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NOTES ON NOTES BY JpL (gorcerning vhet Te galls thetspread’ )by K.H. Hoﬁu am v

-

"Topoleogische Earstel-

g rnotes is by 3DL.
b2 & nan-trivial s¥srsip overlap betwssn JDL
and GH althouzh the oblectives appear to be differsnt.
I recall a f&g things from WOTES GX:
& set X € %(in a semilattice S} iTT
8 = iéf {f: nx) fsrall s = 3.
If S iz a topological sexmilatiice wa say that X is zenspating | if

S is the smallest closed subsenilatilice contalnineg X.
ORDER GENERATING I3 STRONSTR THalN SonIRarniisg,
The set of all c

L will be denoted Irr L, , the seft of all mest lrreduclibles will

be called IRR L, and the set of all primes is PRIME L (I

if they played a role,

by Prime L.) The closure af

Irr T in a Tooolomxical semilatitice T
Wwilll be written Irr T eteo. We obsarved in 7I7R3 53U

FROPOSITION 1. Lzt

(1)
(11} Irr 7
(iii1) ¥

|

= Z &and A< T .
X is order genesrailnz.
= X.

fsri % = $4t n X%

The followlng are aslo equivalent and fIxpizxizz follow

L]

ram the preceding:

{1}

(2) An % = Pe N % => n-k Tor a1l b,k e K1)
(3} k= inf{fk 0 X) r = K{T).
if,in addition, T is alzn distributive, v (1),(2),(3)
are also eguivalent to

(4)
(5)

In particular, in ths las® casas

FRIKE (T) c X .

5:§%1353 Elased gzensrating se unigu smallest ged order g

ng 580
/vol1/iss1/2
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For these matters see NOTES GE &£.1 roufn 2.4, 1 mot
that the =xzizslszrezyzfxfii relations (i)e=>{1i1) =>
In order to expand the theory from 2 %o CL (=2s sverybod

days) it is clear that Irr is no lonzsr sufficisnt,as the exampls

irr I = {1} shows. I therefore want +o develop some remarks on
iRR .
RENARK 2. Let 3 =3, x = 3.

g8) x & IRR 3 1T $x \ [x] i=s a gemigroup iif Tx yoix

Nmad
s
L]
i

filter. f xe Fimp Tx ..
b} ir ﬂ is a filter of S and x is maximal in S\U » then ==
X & IRR 5.
Froof'. a) is ilmmediate from the definition.
b) If x is maximal in S\U, then ¢: \{x} < U, thus
T\ {x} =0Un Tx 1s a Tilter, and the assertion follows from a.

be a compact semilattice,
LEMMA 3. Let T Eazﬁf t & Tand U an open filter with t ¢ U.

Then there is an x € IRR T with xxxx t £ x and x & U,
Proof. Tne set £ n (T\U) is a compact poset, hence has a maximal

element x. By 2.b , x & lRR T.

L

PROFOSITION ¥. For T & I% CL IRRxTxIzxinExExigserecaitest

IRR T 15 a gensratlng set,i.e.

t = inf(ft n IRR T) for all t e T.
Proof. Let t € T and set s = inf {tn IRR T .(Recall inf ¢ = 11).
Clearly £ < s. Assume t < 5. Since T e CL there is an opesn filter

Uwith t € Uand s e U. 5y

e Tt n IRR T with x ¢ U. Then S < x by definition of s, whance

X € Uslince s € Uand U is a Tilter.Contrarietion.]
LEFMA S. Zet X be an order zenerating et in a CL —objzet 7. Then

froof. NOTES GK 2.3: BY "“PHE LEMMA"(c= 1t is new called by GHi,

if p e #Fxim FRIME T and b= inf{1p N X) then p e =

PROPOSITION 6. Let Te CL , X < T. Then (nl==(nyl):

=5 {!) IRR T x , {2} X is order geveratin

Scholarly Repository, 2023
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{3} ¥ %z order gznerating, {4) FRIVE T c % .
Now suppose that T is distributive. Taen (Z):{%) and (5
below are sguivalsnt

{3} IRR T < ¥ .
froaf. Put thre preceding results together wiih the feet +
for distributive lattices IRR = FRIME.[]

Trix W= turn to the question of generation.
A(T)

Iy Te EL ¥ then Tt =

FMEFTNIPTON - = B o= 5 5
JREFINITION ?- =2t = '[c:. = T 8 = inf int Ta }t

ﬂhp{&t N A(T)} for all t & T
T

I of T.

