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Abstract
How words are associated within the linguistic environment conveys semantic content; however, different contexts induce 
different linguistic patterns. For instance, it is well known that adults speak differently to children than to other adults. We 
present results from a new word association study in which adult participants were instructed to produce either unconstrained 
or child-oriented responses to each cue, where cues included 672 nouns, verbs, adjectives, and other word forms from the 
McArthur–Bates Communicative Development Inventory (CDI; Fenson et al., 2006). Child-oriented responses consisted 
of higher frequency words with fewer letters, earlier ages of acquisition, and higher contextual diversity. Furthermore, the 
correlations among the responses generated for each pair of cues differed between unconstrained (adult-oriented) and child-
oriented responses, suggesting that child-oriented associations imply different semantic structure. A comparison of growth 
models guided by a semantic network structure revealed that child-oriented associations are more predictive of early lexical 
growth. Additionally, relative to a growth model based on a corpus of naturalistic child-directed speech, the child-oriented 
associations explain added unique variance to lexical growth. Thus, these new child-oriented word association norms provide 
novel insight into the semantic context of young children and early lexical development.

Keywords Language · Learning · Semantics · Word associations

Early language acquisition involves a dynamic interplay 
between children and their environment that changes as they 
develop (McClelland et al., 2010; Smith et al., 2018; Smith 
& Thelen, 2003; Thelen & Smith, 1996). Previous studies 
have demonstrated that the number and diversity of words in 
a child’s environment predicts language outcomes (Hart & 
Risley, 1995; Hoff, 2003; Huttenlocher et al., 2010). Further-
more, how words relate within the environment—their asso-
ciative and semantic structure—influences early language 
acquisition. Words that are central in the environment or are 
related to many words that are currently known are learned 
earlier (Dubossarsky et al., 2017; Hills, 2013; Hills et al., 
2009). Thus, investigations of early word learning rely on 

accurate descriptions of both the composition and seman-
tic content of the child linguistic environment. The current 
study evaluates a method of measuring child-oriented lan-
guage environments based on adult-generated word associa-
tions and tests whether these data strengthen computational 
models of early word learning.

Child‑directed speech differs 
from adult‑directed speech

Child-directed speech is grammatically and phonologically 
simpler than speech directed at other adults. It consists of 
more nouns than pronouns or verbs (Ferguson, 1964; Hayes 
& Ahrens, 1988; Soderstrom, 2007) and has more word 
repetitions (Hills, 2013), all delivered with unique prosody. 
Child-directed speech also has distinctive distributional 
qualities: child-directed speech is more likely to present 
highly associated words in close proximity and favor words 
that appear in many contexts (i.e., words with high contex-
tual diversity; Hills, 2013). Relatedly, how words co-occur 
helps shape their meaning and influences word processing 
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in young children (e.g., Willits et al., 2013). Such statistical 
linguistic properties motivate natural language processing 
(NLP) techniques that estimate semantic structure from lit-
erary and linguistic corpora. While child-directed speech 
has been a focus of research for decades, our understand-
ing of the semantic content of child-directed speech is lim-
ited. An emerging body of research is beginning to exam-
ine the unique features of the visual world in which young 
children interact and learn. For instance, young children 
experience statistical regularities in their visual fields that 
have meaningful implications for early lexical development 
(e.g., Clerkin et al., 2017). Additionally, like child-directed 
speech, adults also influence young children’s visual learn-
ing environments to promote visually rich learning experi-
ences (McQuillan et al., 2020). The semantic environment 
is multimodal and consists of associations of all kinds, not 
just the structure of spoken language.

Due to limitations on the kinds of tasks young children 
can engage with, their small (or nonexistent) productive 
vocabulary, and the high cost associated with transcribing 
recordings, existing data that provides insight into the child 
semantic environment is limited. This has led researchers 
to substitute estimates of the adult semantic environment 
as a proxy for the child semantic environment, despite the 
general appreciation that there may be important differences. 
For example, previous studies have found that the semantic 
structure conveyed by adult free-association norms are pre-
dictive of word learning patterns in children younger than 
30 months of age (e.g., Bilson et al., 2015; Hills et al., 2009; 
Steyvers & Tenenbaum, 2005).

However, it is well established that children preferen-
tially attend to speech that is directed towards them, and 
early language learning is disproportionately influenced by 
child-directed speech rather than language that is merely 
overheard (Shneidman & Goldin-Meadow, 2012). Therefore, 
unconstrained free-association norms likely yield estimates 
of semantic structure that differ in important ways from the 
environment that children develop in and learn from. Those 
studying child language acquisition appreciate that more 
age-appropriate semantic norms may be critical to enhanc-
ing our understanding of early lexical knowledge (e.g., 
Dubossarsky et al., 2017). In the current study, we evalu-
ate whether this gap may be reduced by appealing to word 
association data collected from adults after establishing a 
child-centered context.

Estimating semantic structure 
from observable behavior

Semantic structure cannot be observed directly, so it is 
inferred from behavior that can be. For instance, word asso-
ciations generated by participants that are presented with 

a cue word and asked to report the first related word or a 
set of words that come to mind reflect multiple kinds of 
similarity that can be understood as semantic (De Deyne & 
Storms, 2008; Nelson et al., 1998; Nelson et al., 2000). The 
University of South Florida (USF) Free Association Norms 
(Nelson et al., 2004) have been used to estimate the relation-
ships among early-acquired words as an associative network. 
Prior work indicates that networks constructed from adult-
centric word association norms can predict lexical growth 
better than random growth models (e.g., Hills et al., 2009) 
and models that are informed by lexical metrics such as word 
frequency and phonotactic probability (Bilson et al., 2015; 
Hills et al., 2009; Steyvers & Tenenbaum, 2005). More 
recently, the Small World of Words project (SWOW) pub-
lished word associations for over 12,000 English cue words 
under a three-response protocol (De Deyne et al., 2019). The 
three-response protocol supports semantic networks that are 
more predictive of adult judgments of semantic relatedness 
and lexical access and implies a more densely connected 
lexical network (De Deyne et al., 2013; De Deyne, Perfors, 
& Navarro, 2016a).

Another common way of estimating semantic structure 
within large linguistic environments is by applying natu-
ral language processing to large text corpora of published 
writing or transcriptions from other media. While children 
produce precious little content of this kind themselves, thou-
sands of transcripts from adult–child interactions have been 
curated and shared via the Child Language Data Exchange 
System (CHILDES; MacWhinney, 2000). These interactions 
were collected during various tasks including toy play, book 
reading, and unstructured conversations that were recorded 
in the home or lab environment.

Despite being orders of magnitude smaller than text 
corpora commonly used to model adult semantic structure, 
associative structure present in CHILDES (defined by aggre-
gating word co-occurrence statistics) can also be used to 
define networks that are able to predict child word learning 
patterns (Hills et al., 2010; Jimenez & Hills, 2017). Bas-
ing models of the child semantic environment on transcripts 
available through CHILDES has the advantage of deriving 
directly from samples of child language environments (albeit 
importantly limited ones). Computation models of the North 
American English language sample in CHILDES are capa-
ble of extracting a remarkable amount of thematic and taxo-
nomic semantic structure (Huebner & Willits, 2018).

However, language transcripts have the disadvantage of 
being a less direct measure of semantic association because 
co-occurrence statistics are influenced by the syntax of the 
language (not just its content). Additionally, many words 
that two- or three-year-old children would be expected 
to know are spoken relatively rarely in CHILDES—even 
familiar words with early ages of acquisition (AoA) such as 
those included on the McArthur–Bates Child Developmental 
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Inventory vocabulary checklists. For instance, within the 
adult utterances in the CHILDES transcripts, some words 
were produced frequently but have late AoA (“we” and 
“think” occur 32,417 and 17,786 times, respectively, in 
our sample of CHILDES transcripts but are not typically 
produced until month 30), while others are produced infre-
quently yet have early AoA (“banana” and “bye” are pro-
duced 720 and 1789 times, respectively, in our sample of 
CHILDES transcripts but are typically produced by month 
16). It is possible that some of these surprisingly low fre-
quencies in the CHILDES database are related to the types 
of tasks that the adults were asked to engage in while the 
adult–child language samples were recorded. As a result, 
although valuable, CHILDES likely only offers us a lim-
ited picture of the child’s language environment relative to 
the range of linguistic input that a child experiences across 
various contexts throughout a typical day (Tamis-LeMonda 
et al., 2017). Notably, the vast majority of these language 
samples were collected before tools like LENA enabled child 
language researchers to collect day-long recordings to esti-
mate a child’s language environment. The Language ENvi-
ronment Analysis (LENA) tool is a wearable device that 
audio-records and automatically analyzes a child’s vocaliza-
tions and the language that the child hears. Although highly 
useful, it is important to note that LENA only quantifies 
the number of words and conversational turns; it does not 
transcribe the actual words that are recorded, which would 
require significant transcription efforts (LENA Research 
Foundation, 2015).

Lastly, while human development and the full complex-
ity of the environment in which a child acquires language 
may interact to help compensate for such word frequency 
effects (Smith et al., 2018), transcripts lack such multimodal 
depth. Nevertheless, child-directed speech from CHILDES 
provides an important window into the child language envi-
ronment and is a rich target for computational analysis.

