## Seminar on Continuity in Semilattices

Volume 1 | Issue 1 Article 10

7-12-1976

## SCS 10: Points with Small Semilattices

Jimmie D. Lawson Louisiana State University, Baton Rouge, LA 70803 USA, lawson@math.lsu.edu

Follow this and additional works at: https://repository.lsu.edu/scs



Part of the Mathematics Commons

## **Recommended Citation**

Lawson, Jimmie D. (1976) "SCS 10: Points with Small Semilattices," Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 10.

Available at: https://repository.lsu.edu/scs/vol1/iss1/10

| <br>SEMINAR ON | Lawson: SCS 10: Points with Small Semilattices CONTINUITY IN SEMILATTICES (SCS) |          |   |    |    |
|----------------|---------------------------------------------------------------------------------|----------|---|----|----|
|                |                                                                                 | DATE     | M | D  | Y  |
| <br>NAME(S)    | Lawson                                                                          |          | 7 | 12 | 76 |
| TOPIC          | Points with Small Semilattices                                                  |          |   |    |    |
| REFERENCE      | SCS Memo of Hofmann and Mislove, 6                                              | 5-28-76. |   |    |    |

(1) First of all I would like to call attention to a preprint I have just submitted for publication entitled "Spaces which force a basis of subsemilattices." In this paper it is shown that a topological semilattice has small semilattices at a point p if p has a compact, finite-dimensional, "well-fitted" neighborhood, where "well-fitted" is a technical term describing the behavior of components in a neighborhood of a point. It is defined below. Points in # locally connected, totally disconnected, and locally connected X totally disconnected spaces have well-fitted neighborhoods. In fact a rather far-reaching class of finite-dimensional spaces are included.

It is convenient for our purposes to introduce a component operator. Let X be a topological space,  $A\subseteq X$ , and  $p\in A$ . Then  $C_p(A)$  denotes the component (i.e., maximal connected set) of p in the subspace A.

Definition. Let S be a topological space. If  $A \subseteq B \subseteq S$ , then A is said to be <u>fitted within</u> B if for each  $p \in A$ ,  $C_p(A) = C_p(B) \cap A$ .

A neighborhood W of a point p & A is a fitted neighborhood

West Germany:

TH Darmstadt (Gierz, Keimel)

U. Tübingen (Mislove, Visit.)

England:

U. Oxford (Scott)

USA:

U. California, Riverside (Stralka)

LSU Baton Rouge (Lawson)

Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)

of p if W is compact and p has a basis of compact neighborhoods, each of which is fitted within W.

- (2) Let me at this point throw in a couple of conjectures. First a definition. The space  $\overline{X}$  is said to have <u>local component</u> convergence (l.c.c.) at p if for any neighborhood W of p, there exist neighborhoods V and U of p such that
  - (1)  $V \subseteq U \subseteq W$ ,
  - (2) If  $Q \subseteq V$  and  $C_p(U) \cap (\bigcup C_q(U) \neq \emptyset$ , then

 $p\in (\ \cup\ C_q(W))*.$  Roughly speaking, we are requiring  $q\in Q$ 

that if components approach the component of p locally, then they actually approach p.

Conjecture 1. Let  $S \in CS$ . If  $p \in S$ , S is l.c.c. at p, and p has a finite-dimensional neighborhood in which components are locally connected, then S has small semilattices at p.

Conjecture 2. Let  $S \in \underline{CS}$ , S finite-dimensional, and suppose the peripheral points in S are closed. Then  $S \in CL$ .

Proofs or counter-examples are not easily forthcoming on such problems if past experience is any guide.

(3) Let S ∈ CS. Let Λ(S) be all elements of S at which S has small semilattices.

Proposition 1.  $\Lambda(S)$  is a sup-subsemilattice of S containing 0 closed under arbitrary sup5. Hence in its own order,  $\Lambda(S)$  is a complete lattice.

