SCS 9: Commentary on Scott's Function Spaces

Karl Heinrich Hofmann
Technische Universitat Darmstadt, Germany, hofmann@mathematik.tu-darmstadt.de

Michael Mislove
Tulane University, New Orleans, LA USA, mislove@tulane.edu

Follow this and additional works at: https://repository.lsu.edu/scs

Part of the Mathematics Commons

Recommended Citation
Hofmann, Karl Heinrich and Mislove, Michael (1976) "SCS 9: Commentary on Scott's Function Spaces,"
Seminar on Continuity in Semilattices: Vol. 1: Iss. 1, Article 9.
Available at: https://repository.lsu.edu/scs/vol1/iss1/9
Hofmann and Mislove: SCS 9: Commentary on Scott's Function Spaces

SEMINAR ON CONTINUITY IN SEMILATTICES (SCS)

NAME(S) Hofmann and Mislove

DATE M D Y

7 7 76

TOPIC Commentary on Scott's function spaces

We quote an amplified version of a Lemma in GK (1.4)

Lemma A. Let $L \in CL$ and $k: L \rightarrow L$ a kernel function, i.e., a function satisfying

(i) $(\forall x, y) \ x \leq y \Rightarrow k(x) \leq k(y)$,

(ii) $k \leq L$,

(iii) $k^2 = k$.

Then $(i) \ T = k(L)$ is a complete lattice and the corestriction $k: L \rightarrow T$ is left adjoint to the inclusion function.

(ii) The following conditions are equivalent:

(iii) $k \in Cont$ where $Cont$ is the category of continuous lattices with Scott continuous functions. In other words,

$(\forall D) \ D$ up-directed in $L \Rightarrow \ \sup_L k(D) = k(\sup_L D)$.

(1) $t \in T \Rightarrow t = \sup_L \{ s \in T : s \leq_L t \} = \sup_L (\uparrow t \cap T)$

(2) $\leq_L = \cup \{ t \times T \}$.

(3) $T \in CL$.

(4) $T \in CL$.

(5) The inclusion $T \rightarrow L$ is in CL.

Notation. For $L \in CL$, we write $ker(k) \in [L \rightarrow L]$ for the set of all functions k satisfying (i) - (iv) (hence also (1)-(5). [See Scott, 3.11]

CL_L.

Our aim is, inter alia, to give an alternative proof of Scott's result that $[S \rightarrow T] \in CL$. The category of posets and order-preserving maps is called Poset.

In contrast, instead of $Poset(S,T)$ we will write $(S \rightarrow T)^c$.

Lemma 1. Let $S \in Poset$, $T \in CL$, then $(S \rightarrow T) \in CL$ relative to the structure induced from T^c.

Proof. $(S \rightarrow T)$ is closed in T^c in the CL-product topology, and clearly $T \in CL$. □

West Germany:

TH Darmstadt (Gierz, Keimel)
U. Tübingen (Mislove, Visit.)

England:

U. Oxford (Scott)

USA:

U. California, Riverside (Stralka)
LSU Baton Rouge (Lawson)
Tulane U., New Orleans (Hofmann, Mislove)
U. Tennessee, Knoxville (Carruth, Crawley)
DEFINITION 2. Let $S,T \in CL$. Define $k:(S \rightarrow T) \rightarrow (S \rightarrow T)$ by

$$k(f)(a) = \sup_x f(a \cdot x) = \sup_x \leq_T f(x).$$

(Note that k is well defined: $x \leq_T y$ will always imply $k(f)(x) \leq_T k(f)(y)$.)

PROPOSITION 3. Let $S,T \in CL$. Then $k \in \text{hom}(S \rightarrow T)$, and k preserves arbitrary sups.

Proof. (i) Suppose $f \leq g$ in $(S \rightarrow T)$. From Def. 2 it is clear that $k(f) \leq_T k(g)$.

(ii) Let $x \leq_T y$ in $(S \rightarrow T)$. We claim that $k(x) \leq_T k(y)$.

(iii) Let $x \leq_T y$ in $(S \rightarrow T)$ and set $h = \sup f \leq_T g$. Then $k(h)(x) = \sup f(x)$.