Word learning within structured semantic 
environments

While acquiring language, children do not learn words at 
random. Words that occur more frequently and appear in 
multiple contexts tend to be learned earlier, but mere expo-
sure is not the only driving factor. Advancements in graph 
theory have allowed researchers to examine word learn-
ing using network analysis of semantic similarity structure 
(Beckage et al., 2011; Dubossarsky et al., 2017; Engelthaler 
& Hills, 2017; Hills et al., 2009, 2010; Jimenez & Hills, 
2017; Steyvers & Tenenbaum, 2005). Within a semantic 
network, words are represented as nodes, and words that 
are semantically related are connected by links. Semantic 
networks, like the Internet and most biological and social 

networks, exhibit a small-world structure (Barabási, 2016; 
Beckage et al., 2011; Cancho & Solé, 2001; Salathé et al., 
2010): a small number of nodes have a high degree (many 
links with other nodes), while most have a low degree (few 
links with other nodes; Humphries & Gurney, 2008; Watts 
& Strogatz, 1998). Most paths between nodes that require 
more than one link will tend to pass through one of the high-
degree “hub” nodes.

How network structure informs growth in semantic net-
works is unresolved. A major point of distinction between 
hypotheses is whether it is most important to consider the 
semantic structure within a child’s current vocabulary or 
the semantic structure of the environment the child engages 
with, including words they do not currently know. If the 
emphasis is on the structure of the current vocabulary, new 
words may be learned via preferential attachment (Steyvers 
& Tenenbaum, 2005): the next word that the child will learn 
is more likely to be associated with a known word that is 
central within the current vocabulary than with a known 
word that has few associations within the vocabulary. Con-
versely, if the emphasis is on the structure of the environ-
ment, new words may be learned by preferential acquisition 
(Hills et al., 2009): the next learned word is more likely to 
be associated with many other words in the environment, 
regardless of what words are currently known. A third 
alternative, dubbed the lure of the associates, would pre-
dict that the next learned word is more likely to be associ-
ated with many known words, regardless of the semantic 
structure within the current known vocabulary or among the 
words in the environment remaining to be learned. Figure 1 
depicts each of these growth models with a simplified lexi-
cal network.

Determining which of these growth hypotheses is most 
in line with the typical development of lexical knowledge 
(vis-à-vis AoA norms) is relevant to theories of learning and 
cognition. Growth via the lure of the associates is consist-
ent with a learning process that is insensitive to the aggre-
gate structure of the environment as a whole and instead is 
sensitive only to how often words in the environment tend 
to co-occur with familiar words and concepts. Growth via 
preferential attachment is consistent with a learning process 
that is leveraging internal conceptual structure to learn from 
the environment and assimilate new knowledge. While the 
notion of internal structure here is too vague to truly map to 
a single theoretical perspective, it is particularly consistent 
with a constructionist “child-as-theorist” take on learning 
(Gopnik et al., 1999; Gopnik & Meltzoff, 1998; Waxman & 
Gelman, 2009). Conversely, growth via preferential acquisi-
tion is consistent with a distributional “child-as-analyst” take 
on learning (McClelland et al., 2010; Saffran et al., 1996; 
Wojcik & Saffran, 2013). However, although these theoreti-
cal connections can be made, the alignment between net-
work growth profiles and the theoretical perspectives is not 



 Behavior Research Methods

1 3

transparent, and the theoretical perspectives themselves are 
not mutually exclusive (Huebner & Willits, 2018; Waxman 
& Gelman, 2009).

Current study

We have identified two important challenges for the study 
of child language acquisition, namely that (1) it is influ-
enced by the semantic structure in the child’s environment 
and (2) insight into the child’s semantic environment is hard 
to obtain. We also note that child-directed speech differs 
in many critical ways from general language use and that 
child-directed speech is the most heavily weighted input for 

early language development. In other words, adults produce 
the language that constructs the child language environ-
ment through a context-sensitive adaptation of their usual 
language.

The current study therefore considers whether a child-
oriented context can be induced for adult participants with-
out involving any children. We adapted the instructions for 
the word association task to direct participants to respond 
as if playing an association game with a toddler (i.e., a 2- 
to 3-year-old). We first assess whether the distribution of 
responses differs when compared to a task administered with 
conventional instructions but involving the same cue words 
drawn from the McArthur–Bates Communicative Develop-
ment Inventory (CDI, Fenson et al., 2007). We collected 
our own control data, rather than drawing from the USF or 
SWOW free association databases, to ensure maximal cov-
erage of words on the CDI and to make responses from the 
two conditions as comparable as possible. We then assess 
the semantic structure implied by the child-oriented and 
unconstrained response profiles for each word, and whether 
they differ. Finally, we consider whether this variation on 
the word association task provides unique insight into how 
young vocabularies grow by comparing network growth tra-
jectories based on association networks derived from child-
oriented and adult-oriented norms.

Methods

Word association participants

Participants were recruited using Amazon Mechanical Turk 
and Prolific, which are both online crowd-sourcing plat-
forms. Before data collection began, approval was granted 
by Louisiana State University’s Institutional Review Board. 
Eligible individuals were native English speakers, 18 years 
or older, and currently living in the USA. These criteria 
could be partially enforced by the platforms themselves, 
which require age, language, and location information to 
register. The native English requirement was announced in 
the title of the job ad, and our task began by asking peo-
ple to confirm that their native language is English. Non-
native English speakers were not allowed to proceed with 
the experiment. Participants were required to report their age 
along with other demographic information after the primary 
task. The tasks were only available to participants residing 
in the United States.

Participants took 13 minutes and 20 seconds on average 
to complete the study and were compensated $3 ($13.50/
hour average rate). Individuals could participate multi-
ple times, each time completing a different word list or 
experimental condition but were prevented from respond-
ing to the same words in the same condition more than 

Preferential
Attachment

Lure of the
Associates

Preferential
Acquisition

Fig. 1  Depiction of network growth under three growth models. In 
our analyses, nodes correspond to words. The full set of nodes cor-
respond to all the words in the semantic environment, and the edges 
(both solid and dotted) reflect all the associations that exist in the full 
network (i.e., in the environment). Black nodes represent the words 
that are currently known (i.e., the vocabulary at month m). Colored 
nodes indicate the word that is most likely to enter the growth model 
by month m + 1 according to each growth model: preferential attach-
ment (red), lure of the associates (blue), or preferential acquisi-
tion (green). Grey nodes indicate other words in the environment. 
Solid edges connect words in the current vocabulary; dashed edges 
indicate associations between the three candidate words and the 
words in the current vocabulary; dotted edges indicate assocations 
between unknown words and candidate words. Edges are colored to 
reflect their relevance to each growth model. Preferential attachment 
expects that the red node will be acquired because it is associated 
with a known word that has degree 5 with respect to other words in 
the current vocabulary, while the green node is associated with just 
one known word with degree 1 (with respect to known words) and 
the blue node is associated with 3 nodes with a net degree of 4 (with 
respect to known words). Lure of the associates expects that the blue 
node will be acquired because it is associated with many known 
words, while the red and green nodes are associated with only one 
known word each. Preferential acquisition expects that the green 
node will be acquired because it is associated with a large number of 
known and unknown words: it has degree 5 with respect to the full 
environment, while the red nodes had degree 1 and the blue degree 3. 
Note that for this example edges are treated as undirected for simplic-
ity. Subsequent analyses are applied to directed networks, and growth 
models are defined in text with respect to indegree and outdegree as 
appropriate
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once. We recruited 1864 individuals to complete 4101 
experimental sessions divided among two task conditions, 
which we will refer to as adult-oriented (nadult = 2047) 
and child-oriented (nchild = 2054) as described below. The 
participants varied widely in age, levels of income, aca-
demic achievement, and race. Participants were 48.5% 
male, and males contributed 55.4% of the responses (they 
were more likely to participate more than once). The par-
ticipants predominantly reported being White/Caucasian 
(71.9%) and non-Hispanic (92.5%). All adult-oriented 
respondents were recruited using MTurk (620 partici-
pants completing 2047 sessions), while child-oriented 
respondents were recruited using both platforms (MTurk: 
311 participants completing 993 sessions; Prolific: 933 
participants completing 1061 sessions). Responses were 
pooled across recruitment platforms—although there are 
interesting differences in demographics and engagement 
with the platform between the MTurk and Prolific com-
munities, they did not manifest in significant differences 
in association responses across platforms.

Data were excluded following the criteria enforced in the 
Small World of Words study (De Deyne et al., 2019). Par-
ticipants who provided >30% multi-word responses, >40% 
non-English responses, or >20% nonunique responses were 
removed from the dataset. Participants also were removed 
if they provided off-task responses to an attention-monitor-
ing question that appeared within the task. We also visu-
ally inspected participant responses for obviously off-task 
responses that might evade these criteria (such as someone 
writing out an English sentence one word at a time). Behav-
ior of this kind was rare, and such sessions were excluded 
from the numbers reported above.

Word association tasks

On each trial, a single word was presented at the top of 
the screen, above three vertically arranged text boxes. 
Participants were instructed: “Type the first word that 
comes to mind when reading this word. Press TAB to type 
a second and third word that comes to mind. Click the 
‘Next’ button to proceed to the next trial.” Additionally, 
they were explicitly instructed to respond only to the cue 
word and to not “chain” responses (i.e., provide an associ-
ate of a previously provided response) and to provide sin-
gle-word responses without abbreviation. Emphasis was 
put on reporting the first words that came to mind, rather 
than seeking a “best” answer. Additionally, one question 
appeared within the task that monitored for participant 
engagement (“List the colors of the American flag.”). 
Participants who failed to respond with some combination 
of “red”, “white”, and “blue” were excluded. The task 
was implemented and presented to participants online 

using Qualtrics software (February–July 2019. Copy-
right © 2020 Qualtrics. Qualtrics and all other Qualtrics 
product or service names are registered trademarks or 
trademarks of Qualtrics, Provo, UT, USA. https:// www. 
qualt rics. com.)

