Joint stability after canine cranial cruciate ligament graft reconstruction varies among femoral fixation sites

Document Type


Publication Date



OBJECTIVE: To quantify stability in cranial cruciate ligament (CrCL) deficient canine stifles with hamstring grafts affixed at 3 femoral locations. STUDY DESIGN: Canine stifle motion study using a multi-cohort, repeated measures design. SAMPLE POPULATION: 27 canine cadaver stifles. METHODS: Hamstring grafts (HG) were affixed at the gracilis-semitendinosus insertion and on the lateral femur (1) proximal trochlear ridge (TR), (2) craniodistal to fabella (F), or (3) condyle center (CC). Total, cranial, and caudal tibial translation and total, medial, and lateral angular displacement, with and without translational load, were quantified with the CrCL intact, transected, and reconstructed. Angular displacement was quantified from points on the distal femur and proximal tibia. Graft strain was calculated from tissue displacement measured at joint angles of 30°, 60°, 90°, and 120°. RESULTS: Tibial translation was lowest in F constructs, which also achieved the least difference in tibial translation from intact stifles. Tibial translation was lower in intact stifles than in CrCL transected or reconstructed stifles. Less angular displacement of the proximal tibia was detected in the medial than in the lateral direction, and tibial displacement was lower in the cranial than the caudal direction. Angular displacement was lowest in the F treatment group. F constructs had the lowest graft strain at joint angles greater than 30°. CONCLUSIONS: Femoral fixation of a canine hamstring graft craniodistal to the lateral fabella conferred the best joint stability and lowest graft strain in vitro. No fixation method restored joint stability of the intact CrCL.

Publication Source (Journal or Book title)

Veterinary surgery : VS

First Page


Last Page