(iv) Let $\mathcal{D}(S \rightarrow T)$ and set $h = \sup f \leq_T g$. We claim that $k(h)(x) = \sup f(x)$.

PROPOSITION 4. Under the xx hypotheses of Prop. 3,

$$k(S \rightarrow T) = [S \rightarrow T].$$

Proof. a) Let $f \leq_T g$. Show that $k(f) \leq_T k(g)$. Let $D \leq_T S$ be up-directed and let $x = \sup D$. Clearly, $\sup k(f)(D) \leq_T k(f)(D)$. Now let $x \leq_T k(f)(D) = \sup f(x)$. By definition of \leq_T there is an $x' \leq_T D$ with $x \leq_T f(x')$. But $x' \leq_T x = \sup D$ it itself implies the existence of some $d \in D$ with $x' \leq_T d$. Thus $x \leq_T k(d)(x) \leq_T \sup k(f)(D)$.

b) Let $f \in [S \rightarrow T]$. Then $k(f)(a) = \sup f(a \cdot x) = f(a)$ since f preserves sups of up-directed sets.

COROLLARY 5. $[S \rightarrow T] \in CL$ (Scott).

Proof. From LEMMA A, Propositions 3,4.

We now further investigate the kernel function k on $(S \rightarrow T)$. So far we know that it preserves arbitrary sups (hence has a left adjoint $f \mapsto f^-$ which we will investigate presently) and that its corestriction $k(S \rightarrow T) \\ [S \rightarrow T]$ is a CL map which is left adjoint to the inclusion map $[S \rightarrow T] \rightarrow (S \rightarrow T)$. We need to understand clearly the \leq_T relation on $(S \rightarrow T)$.

In the following we allow ourselves a slight deviation from Scott's notation.

NOTATION 6. Let $S,T \in \text{Pos}$. Then $\leq_T (x,y) \in S \times T$. Then $(x \leq_T y)$ is defined by $(x \leq_T y) \equiv (x \leq_T y)$.

Note that $\leq_T (x,y) \in (S \rightarrow T)$ if $S,T \in CL$.

Let $F \leq S \times T$ be finite. Then
\((\forall t) = \sup \left\{ \left(\frac{t}{t} \right) : (s,t) \in \mathcal{I} \right\} \)

\((\exists t) = \sup \left\{ \left(\frac{t}{t} \right) : (s,t) \in \mathcal{I} \right\} \).

Hofmann and Mislove: SCS 9: Commentary on Scott's Function Spaces

Lem. 7. Let \(F \subseteq (S \rightarrow T)\). The basic neighborhoods of \(F\) in \((S \rightarrow T)\) in the Scott topology are obtained by taking any finite set \(F \subseteq S \times T\) such that \((\forall s \in S) f(s) < < g(s)\) for all \(s \in S\). (This is the "pointwise way below relation".)

Proof. Firstly, we note the

Sublemma. \((\forall s \in S) f \leq g\) iff \((\forall (s,t) \in \mathcal{I}) t \leq g(s)\).

Proof of the Sub lemma. \((\forall s \in S) f \leq g\) iff \((\forall x) (\forall (s,t) \in \mathcal{I}) (s,t)(x) \leq g(x)\). This clearly implies \((\forall x) (\forall (s,t) \in \mathcal{I}) (s,t)(x) \leq g(x)\). Conversely suppose that this latter condition is satisfied. Take \(x \in S\), \((s,t) \in \mathcal{I}\). Case 1: \(s \leq x\). Then \((s,t)(x) = t \leq g(s) \leq g(x)\).

Case 2: \(s \not\leq x\). Then \((s,t)(x) = 0 \leq g(x)\). Hence the former condition follows.

This proves the sub lemma.

Evidently \(f \in \mathcal{W}(F)\), and by the definition of the Scott topology, the family of sets \(\mathcal{W}(F) = \left\{ (s,t) \in \mathcal{I} : g : t \leq g(s) \right\}\) is a basis for this topology.

Note that \(\inf \mathcal{W}(F)\) dominates \((F)\). We follow an idea of Scott in proving

Lem. 8. If \(f \in (S \rightarrow T)\) then \(f = \sup \left\{ \left(\frac{t}{t} \right) : t \leq f(s) \right\}\).