The child-oriented condition was created by providing a 
cover story: “Imagine you are playing a game with a toddler 
(a 2- to 3-year-old child). In this game you draw a card with 
a word on it and say the first 3 words that come to mind. 
Over the course of the game, you will draw many cards and 
expose the toddler to many related words. Each of the fol-
lowing screens is like a card draw. You should type the first 
three related words you would say to the toddler. After fill-
ing in the first box, you can press TAB to move to the next 
box. Press the ‘Next’ button to proceed to the next trial.” To 
further orient participants, the instructions were presented 
alongside an image of a male toddler, so those who are not 
around children often might have a better intuition about 
the age we were targeting. This child’s face was present 
on the screen throughout the experiment as a reminder of 
the instructions. The same image was used for all partici-
pants. As with the unconstrained version of the task, the 
child-oriented condition contained an item to monitor for 
participant engagement in the task (“List the colors of the 
American flag.”).

Word association cues

Cues were selected from the McArthur–Bates Communi-
cative Development Inventory (CDI) Words and Sentences 
form (Fenson et al., 2007), which is intended for toddlers 
between 16 and 30 months of age and consists of 680 items 
classified as words. From these, we excluded three items 
that refer to idiosyncratic proper nouns (“babysitter’s name”, 
“child’s own name”, “pet’s name”) and four short phrases 
(“give me five!”, “gonna get you!”, “so big!”, “this little 
piggy”). Other short phrases, such as “a lot”, “all gone”, and 
“next to”, were retained. To target the intended meaning on 
the CDI, we included disambiguating cues (e.g., “chicken 
[food]”, “chicken [animal]”).

The 672 cue words were split randomly into 20 lists that 
were comprised of 30–35 words with no coherent theme. 
Within each group, the words were sequenced so that neigh-
bors were not semantically similar. These steps were taken 
to eliminate dependence among cues. For example, “PIG” 
followed by “SHEEP” may establish a “farm” context, while 
“BED” followed by “SHEEP” may establish a “sleep” con-
text. A participant would be presented the sequence in for-
ward or reverse order—this was done in case responses to 
words earlier in the list received systematically different 
responses than those later in the list (e.g., due to fatigue). 

https://www.qualtrics.com
https://www.qualtrics.com
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Thus, at least 50 participants were randomly distributed to 
each condition (unconstrained or child-oriented), cue list 
(1–20), and sequence order (forward or reverse). Responses 
were collapsed across forward- and reverse-ordered lists.

Response data were manually screened for nonsen-
sical responses as the data were being collected. The 
retained participants always provided three reasonable 
responses to each cue. At the end of data collection, each 
cue in the adult-oriented condition had three responses 
from at least 100 participants, and each cue in the child-
oriented condition received three responses from at least 
97 participants (402 cues had 100 participants, 137 had 
99, 101 had 98, and 32 had 97). Responses were then 
cleaned by forcing all responses to lower case, remov-
ing extraneous white space, and correcting cases where 
a letter was repeated more than twice consecutively 
(“loook” ➔ “look”). Following this, and after observing 
that responses did not significantly differ by sequence 
order, data were aggregated. In cases where more than 
100 participants were recruited, only the first 100 were 
retained for analysis.

Child‑directed natural language corpus

Language transcripts from the North American section of 
the CHILDES database were filtered and selected accord-
ing to the child’s age. Transcripts with children between 
the ages of 3 and 60 months were selected when the role 
of the speaker was “Adult”, “Father”, “Mother”, “Aunt”, 
“Uncle”, “Grandmother”, “Grandfather”, “Teacher”, 
“Babysitter”, “Nurse”, “Doctor”, “Clinician”, or “Thera-
pist” (all adult caretaker roles). Given that transcripts have 
been contributed from various labs, slight variations in 
coding appear; therefore, we carefully assessed the tran-
scripts and codes to appropriately resolve inconsistencies. 
During transcript processing, we tokenized words (split 
on spaces) and regularized spellings so that differently 
spelled words were converted to the same form. Nouns and 
verbs also were morphologically parsed (e.g., splitting plu-
ral and possessive markers, splitting past-tense markers). 
An automatic text stemming program (textstem for R) 
was used to generate a dictionary of words and lemmas 
(Rinker, 2018) that was then manually reviewed and cor-
rected (e.g., preventing “disgusting” from being stemmed 
to “gust”). Next, common phrases like “thank you”, “all 
gone”, and “go potty” were tokenized (i.e., reduced from 
two adjacent tokens to a single token). Common variants 
were regularized (“ya” to “you”); nonwords, proper nouns, 
and instances of babbling or signing were replaced with 
special tokens (e.g., “__childinvented__”, “__name__”, 
“__babble__”). Following these cleaning procedures, we 
were left with 4.5 million tokens.

Estimating age of acquisition from language 
production norms

For the purposes of modeling lexical growth, we estimated 
age of acquisition (AoA) from production norms established 
by a sample of 5520 American English-speaking 16- to 
30-month-old children whose parents completed the CDI 
vocabulary checklist (Fenson et al., 2007). These data were 
contributed by researchers around the USA and made pub-
licly available via Stanford Word Bank (Frank et al., 2017). 
An AoA was estimated for each of the 672 cue words as 
follows. For each of the 5520 children, the child’s age is 
documented and whether they produce each word at the time 
of assessment. For each cue word, a logistic model can be 
fit that can produce a probability of production for each age. 
Based on this model, one can estimate the age at which the 
probability of production is 0.5, and this is taken as the AoA 
for that word (Goodman et al., 2008). Fifty-one words on 
the CDI were not produced by at least 50% of children by 
30 months, which prevented AoA from being estimated for 
these words.

Network estimation

The network structure of the semantic environment can 
be estimated from word association data by treating each 
cue word as a node in a network and drawing directed con-
nections between cues: if  cueA is provided as a response to 
 cueB, then  cueB →  cueA. Thus, asymmetric adjacency matri-
ces were constructed using the cue and response data that 
we collected in each of our (two) word association tasks. 
To facilitate analysis, we excluded the 12 words that repeat 
across categories on the CDI (24 items total) and 51 words 
for which age of acquisition (AoA) could not be estimated 
(one of which was a repeat); we also excluded these words 
from all subsequent networks. Appendix A identifies the 
CDI words that were excluded from the network analyses. 
Thus, each network consists of 598 nodes, corresponding 
to 598 CDI items that children between 16 and 30 months 
would be expected to know.

An additional asymmetric adjacency matrix was derived 
from word co-occurrence statistics within the CHILDES 
child-directed speech transcripts. To obtain directed connec-
tions, we tracked which words followed other words within 
five-token forward-looking moving windows, accruing evi-
dence for a connection from the first word in the window to 
each of the four that follow it. The co-occurrence of the first 
token in the window with each of the subsequent tokens was 
tabulated, forming an asymmetric type-by-type association 
matrix (Hills et al., 2010; Jimenez & Hills, 2017). The net-
work was then filtered to retain only nodes corresponding to 
the 598 CDI items described above.
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Node indegree and lexical growth values

The development of a vocabulary can be understood as the 
sequential acquisition of words from a set of possible words. 
In this work, the relationships among the possible words are 
expressed as a network defined to reflect semantic relation-
ships and may be derived from word associations or tran-
scripts of child-directed speech. Statistics can be computed 
for each word to emphasize different aspects of their position 
within the network. The centrality of a network node can be 
measured in many ways. One simple and common metric is 
the number of connections that terminate on a node. This is 
called the node’s indegree. Prior work indicates that a word’s 
indegree is predictive of lexical and semantic behavior (De 
Deyne et al., 2013) and has been used in previous work mod-
eling lexical growth (Hills et al., 2009; Stella et al., 2017).

Many well-studied networks, like the Internet and bio-
logical systems, grow by preferentially attaching new nodes 
to previously acquired nodes with high indegree relative to 
other acquired nodes (Steyvers & Tenenbaum, 2005). Prior 
work indicates that early language learners may preferen-
tially acquire words that are central to their semantic envi-
ronment overall. This suggests that lexical networks grow 
differently than other types of networks. The critical contrast 
is whether network growth is driven by the structure of the 
environment (preferential acquisition), the structure among 
the subset of the environment that is already acquired (pref-
erential attachment), or the child’s existent lexical knowl-
edge (lure of the associates).

For each month from 16 to 30, we categorized whether 
each CDI word was known or unknown using the AoA data 
derived from WordBank child data. Then, starting at month 
16, the youngest for which we have CDI data on the Words 
and Sentences form, we considered the subset of the full 
network consisting only of nodes corresponding to words 
known at 16 months. Then we computed “growth values” 
relative to this 16-month subnetwork according to each 
model of growth (preferential attachment, preferential acqui-
sition, lure of the associates). This process was repeated for 
each month, each time calculating growth values for a differ-
ent set of unknown words relative to a different subnetwork 
reflecting typical children of increasing age. The growth val-
ues computed based on the words known at 16 months are 
expected to be largest for words that will be learned by the 
next month (i.e., with an AoA of 17 months). Under prefer-
ential attachment, the growth value is equal to the average of 
the indegree of all currently known words to which the new 
word would attach. Under lure of the associates, the growth 
value is equal to the sum of the indegree of the unknown 
words (i.e., the sum of the known words that link to the 
unknown word). In contrast, under preferential acquisition, 
the growth value of an unknown word is simply its own 
indegree in the context of all of the CDI words for which 

we had AoA values (regardless of what words are currently 
known by the average child).