L
bk}

e

(ATIAS).

Eince

LEMMA B. L[et Tc CL and A ¢ T. Then the following are
squlvalent: ( ¥° = int ¥):
(1) a2 = intffd’n X) for alla a e a(T).

(T} £23 a = inf (f9°n ) rfor all a e A(T).

\G
{(2) (an x -_-'|:T'rh?‘0€ => &a=b for all a,b e A(T).

(2) same as (2) but with ¥ replacing X.
{(3) X iz &= erating.

ﬁﬁﬁﬁgicm above

y & by elements
AF where F is a finlte sat (fa)” n X ; since ([2)°
open it follows that a %5 approximated from above by =ler
|ﬁr where F isg flﬂlu 1n {Ta} il K .

(;}7{4{5_} S kevas

(1} => (2) trivial;
{not 1) == (mnot (zy (rot 1) thers is an a € a(7) with
: . S
a<b=inf((fa)’n X) .But a < b implies ({0)° n x < (fa)
and the definition of b impliss fixk t2)? n x e I"f':?]lj n x.

We have

(1) ==(3) iz *trivial sin

(3) => (1) .

2T d =

proved (not 2).

https://repository.lsu.edu/scs/vol1/iss1/2
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i
| aia 9 . let TeCP, and let %=X < T
! s iz - - + : ;
# Deflne XxxN¥ X = {2zt T: t = inf {% ft 4 } Tnan X is elozed.
I Praof Tat ki
| froof. Let 8 €(X) . For each Eﬂuﬂugdfﬂ J of The uniform
| structure of T we pick a t, e X with % & U(s).
o _— LJ N
| Then thers 1s a finite zet P, < X with F,.= 1 0
{ . a fini e _I.r f_-' n witl J."!_I - |J{,:_..! 210
i { ) - = =y I — - o ~
| nfﬂa }\fg} € Ue 2y compzaeiness, thers is a oofinal Functilon
!; i e e
i FxZrsesvi¥iveneknikat jl===U({j) on a direct=2d set J with
i
ﬁ values in the uniform stracture of T such that ¥ G, = F
| ] i)
; ¥ converzes to a closed subset G in the compact space X
E relative to the Hausdorff topols og¥y on X. E¥@rxzzchize Tach
' r -
i g & % 1s the 1limlit of a net g, € ¢, . From %. < g. W2 concluds
| - i Ula) = =3 I
5 = 1im +. < Lim o, = 2 T O f‘-
UEJ] = gy = gy, 1.2, S < s 0 X,

InET®ENy For any CP-object T, the function

1.

is haracteristi
AG
! (s,AG) = Tim[ U{J},ﬂ 5.) & J(J}J for all j.

ig ca\giﬁgl we have (s, ﬁu e n{u(17%;

continuous (in fact this iz o

.
= LF

Tim Ar: . But {tL[J},A

m= J} =

order generatinzg.[]

|

Published by LSU Scholarly Repository, 2023

) & U(§) , wi

A=A Ao (T)-—>T

B
ence

e for CP).H
henee

o

Since jl—>U(3)

dia i.em

3

- TxT ? .

