Document Type


Publication Date



Brucella abortus reportedly produces the monocatechol siderophore 2,3-dihydroxybenzoic acid (2,3-DHBA) in response to iron limitation. Nucleotide sequence analysis of the cloned DHBA biosynthesis locus from virulent B. abortus 2308 and genetic complementation of defined Escherichia coli mutants were used to identify the B. abortus genes (designated dhbC, -B, and -A) responsible for synthesis of this siderophore. Reverse transcriptase PCR analysis of total RNA with dhb-specific primers demonstrated that dhbC, -B, and -A are transcribed as components of an operon, together with dhbE, a functional homolog of the Escherichia coli entE gene. Homologs of the E. coli entD and Vibrio cholerae vibH genes were also detected in the flanking regions immediately adjacent to the B. abortus dhbCEBA operon, suggesting that B. abortus has the genetic capacity to produce a more complex 2,3-DHBA-based siderophore. Slot blot hybridization experiments and primer extension analysis showed that transcription of the B. abortus dhbCEBA operon originates from two iron-regulated promoters located upstream of dhbC. Consistent with their iron-dependent regulation, both of the dhbCEBA promoter sequences contain typical consensus Fur-binding motifs. Although previously published studies have shown that 2,3-DHBA production is not required for the establishment and maintenance of chronic spleen infection by B. abortus in mice, experimental infection of pregnant cattle with the B. abortus dhbC mutant BHB1 clearly showed that production of this siderophore is essential for wild-type virulence in the natural ruminant host.

Publication Source (Journal or Book title)

Infection and Immunity

First Page


Last Page