Proof. It is clear. To prove the reverse, let \(t \leq f(s)\). Then \((t)(x) = t \leq f(s)\); hence \(\inf \left\{ \left(\frac{t}{t} \right) : t \leq f(s) \right\}\).

Proposition 9. Let \(S,T \subseteq \mathcal{C}L\), \(f,g \in (S \rightarrow T)\). Then the following statements are equivalent: \(1\) \(f \leq g\), \(2\) There is a finite \(F \subseteq S \times T\) with \(f(F) \leq g\).

(1) There are finite \(F,G \subseteq S \times T\) such that \(f \leq F\) and \(G \leq g\).

Proof. The equivalence of (1) and (2) follows from Lemmas 7 and 8. The equivalence of (1) and (2) is simple \(\mathcal{C}L\)-calculus (the interpolation property of \(\leq\)).

Lem. 10. \(k \left(\frac{t}{t} \right) = \left[\frac{t}{t} \right]\).

Proof. Let \(x \in S\). Then \(k(t)(x) = \sup \left\{ \left(\frac{t}{t} \right) : t \leq x \right\}\).

\(\left(\frac{t}{t} \right)(x) = t\) whence \(\sup \left\{ \left(\frac{t}{t} \right) : t \leq x \right\}\).

Then for any \(u \leq x\) with \(u \leq x\) with \(s \not\leq u\), hence \(\left(\frac{t}{t} \right)(u) = 0\). And so \(\sup \left\{ \left(\frac{t}{t} \right) : t \leq x \right\} = 0\).

Since \(k\) preserves \(\sup\) s we have

Corollary 11. Let \(S,T \subseteq \mathcal{C}L\), \(f,g \in (S \rightarrow T)\). Then the following statements are equivalent: \(1\) \(f \leq g\), \(2\) There is a finite \(F \subseteq S \times T\) with \(f \leq F\).
There are finite subsets \(F, G \subseteq S \times T \) such that \(F \leq [y] \leq [G] \leq \mathfrak{S} \).

Remark 11. (Scott) \(f \in [S \to T] \), then \(f = \sup_{[y]} [f] \cdot t \iff f = f(x) \).

Proof. Use Lemma 6 and apply \(k \), recall Lemma 10.

Proposition 11. Let \(S, T \subseteq \mathfrak{S} \), \(f, g \in (S \to T) \). Then \(f \ll g \) implies \(k(f) \ll k(g) \).

Proof. If \(f \ll g \), then there is a finite set \(F \) with \(f \leq \sup_{[y]} [f] \cdot t \). (Prop. 9). If we show \(k(F) \ll k(g) \) we are done. Since \(k \) preserves sups (Prop. 1), it is no loss of generality to assume \(f = \sum_t [x] \cdot t \). By the Sublemma in Lemma 7 \(f \ll g \) then means \(t \ll g \). We claim that \([x] \cdot t \ll g(t) \) for all \(t \). For this we must show that \(t \ll g \) implies \(t \ll k(g) \).

But \(t \ll g \) implies \(g(t) \leq \sup_{[y]} [g(y)] \cdot t \), and the hypothesis \(t \ll g \) then furnishes the claim.

Corollary 14. The left adjoint \(f \to \mathfrak{S} : [S \to T] \to [S \to T] \) of the corestriction of \(k \) is a \(\mathfrak{S} \)-embedding. Thus \([S \to T] \) is a \(\mathfrak{S} \)-object of \((S \to T) \).

Proof. As a left adjoint of a \(\mathfrak{S} \)-surjection, it is an \(\mathfrak{S} \)-preserving injections. Since \(x \) respects \(\ll \), its left adjoint is a \(\mathfrak{S} \)-morphism (see ATLAS).

We finally identify \(\mathfrak{S} \).

Proposition 15. Let \(f \in [S \to T] \). Then \(\mathfrak{S} \subseteq (S \to T) \) is defined by

\[
\mathfrak{S}(x) = \inf \{ f(t) : t \leq x \} = \inf \{ f(t) : t \ll x \}.
\]

Proof. Let \(\mathfrak{S} \subseteq (S \to T) \). We must show that \(\mathfrak{S} \subseteq \mathfrak{S} \iff \mathfrak{S} \subseteq k(g) \).