L

= AG'. Since ¢ < {5 N X we conclude s = inf(fs n X).[]
THEOREM . Q%ggggié N
BE0ESSRE= R 10 . Let T e CEY. Lfuq X 1s generating, Zhe ¥ is

? order '—f‘nﬂrﬂ.{.‘ing por P"—""*{?e‘a‘!;f & {.&?,,_gﬂf Lo Ha S pfd‘clj, z‘?f,;:-ﬁ e %::::ﬁ?ﬁ-_,r
| s S T
i By [JJTELS above (X} iz a closed subzet whiell ~antalns
i
f A(T) Since 4(T) is dense, then T < (X)) ,vhich by
] the definition of ( ) means that I is order zanErating in 7.5
i &) If ¥ is arder gererating, then ¥ 13 Eqarttiﬁ:Jr--:ca
{YimmaﬂJ}
b 1z generating.[] =
V'l
COROLLARY 11. 1if X is generating in T = CI
Froof. Theorem 10 and L5 i.f;fg; fZricinn EH{IFH,; fl =g )
Fr»s ?f[}’di/ U‘d—r‘:.'é; ég?f’;f!:? M@ﬁo@g{-}, . G
| PROPOSITION 12. Zvery CP object has minimal closed order sersratine
sets.
| Froof.(Indlcatlon.) Let X, b= a tower of cl:Eei erder generating
é sets. Use the method of prfoof of LEIDA 9 to show that ¥, is w%ill
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I 4
I

: H AN - - —a 1 . _ ar A = D — : = -
I Tedte—sdFos Y arithe = T w0 (Tl S llopasin

S v PRl L L TR

|
| I3

FROPISITION P. Let T e CL be distributlive. Thzn the following

. . : bey THECEEM 10, ,
Froof. By Prop.6 we have (Bl<=>{3} ;Tﬁ”l"fzje:a{l} Ittt 2,

| = = | |
J s _my/‘ilj/nj_ 1=t FRILE T. TEre an arblirary
| a D "5/ i fie hav #7 ]

i .

"!/;,iiﬂ £ ik

co

. of T 9@ are also esguivalent

(&) Irr Tc i

Froof.Prop.1.[]

distritutive o e
COROLLARY 13 . In any/T & CL the sat 183 T = CRiAE T is
the unigue smallest closed @rclszr} generating set B Fners ~—FF‘ o

, SN LR 7y =
ket il atedo st chrutigoc] If ev== T = 2 then BZZEZ) TFT 1,

i e Arsad Pree S‘Lm_-;‘f.r'lr?f"—;f oo ol ?;E@{H“:E,Qy;__ Fri-, f.f_" PR P S P T
2.8 TRB(T) =T (1) = PRi/E(T). T 4

Does anyone know whether the relation IRR = Irr hoelds in 2

i cven withsut distributivi‘t;f?'

Thizs aszsertlon is equivalent to the following:
if o RIMET, T= 2 , then g = Ir

Any prod?d.;? Ccunterexaﬁn;le:ﬂ-‘%‘

i L Tl @ Cetecyorcf Swee cttrce .

l (Corsrite

| () TelLl:

r (E) TRRT & ordfe ?awq-pﬁfﬁg .

: -{,E"r, .m Seeir ()= (). fote alorr e cnipene?’
i

X et Y- 4
H x5 Hlrre o ; f:—a_ Ay ausre Mo fre Tadalumad STt~

%&tg_-r;,{.-/'}-r?_, 5&_'?_"? {'59— ,fé_; Slardl creq ffﬁ?"-"ﬁﬂ‘fé P W - P _|_’___:-‘ Hdﬁ-;:'.-ﬁ_r-,\-_:;i.

https://repository.Isu.edu/scs/vol1/iss1/2
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(£,B) |-—> A4B. Hotice that & < 3 in Sub(?)} iff 5 < &4 . Wenote

\’fﬂjzj e Jl = n. Aj in Sub{T)s as & corsagusznce, A << B
= J
Iff for every family C.,in Sub{7) with .2, c 3 theraiz o

finlte set F c J with N.C, € 4. This 1s satisfied if

B c int A; but since Te CL , then B has a basis of semilattics

¥
o+
i
]
fu
z
o
=,
=]
o
part

nelghborhoods, and in taking {Cj:j = J} to he

&ll compact semilatiice neizhborhcods of B we ses that this
conditioh is also necessary. Thus 4 << 3 iff B o int 4.
By what we just observed (namely, that 3 has a basis of
semllattice relghborhoods) we kneg that 2 = =un f4: A<<Bl .