<u>Proof.</u> Let  $x, y \in \Lambda(S)$ . Then  $\chi \bullet = \sup\{a: x \in (\uparrow a)^\circ\}$  and  $y = \sup\{b! : y \in (\uparrow b)^\circ\}$ , and both of these are up-directed sets. Hence  $xvy = \sup\{avb: x \in (\uparrow a)^\circ \text{ and } y \in (\uparrow b)^\circ\}$  and  $xvy \in (\uparrow a)^\circ \cap (\uparrow b)^\circ = (\uparrow avb)^\circ$ . Thus  $xvy \in \Lambda(S)$ .

Now suppose  $x_{\alpha}$  is an up-directed net in  $\Lambda(S)$  and  $x = \sup x_{\alpha}$ . If U is open,  $x \in U$ ,  $\exists x_{\beta} \in U$ . Since  $x_{\beta} = \Lambda(S)$ ,  $\exists y \in U$  such that  $x_{\beta} = (\uparrow y)^{\circ}$ . Hence  $x \in (\uparrow y)^{\circ}$ . Note that this proposition applies nicely to some of the considerations of H and M, Memo 6-28-76, e.g. Proposition 11.

## Question: Is $\Lambda(S) \in CL$ ?

- (4) <u>Definition</u>. Let A be a topological semilattice,  $x \in S$ .  $\{U_{n} : n=1,2,....\}$  is a <u>fundamental system for</u> x if
  - (1) Each U is open;
  - $(2) \quad \mathtt{U}_{\mathtt{n}} \; \cdot \; \mathtt{U}_{\mathtt{n}} \subseteq \mathtt{U}_{\mathtt{n}-1}, \; \overline{\mathtt{U}}_{\mathtt{n}} \subseteq \mathtt{U}_{\mathtt{n}-1}$

(3)  $x \in U_n$  for each n.

Proposition 2. (1) If  $\{U_n\}_{n=1}^\infty$  is a fundamental system for x,  $\bigcap\limits_{n=1}^\infty U_n$  is a closed semilattice containing x.

(2) Each neighborhood of x contains a fundamental system for x.

Proposition 3. If  $S \in \underline{CS}$ , then for  $x \in S$  and each fundamental system  $\lambda = \{U_n\}_{n=1}^{\infty}$ , let  $x_{\lambda} = \inf(\bigcap_{n=1}^{\infty} U_n)$ . Then if the fundamental systems are ordered by inclusion,  $x_{\lambda}$  is a net converging upwards to x.

Definition. y <<< x if whenever  $VA \ge x$ , there exists  $F^{\text{finite}} \subseteq A \text{ y } << VF.$ 

<u>Proposition 4</u>. Let  $S \in CS$ . Then  $y <<< \{ x \Leftrightarrow x \in (\uparrow y)^{\circ}$ .

Proof. E Straightforward Wallen.

 $\boxminus$  By Prop. 3  $x = \sup x_{\lambda}$  where  $\lambda$  is a fundamental system. Hence  $\exists \lambda = \{ U_n \}_{n=1}^{\infty}$  3  $y << x_{\lambda}$ 

For each  $U_i$  in  $\lambda$ , pick  $x_i \in U_i \uparrow y$  (we can do this if  $x \not\in (\uparrow y)^\circ$ ). Now

Hence 
$$w_i = \bigwedge_{j \geq i} x_j \in \overline{U}_{i-1} \subseteq U_{i-2}$$
.

Now w<sub>i</sub> is an increasing sequence which must converge up to some w. Since w<sub>i</sub>  $\in$  U<sub>i-2</sub>, w  $\in$   $\bigcap_{i=1}^{\infty}$  U<sub>i</sub>. Thus w $\geq$  x<sub> $\lambda$ </sub>.

Since  $y \ll x_{\lambda}$ ,  $\exists w_{j} \ni y \leq w_{j}$ . But  $w_{j} \leq x_{j}$  and  $y \not = x_{j}$ , a contradiction.

So x ∈ (↑y)°. □

Corollary  $\frac{5}{8}$ . If x << y << z, then x <<< z. Hence  $w \in \Lambda(S)$  if  $w = \sup\{x: x << w\}$ .