Photothermolysis of lymphatic endothelial cells by gold nanoshell-mediated hyperthermia

Document Type

Article

Publication Date

1-1-2014

Abstract

Tumor-associated lymphatics and lymphangiogenesis have been shown to play important roles in promoting tumor growth and metastasis. However, the lymphatic system has received much less attention as a target of intervention in cancer treatment compared to the blood vascular system. In this study, we explored the feasibility of photothermal therapy targeting the lymphatic system as a strategy for inhibiting lymphatics-mediated tumor metastasis. Specifically, photothermolysis of lymphatic endothelial cells (LECs) via gold nanoshell-mediated hyperthermia was investigated. Near-Infrared-absorbing Au nanoshells (AuNSs) were synthesized and used as the photothermal coupling agent. After 24-hr incubation, significant amount of the AuNSs were taken up by murine simian virus lymphatic endothelial cells with minimal cytotoxicity. Thermally-induced injury to LECs was found to occur above a threshold temperature of 46 °C. Preliminary data also suggested apoptosis as the mechanism of thermally-induced cell death in this temperature range. In a proof-of-concept experiment, AuNS-mediated photothermal heating was found to induce cell death in statistically higher percent of LECs incubated with AuNSs after 15-min laser irradiation compared to the controls. We believed that the findings in this study represent the first step in developing AuNS-mediated photothermal therapy as a potential strategy to disrupt tumor-associated lymphatics. Copyright © 2014 American Scientific Publishers All rights reserved.

Publication Source (Journal or Book title)

Journal of Nanoscience and Nanotechnology

First Page

5347

Last Page

5354

This document is currently not available here.

Share

COinS