Accordlng o ATIAS , this makes Sub(7?) a CL —obLjset. We have:

PRGPOSIT;ON l. Let Te CL, then Sub(T) CL , and A << B

in Sub(T) iff B < int A .

Let ué note in ﬁaéﬁlhq that the functlon =zl e s e Sub( T

alqabraically i T‘.L 4 3(_]
ls BXESHEINRERENNAVSISHENLSAEYLEXIE a morhism ifF e TXF = Efx}(TJ
tfox for all X,y & T (for the convers in cliston is alvays true).

If T is distributive, then this conditlon is satisfied:Indee

A zy =2, then z = (=¥ z)(yV¥ 2) ={f=)}(Ty). Thus:

rFET ” [y 't LIRS I o Y ik " =
4USATZ 2. If T is disiributive, then x|—>{%:T—>3ub(7) is

an embedding XKXEEIXx alzebraically. (]

FROPOSITION 3. The mapping /4 : T———>3ub(7T) is a morphism in
EE EEQP » hence preserves arbitrary sups, repsects <<, 1is
L =i E] =
continuous from below and lowsr semicontinuous.f® It is right
adjolut to *the map min: Sub(7) ——-> T which ithersfore is a
Cl=morphism.
Proof. We have 4 = fx Iff Ac fx Aff min & > %, whia shows
that T 1s right adjoint to min (ATIAS). Thus\ rerainder follows
from ATLAS.

BRANPLE 4, Zet T = {(x,y) & IxI: X=yF = L/n,n=1,2,..., Z=y=0 or

X=0,¥ = 1}. Then (1/n,1/n)—>(0,0) ,but f{lfﬂ,lfﬂ] e {{ﬂ,ﬂl ad

Published by LJU Scholarly Repository, 2023
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not preserve infs ,hence doss not have 5 rizhi &

is not continuous.

i1 ]

o

hiuch of what has heédn said applies immedilat=ly %o

il

Yy +he a . - .
Vote that In fact of{T) also haz a Cleoparation U and

t;{?}, U,-) 1is a compact semirine.

By ATLAS duality, each 4 = Sub(T) corresponds bijectively

. op
to a CL congrusnce on T,namnely the kernel congruence of +h

I

right adjoint d :T——>4 of the inclusion map qA:A--~}?;

In order to link} this observation with NOTES SI)I note that

if Te Z then there is a bijsction befween the EIREXEHENLRE

cp°P

—Ccongruences on T and the congruences on K(T) (= @'}

osbtaines simply by restriction Rf-m—b ROUE(TIxE(T)) (since

ifd, ) K{T)=—m > E{ﬂ].is simply Xf2 den} - dﬂiK[T}}.

_ ) wa
I wish +to0 dewll Tor a moment on cooroducts in CF .
. 7= a
Let {Tj:j € J} be a fanily in C2 . We let | |_|j ganoie In® its
- et s i

1-th cofactor,i.e. the coprojectisn g,:T, ——> T is

inelusion. I : T =T Sl i - ; .
1 Let d4_.: T =T, b2  the rizhi sadjoint given by

J J
dj{t} = inf(}t n Tj] {52

T 1= the product of the

Let X = UJTj < T. Then

the algebrsic coproduet f(in 3) with the eolimilt +amolosy in

category of topological semitattices [mperhc

of k-semilattices—I am undecided}. YNote that COF Zax

bl-products, l.e. that & x = — AXE in the obvious fashion.

Thus JTj is the ascending (up-iirscied union)of

of ail T, - 11Ty » F g J finite. Fvery slensnt of 3 7

1s a finite inf of elements in ¥, in particular, ¥ i

generating in _2_‘}.’['3_

https://repository.Isu.edu/scs/vol1/iss1/2
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I now want to settle {arf I can) tha szopevhat gelicats

question whether of not X3 X iz order —gensrating in T.