At each subsequent month, the set of known words grows 
(according to AoA), and the growth values associated with 
preferential attachment and lure of the associates are rec-
omputed for each unknown word—growth values associ-
ated with preferential acquisition are independent of what 
words are currently known. Once growth values are known 
for months 16–29 (the CDI does not assess children older 
than 30 months), the values at each month are standardized 
to have mean 0 and standard deviation 1.

The datasets and scripts that were used in the current 
study are available in the OSF repository https:// osf. io/ 
3pmcw.

Results

Child‑oriented associations differ 
from unconstrained adult‑oriented associations

Our first research aim was to determine whether the 
child- and adult-oriented association tasks elicit differ-
ent responses. We predicted that child-oriented responses 
would consist of higher-frequency words that are shorter 
and acquired earlier in life (lower AoA). These predictions 
were tested in a series of within-cue factorial ANOVAs. 
Each ANOVA was defined with condition (adult-oriented 
vs. child-oriented) and response order (first, second, or third 
response) as independent variables, and applied to the aver-
age values for each cue, condition, and ordinal response. 
Separate models were conducted for the following dependent 
variables: SUBTLEX word frequency (Brysbaert & New, 
2009), number of letters, number of phonemes, number of 
syllables, and age of acquisition (Kuperman et al., 2012), 
and contextual diversity (Brysbaert & New, 2009).

All ANOVA results are presented in Table  1, and 
descriptive data for each dependent variable by condition 
and response order are presented in Table 2. Main effects 
of condition and response order were observed for all six 
dependent variables. For all dependent variables except con-
textual diversity, condition and response order significantly 
interacted. Every significant interaction indicates the same 
moderating effect: responses in the adult-oriented condition 
became increasingly “complex” (longer, lower frequency, 
higher AoA) with response order, while this drift toward 
complexity was attenuated in the child-oriented condi-
tion. That is, while differences by condition are observed 
for each of the three response positions, the differences are 
larger for the second and third response than they are for 
the first. Mean paired differences, reflecting paired t-tests 
evaluating the simple effects of condition at each level of 
response order, are plotted in Fig. 2 with 95% confidence 

https://osf.io/3pmcw
https://osf.io/3pmcw
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intervals. All tests have 597 degrees of freedom and are sig-
nificant (p < .001). We omit plots for syllables and phonemes 
because they are very similar to the plot for number of letters 
and these dependent variables are highly correlated. Sim-
ple effects of response order at each level of condition are 

also significant for all five dependent variables for which 
condition and response order interact (p < .001). The con-
dition effect was predicted given that words that are used 

Table 1  Response statistics: repeated-measures ANOVAs

Note.  df1 indicates degrees of freedom numerator.  df2 indicates degrees of freedom denominator. Epsilon (ϵ) indicates Greenhouse–Geisser mul-
tiplier for degrees of freedom; p-values and degrees of freedom in the table incorporate this correction. �2

G
 indicates generalized eta-squared. 

Condition levels: adult-oriented, child-oriented. Response levels: 1, 2, 3

Statistic Predictor df1 df2 ϵ F p �
2

G

Letters Condition 1 597 165.02 <.001 0.01
Response 1.30 776.13 0.65 174.88 <.001 0.04
Cond × Resp 1.96 1170.79 0.98 14.67 <.001 0.00

Phonemes Condition 1 597 167.90 <.001 0.01
Response 1.32 787.19 0.66 182.25 <.001 0.05
Cond × Resp 1.98 1182.45 0.99 13.16 <.001 0.00

Syllables Condition 1 597 116.98 <.001 0.01
Response 1.29 772.67 0.65 98.74 <.001 0.03
Cond × Resp 1.97 1178.51 0.99 16.50 <.001 0.00

Age of acquisition Condition 1 597 1428.18 <.001 0.12
Response 1.40 834.27 0.70 390.35 <.001 0.08
Cond × Resp 1.97 1176.49 0.99 6.29 .002 0.00

Frequency Condition 1 597 353.75 <.001 0.01
Response 1.32 788.24 0.66 215.94 <.001 0.02
Cond × Resp 1.95 1162.20 0.97 4.15 .017 0.00

Contextual diversity
Condition 1 597 468.59 <.001 0.02
Response 1.37 816.92 0.68 207.48 <.001 0.02
Cond × Resp 1.97 1176.24 0.99 2.64 .072 0.00

Table 2  Response statistics: means and standard deviations

Note. Columns labeled 1, 2, 3 correspond to the first, second, and 
third response to each cue. Standard deviations are shown in paren-
theses

Condition 1 2 3

Letters Adult 4.845 (0.64) 5.09 (0.49) 5.15 (0.44)
Child 4.77 (0.69) 4.95 (0.49) 5.01 (0.43)

Syllables Adult 1.340 (0.24) 1.48 (0.19) 1.49 (0.17)
Child 1.37 (0.27) 1.42 (0.20) 1.44 (0.17)

Phonemes Adult 3.96 (0.55) 4.18 (0.44) 4.23 (0.39)
Child 3.89 (0.60) 4.05 (0.43) 4.10 (0.38)

Age of Acquisi-
tion

Adult 4.88 (0.67) 5.17 (0.57) 5.30 (0.52)

Child 4.50 (0.62) 4.74 (0.50) 4.87 (0.45)
Frequency Adult 3.51 (0.51) 3.39 (0.41) 3.36 (0.38)

Child 3.59 (0.53) 3.49 (0.44) 3.46 (0.41)
Contextual 

Diversity
Adult 3.13 (0.32) 3.05 (0.27) 3.03 (0.25)

Child 3.20 (0.32) 3.13 (0.28) 3.11 (0.26)

1 2 3 1 2 3 1 2 3 1 2 3
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Fig. 2  Mean of differences between adult- and child-oriented 
responses within-cues for each response index. Positive values indi-
cate that the value is larger in the adult-oriented condition. For num-
ber of letters, age of acquisition, and word frequency, the interaction 
between condition and response order is significant. Errorbars reflect 
95% confidence intervals
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frequently and in a variety of contexts are learned more eas-
ily than words that have more restricted use (Hills et al., 
2010; Johns et al., 2016).

It is possible that the effect of the child-oriented task 
manipulation is moderated by the age of acquisition (AoA) 
of the cue. We consider this in a supplemental analysis 
reported in detail in Appendix B. In short, there is a posi-
tive linear relationship between the AoA of the cue and the 
AoA of the responses, but the condition effect is remarkably 
stable over cues.

Child‑ and adult‑oriented associations express 
different similarity structure among cues

Our second research aim was to determine whether the two 
word association tasks would yield distinct semantic similar-
ity structures. It is possible that the responses provided in the 
child-oriented condition differ significantly without imply-
ing different semantic relationships among the cue words. 
For instance, if in response to the word STAR people tend 
to respond with LUMINOUS in the unconstrained condition 
and BRIGHT in the child-oriented condition, this conveys 
similar information about STAR and implies similar rela-
tionships to other cues.

To test this, we first cross-tabulated cues and responses 
separately for each condition. This yielded two tables, with 
a column for each of the 672 cues and a row for each unique 
response generated in the respective condition. This is not 
a network representation of the word association data; 
instead, we are quantifying the similarity between each cue 
based on how many responses they share. To ensure that 
our analysis was not dominated by frequency effects, we 
replaced all nonzero values in these tables with ones before 
computing Pearson’s r for each pair of columns. This yields 
two 672 × 672 matrixes of correlation coefficients, one for 
each condition. Then, following convention for representa-
tional similarity analysis (Nili et al., 2014), we computed 
the Spearman rank correlation between the lower triangle of 
the two matrices (excluding the diagonal). This correlation 
is an estimate of the matrices’ “representational similarity” 
and will be high if the relationships among cues are similar 
across task conditions and will be low if they differ.

To assess whether the representational similarity between 
conditions is lower than we would expect based on an arbitrary 
split of our dataset, we combined data from both conditions by 
cue, and split the responses to each cue in half randomly 1000 
times. For each of these splits, we repeated the analysis above, 
resulting in 1000 representational similarity values relating the 
content of the halves. While the representational similarity 
between our child-oriented and adult-oriented conditions was 
r = .586, random splits were associated with average r = .637 
(σr = .002). No random split had a lower representational 
similarity than that associated with the true split between 

conditions, indicating that the responses in the child-oriented 
condition imply different relational structure among the cue 
words (see Fig. 3).

We further examined the semantic structure of the networks 
derived from the two word association tasks by inspecting the 
associative paths among all 598 cues as networks. The pro-
cedure for constructing associative networks is described in 
the Methods section. We calculated the average shortest path 
length, average of local transitivity (i.e., clustering coefficient), 
and small-world index (SWI; Neal, 2017). As can be seen in 
Table 3, the semantic network based on the child-oriented 
word association data are more clustered and have an overall 
higher SWI relative to the semantic network derived from the 
adult-oriented word association data. Simulating null distri-
butions for the difference on each network statistic using the 
same method described above indicates that the difference 
between the clustering coefficients in each condition is larger 
than would be expected if all responses were sampled from the 
same condition (p < .001). The networks do not reliably dif-
fer on path length or SWI. Our network comparisons suggest 
that the child-oriented semantic environment differs both in 
structure and semantic content.