If \(f \leq k(g) \), then \(x \ll v \), then by assumption \(g(x) \leq f(v) \) which shows \(f \geq g \).

Conversely, assume \(f \geq g \). Take any \(x \ll v \), then \(g(u) \leq f(u) \leq f(x) \). So \(f \geq k(g) \).

Proposition 16. Let \(S, T \subseteq \mathfrak{S} \). Then the \(\mathfrak{S} \)-functor \(x : (S \to T) \to [S \to T] \) given by \(x(f) = k(f)^x \) is a \(\mathfrak{S} \)-retraction onto the set of all \(f \in [S \to T] \)

such that \(\mathfrak{S}(x) = \inf \{ f(t) : t \leq x \} \), \(\mathfrak{S}(x) = \inf \{ f(t) : t \ll x \} \).

Moreover, in \(r \in [S \to T] \).

Proof. It follows from the preceding that \(r \) is a \(\mathfrak{S} \)-retraction onto a sub-

object of \((S \to T) \) which is isomorphic to \(k \in [S \to T] \). Remains to identify the image of \(r \). If \(\mathfrak{S} \subseteq \mathfrak{S} \), then \(f = g \) for some \(g \subseteq [S \to T] \). Then \(\inf \mathfrak{S}(x) \)

\[
\mathfrak{S}(x) = \inf \{ f(t) : t \leq x \} = \inf \{ f(t) : t \ll x \} = \inf \{ f(t) : t \ll x \}.
\]

Conversely, suppose that \(r \) satisfies \((k) \), we claim \(r = k(f)^x \), and since \(f \leq k(g)^x \) (by adjunction theory) we have to show that \(k(f)^x \leq f(x) \) for any \(x \). Let \(a \ll k(f)^x (x) \). Since \(a \subseteq \mathfrak{S} \) and \(f(x) = \inf \{ f(t) : t \leq x \} \), we take an arbitrary \(y \) with \(a \leq y \), and we must show that \(a \leq f(y) \). From \(a \ll k(f)^x (x) \) we now have \(a \subseteq k(f)^x (y) \) so \(f(y) \). So there is an \(a \subseteq y \) with \(a \subseteq f(x) \). But \(f(x) \leq f(y) \) implying the claim.

https://repository.lsu.edu/scs/vol1/iss1/9
We note that the elements of $[S \rightarrow T]$ in $(S \rightarrow T)$ are characterized in a dual fashion by what have been done before:

Corollary 17. Let $S, T \in \mathcal{CL}$. Then a map $f \in (S \rightarrow T)$ is in $[S \rightarrow T] \subseteq (S \rightarrow T)$ iff

\[(f \succeq f) \Rightarrow \exists \xi \in T, \forall s \in S \quad f(s) = \xi(s) = \sup \{s \in S \mid f(x) \prec f(s)\} \text{ for all } s \in S.
\]

Proof. We recall $\sup(f \circ g) = k(f)(g)$. Thus $(f \succeq f)$ is equivalent to $k(f) \circ k = f$, and since k is a retraction, this is equivalent to $f \circ k = k \circ f$ (Prop. 4). \]

One may consider Corollary 17 as a characterization of the Scott continuous maps among the monotone maps $S \rightarrow T$. Recall that $\mathcal{K}(L)$ is the set of compact elements of L, i.e., elements characterized by $c \preceq c$.

We make a few comments on the compact elements in $(S \rightarrow T)$ and $[S \rightarrow T]$.

Proposition 18. Let $S, T \in \mathcal{CL}$ and $f \in (S \rightarrow T)$. Then the following are equivalent:

1. $f \in \mathcal{K}(S \rightarrow T)$
2. There is a finite set $F \subseteq S \times T$ such that $(s, t) \in F$ implies $t \in \mathcal{K}(T)$.

Proof. (1) \Rightarrow (2): Suppose $f \preceq f$. Then by Proposition 9, there is a finite set $G \subseteq S \times T$ such that $f \preceq (G) \preceq f$, whence $f \preceq (G) \preceq (G)$. We define

\[F = \{(s, t(s)) : \max \{t': (s', t') \in G \text{ for some } t' \text{ and } t(s) = \max \{t'' : (s'', t'') \in F \text{ with } t'' \leq s'' \leq s\}\}.\]

Sublemma: $(F) = (G)$.