For this purpose I corsider the very special case +hat all 7

have two elements.

% The following Lerma hzlps us to undsrstard ecoproducts of

Z-objects In CL , since we xnow coproducis in Z rersonabply well

by HMS DUALITY.

EXKER  FROPOSITION 5. IT {Tj:j e J} iz a family of EX finite

e e

! objects,then the Z—copraduet ¥ 5 of the T, and the CEP-coproduct

! T of the T, agree.
Froof. We must show that 35 has the universal propsrty of the

coproduct in CP . Since I is a co-generator of CL , 1t suffices

to prove the following:

r

or =ach family fj:TJ ------ =1 of
QE—morphiSms thers is a unlgue CP -—morplhism f:3——> T such Tths'

fj= fsj ,where sj;rj ——-> 3 &re the coprojections. Ezt
ke X N EX A X AR E X N P AT ER e B e D N NS I DN RAE S A NS XK KK S

ST=BTATE (L e A 2 e OO R Ite thKe e E Tore rancnieal

mmrxkimexxrfxfiﬁﬁ%ixxixxmfngkzﬁg1x”kaﬂ;zziﬁxzxﬂxtxxﬁxzxxzx

FEZTEBE

| It suffices to produce a Z-object 2 and a morphlsm e
i = tgether with a family of morphisms hJ:Tj*m"d} 4 such that
i fj= ghj; for then by the universal property of S there would

be a unigque h:S—->Z with hj— haj for all j, yielding f= zh

with fsj . ghﬂj =gh. = fj, and  would be unigus since the

s.(T, enzrate 3,.
§40y) o J
Now Let g:Z———>I 2.g. be the Cantor map (DUALITY HMS W - 2 or

DIWERSION RAISINGY. Then by the finitsnecss of 7 the h

i exizt as desired.f]

i [I would 1like {o know whather or not in gsneral d—caproducis
! are CP —gxz coproducts. I can see how the shove methed would

still work for a couniable family of stable & 4 -objecta. ]

. i
Published by LSU Scholarly Repository, 2023
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Thiz propositlon anyhow allows me to treat copawers of 2,
J
X is a set,
. . e a7 T 4 L i =
wnen the fres Z-object F(I) = "2 1s the free CP-objsct generated
J with identity ¢ _
s_ c(pJ) under @ % and J is_embedded in F(J)
J be the lmage, l.2. write j= {3j}].
2

S

= c{F J)} be an arbitrary slement.

Then TanJ = {Fe C{F J) : Pc qgend Q€ J) = £fxdx {{3}: jeJ
ard 3 = g} = (Ina) (where we identify J with its irage in PJ}.

P ow let __7@5 c{}'}.J}. Then i.n_f‘ﬂ = (ufas Ar*_‘--ﬁL].}_ » Thus

inf(fa nJ ) =twf inf(Jnaq) (5 naq)” in pI -

e have shownd

=EXﬂMPuE1 6. Thz set UJT3 in the coproduct 1_lJ?J nesd not be order

i generatine, In fact let Tj=2 for all j, then | | TJ = F(J} and
B |

Ju {1}
QITJ = & fidewiifiedxwiihxiizxivzxe where J is identifiled with its

image in F(J). In general we have x = < inf(Tx n (Jufl}).

Indeed 1f x is ldentified with Q under the isomorphlsm F[JJF}E(PJ],

then equallty holds iff QNJ is dense in -Q < %J « If' x corresponds

o QCI AV y 8] I\ 3, then  inf (fx 0 (JU{1}) =1 .[

it is in~structlve to observe for an arbiirary compact sSpace

L I
2¥in the CL-object F(E) =(c(E),u)the £m irreducibles: F(E) is

~ Irr F(E)= e ©
distributive,/[RR F(E) = PRIME F(E) = E c F(E), 488ivlivaioets
XXUSMTHXBAXINXEFX  This shows, in particular, that m Irr is

always order gsnerating in Z—objects,but that this not characeristic

]

for Z-objeects: EH.

it

£(I) is not a Z-object , but Irr F(I) is

T

order cenerating..
Hote further that any dense subsasi of E is generating.