Word associations and transcripts of child‑directed 
speech provide different perspectives 
on the semantic environment

The modified word association task is one of many ways 
one might attempt to estimate the structure of the child’s 
semantic environment. An obvious alternative approach 
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Fig. 3  Representational similarity between adult- and child-oriented 
semantic environment estimates (arrow). Histogram reflects the 
empirical null distribution, simulated by combining and randomly 
splitting the responses to each cue and repeating the representational 
similarity analysis.
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used in previous work considers the distributional statistics 
of child-directed speech, facilitated by the freely available 
CHILDES child language database (MacWhinney, 2000). 
Though both methods will yield an estimate of semantic 
structure among a set of cues, they provide different perspec-
tives on the semantic environment. For example, one would 
expect word associations to reveal more taxonomic (i.e., cat-
egorical) structure than co-occurrence in natural language.

To test this, we grouped the words on the CDI by the 
22 categorical headings on the Words and Sentences form. 
Each pair of words can then be labeled as within-category or 
between-categories. We then computed the shortest distance 
between each pair of nodes within the child-oriented, adult-
oriented, and CHILDES networks. Finally, we computed 
the average distances for within-category and between-
category pairs for each network and report a ratio of within 
distances to between distances. Networks that reflect more 
taxonomic structure will have lower ratios (shorter distances 
within groups than between groups). A difference of ratios 
between networks quantifies structural differences between 
those networks. Two-tailed 95% confidence intervals were 
constructed around these differences via nonparametric bias-
corrected and accelerated (BCa) bootstrap using the boot 
package in R (1000 replicates).

The taxonomic ratios for the adult-oriented (0.888, SE = 
0.002) and child-oriented (0.875, SE = 0.002) association 
networks both differed from the CHILDES (0.958, SE = 
0.003) association network. The adult- and child-oriented 
networks differed minutely from each other—5.8 times less 
than the difference between CHILDES and the mean of the 
adult and child ratios. This is consistent with a taxonomic 
bias in the networks based on word associations. These 
results are summarized in Table 4.

Semantic network structure predicts normative 
lexical growth

Our third research aim was to determine whether the child-
oriented and adult-oriented word associations differentially 
predict vocabulary growth. We begin by constructing two 

networks, both with nodes corresponding to words with an 
estimated AoA of 16, but with directed edges inserted with 
respect to either the child-oriented or adult-oriented associa-
tions. Then each unknown word is evaluated with the three 
network-growth models (preferential attachment, preferential 
acquisition, and lure of the associates). Each model assigns 
a “growth value” that is proportional to the strength of the 
expectation that the unknown word will be the next node 
added to the network. The set of growth values associated 
with each network-growth model are then z-scored before 
selecting the values assigned to words that are expected to 
be learned next—in this case, those with an AoA of 17. 
This process is repeated iteratively for child- and adult-
oriented networks representing vocabularies from 16 to 28 
months. After iterating, this yields 547 values per growth 
model and condition, which is 598 less the 18 words in the 
initial 16-month network and the 33 words that are learned 
in month 30.

Mean standardized growth values for each cell in this 
factorial design are shown in Fig. 4. Except for the prefer-
ential attachment model applied to the child-oriented asso-
ciation network, one-sample t-tests indicate that the means 
are unlikely to have arisen from a null distribution centered 
on zero (t(545) ≥ 3.57, p < .001). Note that zero would be 
the expected standardized value if the growth models were 
not predictive of vocabulary growth. This confirms that the 
growth models are informative about what words will be 
learned next and echoes prior work indicating that growth 

Table 3  Semantic network structure characteristics relative to word association task condition

Note. Small-world index is computed as L−Ll
Lr−Ll

×
C−Cr

Cl−Cr

 , where L refers to the average shortest path length, C refers to the clustering coefficient, 
and subscripts r and l refer to randomized and “latticized” versions of the network being described. It ranges between 0 and 1, where 1 is the 
most ideal small-world network. Following each difference score is a 95% confidence interval derived from simulating the null distribution as 
described in the text

Average shortest path length Average of local transitivity (clustering 
coefficient)

Small-world index 
(Neal, 2017)

Adult 2.504 2.255 0.300
Child 2.584 2.465 0.450
Difference 0.08 [−2.76, 3.07] 0.21 [0.20, 0.22] 0.15 [−0.43, 0.75]

Table 4  Differences among taxonomic ratios

Note. Standard error and confidence intervals are estimated based on 
1000 bootstrap replicates. The estimated bias was <0.001 for all con-
fidence intervals. SE standard error, CI confidence interval, BCa bias-
corrected and accelerated bootstrap

Difference SE 95% CI (BCa)

CHILDES Child 0.083 0.004 [0.075, 0.090]
CHILDES Adult 0.070 0.004 [0.062, 0.077]
Child Adult 0.013 0.003 [0.007, 0.018]
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by preferential attachment is the least consistent with typi-
cal patterns of language acquisition. However, the degree 
to which this is possible may differ depending on whether 
associations are defined according to the child- and adult-
oriented network; we examine this in the following section.

Child-oriented associations predict word  learning 
more accurately

We further examined our third research aim by testing the 
contribution of each growth model and network structure 
played in explaining variance in growth values. The variance 
introduced by manipulating the growth model (preferential 
attachment vs. preferential acquisition vs. lure of the asso-
ciates) and the network structure (child- vs. adult-oriented) 

was modeled within cues as a 3-by-2 repeated measures 
ANOVA. There was a main effect of model and a significant 
model by network interaction (Table 5).

Given the significant model by network interaction, 
we conducted simple effects comparisons between net-
works (paired t-tests) for each model. The child-oriented 
network yielded higher standardized growth values (i.e., 
better predictions about language growth) than the adult-
oriented network when applying the preferential acquisi-
tion (t(546) =  − 2.58, CI = [−0.101, −0.014] ,p = 0.010, 
d = 0.110) and lure of the associates models (t(546) =  − 2.22, 
CI = [−0.102, −0.006], p = 0.027, d = 0.095), while the 
opposite effect was obtained with the preferential attach-
ment model (t(546) = 2.73, CI = [0.033, 0.204], p = 0.006, 
d = 0.117).

Repeated-measures ANOVAs exploring the simple 
effects of the growth model manipulation for each network 
separately indicate that the growth models perform simi-
larly when applied to the adult-oriented network but differ 
when applied to the child-oriented network (Table 6). This 
effect is driven by the poor performance of the preferential 
attachment model on the child-oriented network (Fig. 4); 
preferential acquisition and lure of the associates did not dif-
fer significantly (paired t(546) = 1.86, CI = [−0.002, 0.077], 
p = .063).

Network structure improves predictions of word 
learning beyond psycholinguistic factors

The preceding analysis of standardized growth values indi-
cated that the three growth models, particularly preferen-
tial acquisition and lure of the associates, are predictive of 
the typical progression of word learning. We now adopt a 
model comparison approach that can help isolate the infor-
mativeness of an associative network structure in predicting 
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Table 5  Within-cues ANOVA of growth values

Note.  dfnum indicates degrees of freedom numerator.  dfden indicates degrees of freedom denominator. Epsilon (ϵ) indicates Greenhouse–Geisser 
multiplier for degrees of freedom; p-values and degrees of freedom in the table incorporate this correction. n2

G
 indicates generalized eta-squared

Predictor df1 df2 ϵ F p �
2

G

Network 1.00 546.00 0.01 .912 0.00
Model 1.14 620.75 0.57 5.80 .013 0.00
Model × Net 1.13 615.73 0.56 12.74 <.001 0.00

Table 6  Simple effects by network

Note.  df1 indicates degrees of freedom numerator.  df2 indicates degrees of freedom denominator. Epsilon (ϵ) indicates Greenhouse–Geisser mul-
tiplier for degrees of freedom; p-values, and degrees of freedom in the table incorporate this correction. n2

G
 indicates generalized eta-squared

Network Predictor df1 df2 ϵ F p �
2

G

Adult Model 1.13 617.32 0.57 1.07 .310 0.00
Child Model 1.14 623.59 0.57 12.31 <.001 0.01
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vocabulary growth relative to more basic psycholinguistic 
factors and other networks (Hills et al., 2009). Relative to the 
expected vocabulary at each month 16–29, the probability of 
learning each unknown word is estimated based on a ratio 
of strengths:

In this equation, xi and xj represents column vectors 
of word-level variables, including psycholinguistic vari-
ables and potentially the value associated with one or more 
network growth models. The subscript i denotes the cur-
rently unknown word for which the probability of learning 
is being estimated, and the subscript j iterates over the set 
of unknown words at the month word i is expected to be 
learned. These vectors are matrix multiplied with the row 
vector β, which is a constant set of weights applied to scale 
and sum the variables in x. Solving the equation yields a 
single probability, pi. The log-likelihood of the model is 
obtained by taking the sum of the log transformed prob-
abilities for all learned words:

The vector β is optimized for a given set of variables 
using the stats::optim function in R (R Core Team, 
2020). Nested models can be compared using a likelihood-
ratio test—the difference of log likelihoods follows a χ2 dis-
tribution (θ0 denotes the likelihood of the restricted model, 
and θ1 denotes the likelihood of the full model in the nested 
pair):

Kover and Ellis Weismer (2014) demonstrated that 
children with typical and delayed language development 
tend to learn short words with high phonological neigh-
borhood densities at early points in lexical development. 
Additionally, Schneider et al. (2015) found that young 
children begin their word-learning journey by learning 
high-frequency words with low phonological complexity. 
Thus, we fit a baseline model including psycholinguistic 
variables that are known to influence word learning but 
are unrelated to the associative semantic structure of the 
language: number of phonemes, word frequency (calcu-
lated from the CHILDES corpus; Bååth, 2010), phono-
tactic probability, and phonological neighborhood density 
(estimated using the phonological neighborhood calcu-
lator; Vitevitch & Luce, 2004, 2016). We then fit addi-
tional models incorporating growth values derived from 
our child- and adult-oriented word association networks. 
In addition, to compare the network structure obtained 
from our word association tasks to structure learned from 

pi =
e�xi

∑

j e
�xj

log �(�) =
∑

log pi

−2
(

log �1 − log �0
)

∼ �
2

a child-directed natural language corpus, we generated 
growth values for a network derived from word co-occur-
rences in transcripts of child-directed speech publicly 
available through CHILDES as described in the methods 
(McWhinney, 2000).