Proof of the Sublemma. Note $(G) = \sup \{t(s) : (s, t) \in F\}. \quad \square$

First, we observe that for $(s, t) \in F$, we have $(F)(s) = t$. From $(F) = (G) \circ f \preceq f$, we have $(F) \preceq (G) \circ f$, hence $t = (F)(s) \preceq (G)(s) - t$, i.e., $t \in \mathcal{K}(T)$.

$(2) \Rightarrow (1)$: If $t \in \mathcal{K}(T)$, then $t \preceq t$, whence $(s) \preceq (s)$, and so $(s) \preceq (s)$. Since $\mathcal{K}(S \rightarrow T)$ is a sup-semilattice with $\mathcal{K}(S \rightarrow T)$, (2) follows. \]
Recall that the category \mathcal{Z} of compact zero dimensional semilattices and continuous semilattice morphisms is isomorphic to the category of (complete) algebraic lattices and maps preserving all infs and sup of subdirect components. (See [5, Duality]).

Proposition 20. Let $S, T \in \mathcal{CL}$. Then the following statements are equivalent:

1. $T \subseteq S$.
2. $T \Rightarrow S$.
3. $(S \Rightarrow T) \subseteq S$.
4. $[S \Rightarrow T] \subseteq S$.

Proof. (1)\Rightarrow(2) is clear (Consider the \mathcal{CL}-topologies). (3)\Rightarrow(4) By Prop. 13, k preserves infs, and after Prop. 13, k preserves compact elements.

(4)\Rightarrow(1): T is a \mathcal{CL}-retract of $[S \Rightarrow T]$ under the map $f \mapsto f(0)$.]

Scott raised the question whether $\ker(S)$ was in \mathcal{CL} for any \mathcal{CL}-object. We wish to comment on this question. The inclusion map $\ker(S) \rightarrow [S \Rightarrow S]$ preserves infs, so that $\ker S$ is a complete lattice in its own right, and we know from Lemma 1 that $\ker(S) \in \mathcal{CL}$ iff

(6) For all $f \in \ker S$ we have $f = \sup \{g \in \ker S : g \ll [S \Rightarrow S] \}$.
LEMMA 21. \(I_{\gamma}^x = I_{\alpha}^x \cdot I_{\gamma}^x \).

Proof. 1) \(I_{\gamma}^x \cdot I_{\gamma}^x = I_{\gamma}^x \cdot I_{\gamma}^x \).
2) \(I_{\gamma}^x \cdot I_{\gamma}^x = I_{\gamma}^x \cdot I_{\gamma}^x \).

LEMMA 22. Let \(F \subseteq S \times S \) be finite. Then there is some \(H \subseteq S \times S \) finite such that \([F][G] = [H] \).

Proof. We have \([F][G] = (\sup_{(a,b) \subseteq F} [a]^u) \cdot (\sup_{(u,v) \subseteq G} [u]_v) = \sup \{ [a]^u : (a,b) \subseteq F, (u,v) \subseteq G \} \) for \(H = \{ (u, [a]^u(v)) : (u,v) \subseteq F \} \) by LEMMA 21.

PROPOSITION 23. Let \(S \subseteq G \) and \(F \subseteq S \times S \) finite. Then there is a natural number \(n = n(F) \) and a finite set \(F' = F'(F) \subseteq S \times S \) such that

(i) \([F']^n = [F'] \)
(ii) \([F']^2 = [F'] \).

Proof. Let \(X \) be the finite set \([F](S) \). For each \(x \in X \) we have \(y = [F](x) \), and by the finiteness of \(X \) for each \(x \) there is a natural number \(n(x) \) such that \([F']^n(x) = [F'](x) \). Let us define \(n(x) = \max \{ n(x) : x \in X \} \) and take \(s \in S \). Then \(x = [F](s) \in X \) where \([F']^n(x) = [F']^n(x) = [F']^n(x) \cdot n(x) + 1 = [F']^n(x) \cdot n(x) \).

By Lemma 22 (and induction) there is some finite set \(F' \subseteq S \times S \) such that \([F']^n = [F'] \). Then (i) (and (ii)) is a consequence of (ii).