We have obsarved a counterexampls to guite a few possible
conjecltures aboutl order generation in coproducts. (In ny notes oncK
1 had not yet understood theze this situation.) We retura to

the case of & family {Tj:j&J} In CP . Now we assume that ikt

ilall Tj ars subobjects of one and the same T s CD.

https://repository.Isu.edu/scs/vol1/iss1/2 ' .
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Hofmann: SCS 2: Notes on Notes by JDL

LA 7. ey T, € TinCE, j& J. =2t om:| } T, =—=> T
be the canonical coproduct map in CPend W 1 T —> |JF
The s T E o o Tl

its adjoint in CF°P (recall | {CFOD =] b £)s

@fine ¥ = U, T, < T. Then the following statements are

T P E 3 2 5 A‘ .' - ]
(1) m is surjective. (2) m is injective. {3) X 1s éwﬁe*a+1ng.

(%) X is generating. (5) a = inf {{Ta}on X} for all a € A(T).
(e} X m-erdiﬁgcminwﬂﬁg-
If P 1z distributive, these conditions are eguivalent to

«.(7) IRRPc X .

=
3
m
s
-
——
=
et
i
—
i
—r
]
ey
i
]

gquivalent to

(8) Irr T¢ X . (=) K(m):K({T) ——> ){J j{("[':l'_i iz an embedding.

If J is Tinite, (1)-={4) are esguivalont to

(#) X is order gencratine.

Proof. £ The egquivalence.of % {3},[4],(5},{6} and {under ths
approrpiate hypotheses) of (7),(8) was shown 1in Section 1.

If J is finite , tQEH e T F .hence ﬂ;; {:}[o} The'

sgquivalentce of (1) and (2) follnws from ¥M ATLAS duality.

b If we let X & ileTj be the uniaﬂ of the images of Tj in

the coproduct, then :n{z} = X. Vow ® X is generating in the

LDD“Dduﬂt hence X 1s generating in im m. Thus {1]:;?31.

(1) <=> [.@%} by HMS DUALITY [Tesp. {2}-:::.‘} %} by ATLAS].

GK have observed that X = U {TJ: je T} where the
set of all T, , j &€ J 1is the closure in Sub(?) of =¥t the
set of all T., J & J. Mbe #et fe fruik of @ &P f Fany
b 7 ﬁf"—-’”ﬁ .

Up to this poini, The investigation of Gi{ and of JDL

can be ftreated on the same background. I[n both cases onpe
. X:UPJ
produces & closed generathng setfofa £ OF —abject P (in fact
both more or lsss restriet their attention o Z) which
iz smzll in some sense. GK do this by finding a smart

> & - - =¥
dsgtributive closed sublat®ice/of Sub(T)./and by letting

{T.:3e4J} = Irr

3 D . JDL says:let us try to pick a8 small

Published by LSU Scholarly Repository, 2023 .
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family {7,:J @ J} of ohains if we can. ¥ 4 cardinal messure

for the smallest number of chains doing the trick is what he
calls the spread . I wodify his dsfinition somewhat:
DEFINITION 8. Let T = CP . The fiix spread SE(T) of T is

the smallest cardinal a such that +h ig a family TJE Sub M

J & J of CHAIHZ Ej such that card J = &, and that
the sguivalent conditions of Lemma 7 are satisfled. ]
For Z-objeets this means tkaix (by Lemma 7 , (8) and(lo))

. a collectloa of & chains
hat Irr T is coveraed by the eclosure of the union of thxm§ ,0or

ot

equivalently, that the{discrete) character semilattice is a
product ofa
subsemilattice of a/collection of chains of cardinality a,

and that a 1s minimal w.r.t. this property. If SP(7) is finite
then WJlET these circumstances (i.e. T & 4) SE(T) = n means

by Lemma 7, (§) that Irr T is covered by n chains in Sub(T)
and that n is minimal w.r.t. this property. (This is more or
less JDL's origiral def'inltion.) Fruﬁ Lemma ? we have
immediately: |

: 8
AEMARKE. 9. I the svread of a CP-ohject T is finite number r,

then n 1s the smallest natural number such that T is a
quotlent of a product of n— chains 1n CP and also the smallest
number such that T can be embedded into a product of n chain
FROPOSITION 10. If f£:S->>= T in CP , then SP(T) < SF(S).