The correlations among predictor variables are 
reported at the OSF repository for this paper. Prefer-
ential attachment growth values are strongly correlated 
across all networks (r ≈ .9); preferential acquisition and 
lure of the associate growth values are strongly corre-
lated between the two networks based on word asso-
ciation data (r ≈ .9) and far less correlated with values 
derived from the CHILDES network (r ≈ .45). Growth 
values derived from the CHILDES network are more 
correlated with the psycholinguistic baseline variables 
( R2

CHILDES
= .457 ) than growth values derived from the 

other two networks ( R2
adult

= .137 , R2
child

= .101 ). When 
constructing models that include multiple growth val-
ues from one network, or when constructing models that 
include the same growth value derived from different 
networks, collinearity is an issue. Collinearity increases 
the standard error for all model parameters and reduces 
the power of statistical tests. When including variables 
that are collinear, the explained variance that is unique 
to each independent variable is reduced, which may 
decrease the number of variables that significantly pre-
dict a dependent variable (Fox & Weisberg, 2011). As 
will be seen below, despite the collinearity that exists in 
our data, comparisons of nested models reveal that cer-
tain network variables explain vocabulary growth values 
better than others.

Nested model comparisons against the psycholinguistic 
baseline model are summarized in Table 7; the Bayesian 
information criterion (BIC) for each model is plotted in 
Fig. 5. When applied to child-oriented sources, the preferen-
tial attachment growth model does not add predictive value 
over the psycholinguistic baseline. However, improvement 
is observed in every other case. Note that in our figures and 
tables, we compute BIC as:

where k refers to the difference in the number of variables 
between the full and restricted model, and n refers to the 
number of observations. Large positive BIC values indicate 
better model fit.

Controlling for variance that can be attributed to 
the psycholinguistic factors, the differences between 
adult- and child-oriented sources are more pronounced, 
and the preferential acquisition growth model appears 
to outperform the lure of associates (Fig. 5). This lat-
ter observation is confirmed by model comparisons 
reported in Table 8: a model that already includes the 

BIC = 2 log
(

�1 − �0

)

− k log n
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psycholinguistic variables and the lure of the associates 
growth values is improved by adding the preferential 
acquisition growth values, but the reverse is not true. 
The same pattern is observed regardless of how the net-
work was defined (i.e., based on adult- or child-oriented 
word associations or CHILDES transcripts). Thus, the 
remainder of analyses will focus on the preferential 
acquisition growth model for simplicity—however, we 
note that the BIC associated with these significant dif-
ferences is small (less than 2).

Word associations and child‑directed speech 
provide complementary information about word 
learning

When considering the models against the psycholinguistic 
baseline, it appears that growth models based on transcripts 
of child-directed speech from CHILDES are more predictive 
than those based on the child-oriented word associations. 
While this would appear to undermine the utility of collect-
ing child-oriented word associations to estimate the seman-
tic environment of children, the variance in word learning 

Table 7  Model comparisons against psycholinguistic baseline

Note. The restricted model always consists of the psycholinguistic baseline variables, which is why logθ0 is the same for all comparisons. Each 
full model additionally includes the growth values based on each combination of growth model and network. All models predict probabilities for 
580 words learned in months 16 through 29. FDR = false discovery rate

Model Network df logθ0 logθ1 χ2 p p (FDR) BIC

Preferential attachment Adult 1 3099.078 3092.351 13.455 <.001 <.001 7.151
Child 1 3099.078 3098.717 0.722 .396 .443 −5.583
CHILDES 1 3099.078 3098.102 1.952 .162 .207 −4.352

Preferential acquisition Adult 1 3099.078 3090.528 17.101 <.001 <.001 10.797
Child 1 3099.078 3084.486 29.184 <.001 <.001 22.880
CHILDES 1 3099.078 3073.576 51.005 <.001 <.001 44.701

Lure of the associates Adult 1 3099.078 3093.165 11.827 .001 .001 5.523
Child 1 3099.078 3086.280 25.597 <.001 <.001 19.292
CHILDES 1 3099.078 3091.832 14.492 <.001 <.001 8.188
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Fig. 5  Nested model comparisons to psycho-linguistic baseline 
model. * <.05, ** <.01, *** <.001

Table 8  Model comparisons between growth models

Note. All models include psycholinguistic variables.  M0 refers to the growth model included in the restricted model, and  M1 refers to the addi-
tional growth model added to construct the full model in the nested pair. All models predict probabilities for 580 words learned in months 16 
through 29. Acq. preferential acquisition, LOA lure of the associates, FDR false discovery rate

Network M0 M1 df logθ0 logθ1 χ2 p p (FDR) BIC

Adult Acq. LOA 1 3090.528 3090.523 0.010 .922 .993 –6.295
LOA Acq. 1 3093.165 3090.523 5.284 .022 .030 –1.021

Child Acq. LOA 1 3084.486 3083.434 2.105 .147 .196 –4.200
LOA Acq. 1 3086.280 3083.434 5.692 .017 .025 –0.613

CHILDES Acq. LOA 1 3073.576 3073.970 –0.789 1.000 1.000 –7.093
LOA Acq. 1 3091.832 3073.970 35.724 <.001 <.001 29.420
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may not be entirely redundant. To test this possibility, we 
conducted model comparisons between models that include 
two sets of growth values (e.g., from the adult-oriented and 
child-oriented networks) to models that only include one 
or the other. If the variance explained by the CHILDES 
growth model is a superset of the variance explained by 
the child-oriented associations, a full model that includes 
both should not perform better than a restricted model that 
only includes CHILDES. This is not what we observe. The 
model that includes both CHILDES and the child-oriented 
word association growth values performs substantially better 
than the model that only includes CHILDES growth values: 
χ2(1) = 26.565, p < 0.001, BIC = 20.201. This is consistent 
with the semantic structure available via the word associa-
tion task and the co-occurrence statistics of natural language 
being different. In fact, all permutations of model compari-
sons of this kind are significant, except when comparing a 
full model with child-oriented and the adult-oriented net-
works to a restricted model with only the child-oriented net-
work (Table 9). Thus, the child-oriented network explains 
variance that the adult-oriented network does not, but the 
opposite is not true.

Furthermore, if a full model that included growth val-
ues from all three networks (adult- and child-oriented word 
associations and CHILDES) is compared to a restricted 
network that excludes the adult-oriented network struc-
ture, predictions do not improve, (χ2(1) = 0.134, p = .715, 
BIC =  − 6.212). The BIC values obtained for various models 
involving the preferential acquisition growth values, from 
individual networks and combinations of networks, are sum-
marized in Fig. 6.

Discussion

The current study makes two complementary contributions. 
The first is to show that applying a cover story to the word 
association task elicits responses that differ from a standard 

(unconstrained) word association task. Consequently, the 
second contribution is a set of word association norms that 
appear to provide superior insight into the semantic environ-
ment of young children as indicated by improved models of 
vocabulary growth.

Our manipulation of the word association task instruc-
tions aimed to elicit child-oriented responses and was suc-
cessful: responses in the child-oriented context were shorter 
and simpler words that tend to be acquired younger, and 
which are used more frequently and in more diverse con-
texts. Furthermore, the child-oriented word associations 
convey a different semantic structure than unconstrained 
(adult-oriented) associations and the co-occurrence statis-
tics of child-directed speech (derived from CHILDES), and 
these differences account for unique variance in the typical 
trajectory of early word learning.

Dubossarsky et  al. (2017) demonstrated that word 
association behavior changes over the life span, reflecting 
important individual differences in conceptual knowledge. 
These conceptual changes may imply age-related differ-
ences in the semantic environment. Their work implies that 

Table 9  Model comparisons between networks

M0 M1 df logθ0 logθ1 χ2 p p (FDR) BIC

Adult Child 1 3090.528 3084.089 12.877 <.001 .001 6.573
CHILDES 1 3090.528 3066.349 48.358 <.001 <.001 42.054

Child Adult 1 3084.486 3084.089 0.795 .373 .435 –5.510
CHILDES 1 3084.486 3060.235 48.503 <.001 <.001 42.198

CHILDES Adult 1 3073.576 3066.349 14.455 <.001 <.001 8.150
Child 1 3073.576 3060.235 26.682 <.001 <.001 20.377

Adult Child CHILDES CHILDES
+ Child

CHILDES
+ Child
+ Adult
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Fig. 6  Incorporating network structure in addition to psycholinguistic 
factors using the preferential acquistion model. All BIC values reflect 
a comparison to the same restricted model; plus signs indicate that 
additional variables are added over the restricted model
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adult-oriented semantic norms should be relatively poor 
proxies for characterizing the child semantic environment. 
Although the previous literature focusing on early vocabu-
lary acquisition has fruitfully used the University of South 
Florida’s word association norms (e.g., Bilson et al., 2015; 
Hills et al., 2009; Steyvers & Tenenbaum, 2005), more age-
appropriate semantic norms will be necessary to detect the 
statistical and structural factors that children are sensitive to 
when acquiring language. Our findings agree with this sug-
gestion; our child-oriented word association task provided 
important insight into the child semantic environment that 
could not be obtained from the adult-oriented word associa-
tions we collected, as indicated by the unique variance it 
explains in typical vocabulary development between 16 and 
30 months of age.

