a fundamental system.

Hence \(\exists \lambda = \{U_n\}_{n=1}^{\infty} \\exists y \ll x_{\lambda} \).

For each \(U_i \) in \(\lambda \), pick \(x_i \in U_i \setminus \uparrow y \) (we can do this if \(x \not\in (\uparrow y)^o \)).

Now

\[
x_i \ x_{i+1} \ldots x_{i+j} \in U_i \ U_{i+1} \ldots U_{i+j} \\
\subseteq U_i \ U_{i+1} \ldots (U_{i+j-1})^2 \\
\vdots \\
\subseteq U_i \subseteq U_{i-1}
\]

https://repository.lsu.edu/scs/vol1/iss1/10
Hence $w_i = \bigwedge_{j \geq i} x_j \in \overline{U}_{i-1} \subseteq U_{i-2}$.

Now w_i is an increasing sequence which must converge up to some w. Since $w_i \in U_{i-2}$, $w \in \bigcap_{i=1}^{\infty} U_i$. Thus $w \supseteq x_\lambda$.

Since $y \ll x_\lambda$, $y \in W_j \supseteq y \leq w_j$.

But $w_j \supseteq x_j$ and $y \not\in x_j$, a contradiction.

So $x \in (\uparrow y)^\circ$. □

Corollary 6. If $x \ll y \ll z$, then $x \ll z$. Hence $w \in \Lambda(S)$ if $w = \sup\{x : x \ll w\}$.