COROLLARY 24. Let \(S \subseteq G \). For \(f \in \ker(S) \) the following statements are equivalent:

1. \(f = \sup \{ g \in \ker(S) : g \ll f \} = \sup \{ f \cap \ker(S) \} \).
2. \(f = \sup \{ [F] \subseteq \ker(S) : F \subseteq S \times S \) finite, \([F] \ll f \} \).

Proof. Trivially (2) \Rightarrow (1). In order to prove (1) \Rightarrow (2), let \(g \ll f \).

By Corollary 11, there is a finite \(G \subseteq S \times S \) such that \(g \ll [G] \ll f \).

Let \(F = G' \) according to Prop. 23. Then \(g \ll [G]^n = [F] \ll [G] \ll f \), and \([F] \subseteq \ker(S) \) by Prop. 23.
The following is an observation which is dual to one made by Scott.

PROPOSITION 25. Let \(S \subseteq \text{Cl} \) and \(f \in \ker S \). Set \(f' = \sup_{g \in \ker S} g \leq f \).

For each \(g \leq f \), we have \(g[S] \subseteq \text{Cl} \). Let \(\varphi : \text{Cl} \to \text{Cl} \) be the corestriction of \(g \). Now suppose \(g \leq h \ll f \). Then \(g[S] \subseteq h[S] \); let \(\varphi : h[S] \to g[S] \) be its left adjoint, which is in \(\text{Cl} \). Sim. For each \(g \leq f' \), there is a commutative diagram:

\[
\begin{array}{ccc}
S & \xrightarrow{f'} & f'(S) \\
\downarrow{\varphi} & \nearrow{\gamma_g} & \\
g(S) & \xrightarrow{\gamma_f} & f'' \text{ corest } f
\end{array}
\]

Thus there is a natural morphism \(\varphi : f'(S) \to \lim_{g \leq h \ll f} (g[S], \varphi : g[S]) \).

This map is an isomorphism.

Proof. The relation \(g[S] \subseteq h[S] \) is proved by Scott (p.121). Hence the inverse system \((g[S], \varphi : g[S]) \) is well defined as is its \(\xi \) limit in \(\text{Cl} \). All maps \(\varphi : g[S] \) are surjective, hence so are all \(\gamma_g \). It follows that \(\gamma_g \) is surjective. We must show that \(\gamma_g \) separates points. Suppose that \(a, b \in S \) are such that \(f(a) \neq f(b) \). Then find an \(a \ll f \) with \(a \neq f(a) \) but \(a \ll f(b) \). Going back to the definition of \(f' \) as the sup of the up-directed set of all \(g \) with \(g \ll f \) we find a \(g \ll f \) in \(\ker S \) such that \(a \ll g(t) \). Then \(g(a) \neq f(a) \) implies \(f(a) \neq f(t) \). Thus \(g(a) \neq g(t) \), which implies \(\gamma_g f(a) \neq \gamma_g f(t) \).

COROLLARY 26. If the conditions of Corollary 24 are all satisfied, then \(f(S) \neq 2 \).

Proof. We apply Prop. 25 to condition (2) in Coroll. 24 and conclude that \(f(S) \neq 2 \).

LEMMA 27. Let \(S \subseteq \ker S \) such that \(f(S) \neq 2 \). Then

\[
f = \sup \{ [^\circ] : o \in K(f(S)) \},
\]

where \(\hat{k} \).

Proof. \(f = \sup \{ [^\circ] : o \in K(f(S)) \} \). But \([^\circ] \) subst. if \(\circ \leq 2 \) and \(\circ \) otherwise \(\hat{g} \), since \(\circ \subseteq K(f(S)) \subseteq K(S) \), because the inclusion \(f(S) \subseteq \text{Cl} \) respects \(\subseteq \) as a \(\text{Cl} \) map (Lem. A). But \(\hat{f} \) the corestriction \(f : S \to f(S) \) is left adjoint to the inclusion, whence \(\circ \subseteq 2 \) iff \(\circ \subseteq f(2) \), so that \([^\circ] = [^\circ] \circ f = \hat{f} \circ [^\circ] \).

https://repository.lsu.edu/scs/vol1/iss1/9
But on any 2-object f we clearly have $1_f = \sup\{[c]_f : c \in K(S)\}$, and β preserves arbitrary sups. Thus $\sup\{\beta f(a) : c \in K(f(S))\}$ = $\beta(\sup\{f(a) : c \in K(f(S))\})$.