The differences derived from our child-oriented word 
association task are particularly important given the 
emphasis of the learning environment associated with 
preferential acquisition. Our model comparisons revealed 
that the best model overall was obtained by jointly lev-
eraging the network structure from child-oriented word 
associations and transcripts of child-directed speech (i.e., 
CHILDES). This multimodal approach to modeling early 
vocabulary growth is similar to the multiplex network 
modeling implemented by Stella et al. (2017), and is in 
keeping with recent evidence that each modality may have 
an advantage over the other when it comes to modeling dif-
ferent lexicosemantic variables (Nematzadeh et al., 2017; 
Vankrunkelsven et al., 2018).

CDI‑specific word association data

The CDI is one of the most widely used instruments in the 
field of child language development. Because of its ubiq-
uity and because of open-science initiatives like WordBank 
(Frank et al., 2017), researchers may obtain vocabulary 
estimates for children with typical language development 
who vary from precocious early talkers to late talkers, as 
well as children with atypical language development associ-
ated with developmental disorders such as autism spectrum 
disorder (e.g., Colunga & Sims, 2017; Haebig et al., 2021; 
Jiménez et al., 2020). As such, one of the goals of our work 
was to acquire and publish word association norms for as 
many words on the CDI as possible using a protocol that 
makes those associations more age-appropriate than existing 
databases. Additionally, our datasets include disambiguated 
homophones (e.g., “orange [food]” and “orange [color]”). 
Although homonyms were excluded from the analyses 
reported in this work, this specificity is important because 
even young children develop subordinate word meanings as 
they grow in their lexical knowledge.

Child‑oriented word associations vs. child‑directed 
speech

A natural reaction to this work is that, clearly, transcripts 
of adults interacting with real children is more valid than 
child-oriented word associations submitted by adults 
completing an online experiment alone. However, corpora 
of child-directed speech provide only a snapshot of input 
provided to a child. Indeed, a criticism of distributed 
semantic models based on text corpora is that the struc-
ture of semantic representations is heavily biased by the 
size of the text corpora and parameter tuning decisions 
(i.e., the grounding problem; Kumar, 2021; Kumar et al., 
2022). To gather semantic data for the comprehensive 
list of words on the CDI, we also collected word associa-
tion data by probing which words naturally go together 
after experimentally establishing a child-oriented con-
text. To be clear, this work never intended to supplant or 
undermine the use of child-directed speech for studying 
language learning. The work was conceived while con-
sidering the prior success achieved using adult-oriented 
word associations to describe a semantic environment that 
may influence early language learning for children. We 
show that by manipulating the context in which adults 
provide word associations, those associations can become 
even more informative about the development of early 
vocabularies.

However, the question remains: why would one 
query word association data provided by adults in an 
attempt to describe the semantic environment of a child 
if transcripts of child-directed speech are available? 
Our results are consistent with prior work and discus-
sions, indicating that each measure provides different 
but complementary perspectives on the child’s seman-
tic environment. Word associations generated in our 
child-oriented task condition may ref lect cognitive 
control processes that adults also rely on when modi-
fying their language when speaking to children. Asso-
ciation tasks provide insight into the semantic envi-
ronment as encoded and retrieved via mechanisms of 
learning and memory. Thus, semantic models derived 
from word association data tend to out-perform dis-
tributional models on predicting similarity judgments 
(De Deyne, Perfors, et al., 2016; De Deyne, Verheyen, 
& Storms, 2016b) and other behavioral rating of words 
(De Deyne et al., 2019).

We have replicated the well-established relationship 
between associative network structure, derived from free 
association data, and typical vocabulary development in 
children between months 16 and 30 via preferential acqui-
sition. This relationship is strengthened when consulting 
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our novel child-oriented association data and strength-
ened further when child-oriented associative networks 
and CHILDES co-occurrence networks are considered in 
tandem when modeling vocabulary growth. This aligns 
with recent work that indicates that semantic models 
based on distributional language statistics and semantic 
models based on word association data capture distinct 
and complementary information. For instance, semantic 
models based on word association data have been found 
to capture relatedness information (De Deyne, Perfors, 
et al., 2016) and visual and affective features of concepts 
(De Deyne et al., 2021; Vankrunkelsven et al., 2018). 
This is notable because recent research has indicated 
that statistical regularities in the visual domain and other 
visual features influence children’s early lexical develop-
ment (e.g., Clerkin et al., 2017; Colunga & Sims, 2017; 
McDonough et al., 2011). Given this, it is possible that 
the word association data derived from the child-oriented 
task also capture aspects of the multimodal learning pro-
cess that the child may experience, such as learning biases 
based on perceptual and affective features (e.g., Berman 
et al., 2013; McDonough et al., 2011; Perry et al., 2015; 
Perry & Samuelson, 2011). However, it is important to 
emphasize that this suggestion is only speculative (see 
Kumar et al., 2022 for a discussion about the utility of 
semantic network approaches for offering insight into 
both the structure of knowledge representation and the 
processes that are in play).

Theories of lexical growth

Our work also contributes to an emerging consensus on 
how early vocabularies grow. Among the three models 
of network growth we considered, preferential attach-
ment does not capture the process of word learning well. 
Instead, preferential acquisition appears to be most plausi-
ble of the accounts, after controlling for psycholinguistic 
variables, aligning with findings presented by Hills et al. 
(2009) that were based on a subset of nouns on the CDI, 
and on a larger set of words across other word classes 
(Hills, 2013). Preferential attachment and acquisition 
take divergent perspectives on the role of the learner and 
their relationship to the environment. Preferential attach-
ment predicts that words that are central to the learner’s 
internal semantic environment—the relationships among 
words in their current vocabulary—drive what words will 
be acquired in the future. This attributes an active role to 
the learner, where their understanding of the world directs 
and filters their engagement with their environment. On 
the other hand, preferential acquisition predicts that the 
structure of the environment, regardless of what words are 

currently known, drives learning. This casts the learner in 
a more passive role, allowing the structure of the environ-
ment to impress itself upon them with less filtering and 
direction. However, this “passive” learner is not idle or 
disinterested—it is only by exploring the environment and 
appreciating its statistical regularities that learning can 
occur (Hay et al., 2011; Saffran et al., 1996).

We have juxtaposed preferential attachment and acqui-
sition, but where does the “lure of the associates” fit in? 
This growth model is like preferential attachment in that 
it predicts that a child will be influenced by their known 
vocabulary when engaging with their environment. How-
ever, it is not the structure of their vocabulary that matters 
(as with preferential attachment), but how known words 
associate with unknown words. On this account, learning 
proceeds by luring in unknown words that associate with 
many known words. Consistent with prior work, our find-
ings suggest that models based on the lure of the associ-
ates can significantly predict lexical growth (Hills et al., 
2009; Hills et al., 2010).

Notably, regardless of which network the growth values 
are derived from, the correlation between the lure of the 
associates and preferential acquisition is high (r ≈ .53). 
Are lure of the associates and preferential acquisition 
equally plausible accounts of early vocabulary growth? 
Our results suggest no. When building models to pre-
dict when words typically enter the vocabulary, adding 
growth values generated via the lure of the associates to 
a model that already includes growth values generated via 
preferential acquisition (and the psycholinguistic baseline 
variables) does not improve model fit. However, when the 
order of inclusion is reversed, growth values generated 
via the preferential acquisition model do improve model 
fit. Thus, our analyses suggest that the most informative 
model of child vocabulary growth is preferential acquisi-
tion, and what is informative about the lure of the associ-
ates model is redundant with it. This echoes the original 
report by Hills et al. (2009).

Limitations and future directions

The current study further enforced the importance of a 
child’s linguistic environment and presented additional data 
that can be used to examine word learning and word pro-
cessing. Though the data that we report are compelling and 
complementary to the existing literature, it is important to 
note their limitations.

First, because we based our analyses on unweighted 
association networks constructed using the most liberal 
criterion for establishing connectivity between two nodes 
(any evidence of direct association or co-occurrence 
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merited a directed edge), our network definitions may not 
have been optimal. Our protocol also revealed dramatic 
differences between network structures derived from 
CHILDES or word associations. The CHILDES network 
that we obtained by this protocol was very densely con-
nected (∼40% of possible connections) while the adult- 
and child-oriented associations networks were sparsely 
connected (∼4% of possible connections). Increasing 
the co-occurrence threshold to 40 when constructing the 
CHILDES network achieves a level of sparsity on par with 
the networks derived from word associations. However, 
this splinters the environment into subnets with no paths 
between them and produced 105 orphan nodes with no 
connections at all. In fact, this splintering of the CHILDES 
network was found to begin immediately—merely increas-
ing the threshold to two co-occurrences produced four 
orphan nodes. Previous work has also noted this all-or-
none problem and the arbitrariness of co-occurrence 
requirements (see Castro & Siew, 2020, for a discussion 
on this topic). Meanwhile, the adult- and child-oriented 
association networks both afford paths between all 598 
words studied in the environment, despite their sparsity.

It is also noteworthy that growth values estimated based 
on the CHILDES network were extremely colinear with the 
psycholinguistic baseline model (R2 = .906 for preferential 
acquisition). Indeed, without accounting for the psycholin-
guistic variables, models based on the CHILDES network 
and preferential acquisition were unable to predict lan-
guage growth (χ2(1) = 0.109, n. s. relative to an intercept-
only model). Thus, appropriate analysis of child-directed 
transcripts represents a methodological challenge. The 
structure is very different from adult-directed speech, let 
alone written media. While we are not the first to use the 
CHILDES transcripts in this way (Beckage et al., 2011; 
Hills, 2013; Hills et al., 2010; Huebner & Willits, 2018; 
Jimenez & Hills, 2017), there is room for future work to 
improve the protocol.