F . Let X¥riXxx - = T.= 3 haj
roof. Let XXEXIXXE = U§T =J} , T, Sup S a chain

it J
with card J minimal and X generatlng. Then (&) = U{f{?j}:j eJ ]

15 generating and (7.} & Sub T is a chain.Eernce the assertionm.

i o - 2 . =1
PAAPLE 11. Let T = {0,1,2}° , 3 = T\ {(1,2)}. Then S2(T) = 2
SF(8) = 3, Sc Tand T is a product of cha r:.D
Une observes immediataly that Sz¢ = e oo
diays what S5 5.) < ¥ > >
FTy54) s 22 2 538(5))
from Lemma 7. From my experience with dimensional capacity I

venture fto =zay that 2quality holds. A proof may be difficult

(it was with dimsnsional capacity).

https://repository.Isu.ed u/scs/vol1/iss1/2 . .
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Hofmann: SCS 2: Notes on Notes by JDL

Zzotion 3, Rragdth and zpredd {JDLY
{(Soundz llke Lrezad and buiter.) .

TRIFOSITION 1 . Let T& CL . Then br T < SP{T),if SE(T) is

iz an eple e:iw+_c ~—w=—> T for card J =

£r o

- ¥ L

ftan ity

SE(T) chalns C, & 3ub(T). Now br T g br 1_1Jc1 = ERFAXAXENEL{THX

J

= SP(T) , since breadth 1s logarithmic.(i.e. br TATJ - ZfJbr

Let J be a set, and let F(J) be the Tree object in Z hence
CP by Sectlon 2 Frop. 5. We have r(J) = c(p J) and c{}?J}

contalins the free discrete semilattice on the set jﬂj hence
. oJ
-

br F{J) = card J = 22 , but
25P T

br T < 2 remalns correct in general.

P F(J) = J. 1 suspect that

1

Ltk 2. (JDOL). Let S & 5§ amd suppose that F  PFrime 3
consists of mutually'1ncomparable'eicments {i.e. F 1is an

antichain}. Let F(P) be the free semilattice generated by

]

4

P {in _':;‘_»]I.- Then the canonlcal map F{P)-—> 3 is injec'i;ive. In

rartlcular, card P < br 3.
“roof'. We consider F(P) as the U-semilattlce of all finite
subsets of 7. Let X,Y € F(F) and suppose 3 AX = A Y.IT v e

then AX < y ; since y is prime, there is an x & ¥ with x

i

Since P is an antichaln, we have y = x € X. Theun Y < ¥ .

By symmetry X < Y.[]
3
LXLPROPOSITIONY (JDL). Let P& CL and SE(T) finite.

AT T 1z dlstrivutive , then SP{T) = br T.
Froof.(Indication! I do not quite understand Jirmie's proof.
n minimal

Mence FRIGE T = Clu...u Un for n chains C

(See Sact.2 Lemma 7, % condition (7)).

1t appears to me that JDL concludes-from thls econtainment and

Rinlmality, that kB PRIME T contains an s%ichain P of

n elements, If this is so, than Lemma 2 shows n % < br T. 7]
- L

)

Sy frop. 1, we must show SP(T) < br T. We know 18R = FRIYE

If J is finiis, then br C, =1 Tl = r C, = card
f nite, then br l_iJ g=or T Tdﬂa S jbrc card J

- [

13



	SCS 2: Notes on Notes by JDL (Concerning What He Calls the 'Spread')
	Recommended Citation

	tmp.1676399907.pdf.fHHOL