A compact semigroup is dimensionally stable if its topological dimension dominates that of all of its quotients.

THEOREM I. Let $S \leq CL$. Then the following statements are equivalent:

1. $\ker S \leq CL$ (Scott's parlance: S is a continuous lattice).

2. S is a dimensionally stable compact zero-dimensional semilattice.

3. S is a (complete) algebraic lattice such that the set $K(S)$ of compact elements does not contain any non-degenerate order dense chain.

4. $\ker S < 2^0$ (ker S is a complete algebraic lattice).

Proof. (1) is equivalent to (3) preceding Lemma 21. Corollary 11, Proposition 25 and Lemma 27 then show that (1) if

$1'$ For all $f \in \ker S$ the image $f(S)$ is closed.

Evidently, (2) implies $(1')$. Conversely suppose that S is not dimensionally stable. Then there is a CL-sequence $\mathcal{S} : S \rightarrow 1 = \{0, 1\}$. Let $d : I \rightarrow S$ be its right adjoint and set $f(d) : S \rightarrow S$, $[f] = g$ d. Then $ \beta f = \beta g$, and since $\mathcal{S} \in \text{Cont}$, then $\mathcal{S} \in \text{Cont}$. Thus $\mathcal{S} \in \ker S$, but $f(S) = 1$, so

$(1')$ is violated.

The equivalence of (2) and (3) is not entirely trivial; it was proved in DIMENSION RAISING (Hofmann, Mislove, Snelbecker, Math. Z. 135 (1971) 1–16).

$4' \Rightarrow 1'$ is trivial. If (1) holds then for each $f \in \ker S$ we have $f = \sup\{[c]_f : c \in K(f(S))\}$ and all $[c]_f$ are compact in $\ker S$.

In another note (to emanate from Darmstadt) it is shown that many of the set-theoretical results (1) establish a few axioms describing basic properties of \leq and occurring in a letter from Scott to Hofmann of 3–30–70, pp. 7–8 (being attributed to Mike Smyth) is order isomorphic to $\ker PL$ where PL is the \leq-object of lattice ideals of L considered in ATLAS. The questions whether the totality of \leq-relations on a complete lattice L is a continuous lattice is then answered in the following.

COROLLARY 23. Let L be a complete lattice. Then $\ker PL \leq CL$ iff L does not contain any non-degenerate order dense chains.

Proof. We have $KPL = (L, \vee)$, where (L, \vee) is the discrete sup semilattice underlying L. Since the assertion then follows from THEOREM I.
One might ask the question which \(\mathbb{Z} \)-objects can occur as \(\ker S \).

Proposition 29. Let \(S \in \mathbb{Z} \) be dimensionally stable. Then \(\ker S \) is dimensionally stable.

Proof. We must show that no chain \(C \) in \(K(\ker S) \) can be order dense.

If \(f \in K(\ker S) \), then \(f \preceq \bar{f} \) and so by Lemma 27 there are elements \(f_1, \ldots, f_n \) such that \(f \leq f_1 \lor \ldots \lor f_n \vartriangleleft f \). Hence

\[
f = \sup_3 \left[\frac{\left[f_i \right]}{n} \right].
\]

Thus \(f(S) \) is finite. If now \(C \) is a chain in \(K(\ker S) \) then \(f \leq g \leq h \) in \(C \) is equivalent to \(f(S) \leq g(S) \leq h(S) \).

Since \(h(S) \) is finite, there are only finitely many \(g \) with \(f \preceq g \preceq h \). This shows that \(C \) cannot be order dense. \(\Box \)

We note in conclusion that \(\ker(S) \) is isomorphic to the lattice of \(\mathbb{Z}^{\text{op}} \)-subobjects of \(S \) and thus isomorphic to \(\text{Cong}(S)^{\text{op}} \), the opposite of the lattice of closed (\(\mathbb{Z}^{\text{op}} \)) congruences of \(S \). Thus \(\text{Sim}(S) \) is always an object.