Second, the current study provides only limited 
insight into the cognitive mechanisms that underlie our 
successful manipulation of responses using our modi-
fied word association task. There are at least two alter-
native accounts: participants may have actively cen-
sored their free association process and reported only 
the child-appropriate responses (despite other words 
coming to mind more readily), or the context manipu-
lation may have altered association strengths such that 
different associations dominated following the child-
oriented cover story (e.g., Zeelenberg et  al., 2003). 
While these alternatives are not mutually exclusive, 
appreciating the balance of these mechanics will be nec-
essary to appreciate the value of context manipulations 
for more targeted semantic modeling. The effects of 

context on semantic access and related neurocognitive 
processes are being actively pursued on the frontiers of 
cognitive science (Hoffman et al., 2018; Jackson et al., 
2021; Lambon Ralph et al., 2017; Yee & Thompson-
Schill, 2016).

Third, we adopted a simplifying assumption that the opti-
mal model parameters would be the same over the 16-to-
30-month range and for all word types when estimating the 
probability that unknown words would be acquired at each 
month. Based on their own modeling work, Stella et al. 
(2017) proposed three learning stages during which vocabu-
lary growth is best explained by different combinations of 
factors. Furthermore, Hills and colleagues note that words 
belonging to different syntactic classes may be primarily 
driven by different models of growth, with the lure of the 
associates being a compelling account particularly for nouns 
(Hills, 2013; Hills et al., 2010). Future work will dig deeper 
into these important nuances.

Finally, the word association studies we conducted 
presented participants with only early-age-of-acqui-
sition words sampled from the CDI. Typically, word 
association tasks draw from a larger and more diverse 
sample of cues. It is possible (likely, we believe) that, 
over several association trials, participants infer a con-
text that shapes their subsequent association behavior. 
Consequently, if a participant were to encounter the cue 
“dog” while completing two different word association 
studies, one sampling cues from the CDI and another 
sampling cues from thousands of frequently occurring 
words in adult language corpora, they might generate 
different responses. Indeed, the current study clearly 
demonstrates that association behavior is importantly 
context-sensitive. This consideration further motivated 
our decision to collect our own adult-oriented associa-
tion responses, rather than drawing data from the SWOW 
or USF word association databases.

Furthermore, given the relatively small number of 
words on the CDI relative to words included in other larger 
word association databases (SWOW, USF), and given the 
strong effect of the child-oriented manipulation, the cur-
rent child-oriented word association task could be used to 
gather semantic data in less frequently studied languages 
or dialects. Additionally, our task could prove to be use-
ful for capturing cultural and dialectal variability (e.g., 
English in the USA, UK, Australia, African American 
English, Spanish in Mexico, Spain, Chile). The use of a 
child-oriented word association methodology could pro-
mote diversity and representation within the child lan-
guage acquisition literature and could promote access to 
child language research.

In conclusion, the current study presents data from 
two word association tasks that yielded different 
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associative responses. The child-oriented word asso-
ciation task not only yielded differences in the word 
responses’ age of acquisition, word length (number of 
letters, phonemes, and syllables), and contextual diver-
sity, but also differences in semantic structure. Most 
importantly, we demonstrated that semantic networks 
derived from these child-oriented word associations sup-
port better models of a child lexical growth, suggest-
ing that these networks are more in tune with the child 
semantic environment than those based on adult-oriented 
word association responses. These results suggest that it 
is possible to develop targeted semantic norms to better 
understand the experience of populations that are chal-
lenging or impossible to assess directly.

Appendix 1 Excluded CDI Words

Multiple meanings 
on CDI

No AoA Multiple words

Can (object)
Can (verb)
Chicken (animal)
Chicken (food)
Clean (action)
Clean (description)
Drink (action)
Drink (beverage)
Dry (action)
Dry (description)
Fish (animal)
Fish (food)
Orange (description)
Orange (food)
Slide (action)
Slide (object)
Swing (action)
Swing (object)
Watch (action)
Watch (object)
Water (beverage)
Water (not beverage)
Work (action)
Work (place)

About
Above
An
Babysitter
Basement
Before
Beside
But
Camping
Child
Could
Country
Does
Downtown
Each
Every
Hate
Hers
If
Into
Last
Much
Naughty
None
Nurse
Out

Person
Play
Pen
Poor
Scarf
Snowsuit
So
Their
Them
Then
Tights
Tray
Us
Vagina
Vanilla
Walker
Was
Were
When
Which
Wish
Woods
Would
Yesterday
Yourself

Babysitter’s name
Child’s own name
Give me five!
Gonna get you!
Pet’s name
So big!
This little piggy

Appendix 2 Relationships between cue 
and response age of acquisition

It is possible that the effect of the child-oriented word 
association task manipulation is moderated by the age 
of acquisition (AoA) of the cue. Appendix Figure 7 

below depicts the relationship between cue word 
AoA on the x-axis (as estimated from the Wordbank 
CDI database) and the AoA for the responses on the 
y-axis (as estimated from self-report norms collected 
by Kuperman et  al. 2014) for each response index 
(response 1, 2, or 3 to a cue). In the figure, each point 
is an average over responses for cues of a particular 
AoA, and error bars reflect the standard error. Lines 
reflect a linear model with condition and response order 
as categorical factors.

The figure and simple linear model do not account 
for the dependencies in the data caused by each par-
ticipant responding to multiple cues and cues being 
repeated across conditions. Thus, we constructed a 
linear mixed-effects model for statistical inference 
with random intercepts for participant and cue, ran-
dom slopes for condition and response order by cue, 
random slopes for AoA of the cue and response order 
by participant, and fixed effects for condition, response 
order, and AoA of the cue. Response order was coded 
as a three-level factor with orthogonal polynomial con-
trasts (linear and quadratic trends). The model was fit 
using the MixedModels package v4.5.0 (Bates et al., 
2022) in Julia v1.6.4 (Bezanson et al., 2017). Param-
eters are maximum likelihood estimates, and their 
standard errors are the square roots of the diagonal 
elements of the estimated variance–covariance matrix 
of the fixed-effects coefficient estimators. Reported 
z- and p-values are estimates based on dividing the 
parameter estimate by the standard error and referenc-
ing a standard normal distribution, respectively, which 
make simplifying assumptions about the distributions 
of these parameters.

The positive linear relationship between the AoA 
of the cue and the AoA of the responses is apparent 
in the figure and confirmed by the model (Appendix 
Table 10). The interaction between the AoA of the cue 
and condition is not significant, which suggests that 
the effect of condition is not moderated by the AoA of 
the cue. However, the three-way interaction between 
the AoA of the cue, condition, and the linear trend of 
response order was significant, meaning that the mod-
erating effect of the AoA of the cue on the magnitude 
of the condition effect differs depending on whether 
we consider response 1, 2, or 3. Inspecting the simple 
effects by response order (Appendix Table 11), we see 
that the AoA of the cue and condition do not interact 
for response 1 or response 2, but the interaction is sig-
nificant at α = .05 for response 3 (z = 2.16, p = .03). 
Despite the modest interaction at the third response, the 
condition effect is remarkably stable with respect to the 
AoA of the cue.
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Fig. 7  Relationship between the AoA of the cue and the mean AoA of the responses. Error bars reflect standard error of the mean. Best fit lines 
reflect separate linear models fit to each subset of the data. Error bands reflect the standard error of the slope

Table 10  Mixed-effects model

Note. The dependent variable is the AoA of the response. AoA of the response and AoA of the cue are standardized to have mean 0, standard 
deviation 1. Condition (C) is coded with adult-oriented −0.5 and child-oriented as 0.5. Response is polynomial contrast coded, evaluating linear 
(R_L) and quadratic (R_Q) trends over three responses. The model was fit to 343,178 observations, with 4079 participants and 598 cues

Fixed effects β SE z p-value
(Intercept) 0.00 0.01 0.27 .788
AoA_cue 0.07 0.01 6.23 <.001
Condition −0.24 0.01 −26.13 <.001
R_L 0.16 0.01 22.20 <.001
R_Q −0.03 0.00 −8.52 <.001
AoA_cue:C 0.01 0.01 1.25 .212
AoA_cue:R_L −0.02 0.01 −2.24 .025
AoA_cue:R_Q 0.01 0.00 1.38 .168
C:R_L −0.02 0.01 −2.84 .005
C:R_Q 0.01 0.01 1.65 .099
AoA_cue:C:R_L 0.01 0.01 2.30 .021
AoA_cue:C:R_Q 0.00 0.01 −0.71 .475

Random effects σ Corr.
Participant (Intercept) 0.22

AoA_cue 0.01 1.00
R_L 0.07 0.71 0.71
R_Q 0.04 −0.31 −0.31 0.44
AoA_cue:R_L 0.01 0.11 0.11 −0.08 −0.39
AoA_cue:R_Q 0.02 −0.11 −0.11 −0.21 −0.29 0.98

Cue (Intercept) 0.27
C 0.12 −0.33
R_L 0.16 −0.37 −0.05
R_Q 0.07 0.07 0.07 −0.75
C:R_L 0.08 −0.01 −0.13 −0.20 0.10
C:R_Q 0.05 0.06 0.00 0.06 −0.59 −0.37

Residual 0.91
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