Growth hormone response to a novel growth hormone-releasing tripeptide in horses: Interaction with gonadotropin-releasing hormone, thyrotropin-releasing hormone, and sulpiride

Document Type

Article

Publication Date

1-1-2002

Abstract

A series of experiments was performed to determine the factor(s) responsible for an apparent inhibition of GH secretion in mares administered the GH secretagogue EP51389 in combination with GnRH, thyrotropin-releasing hormone (TRH), and sulpiride. Experiment 1 tested the repeatability of the original observation: 10 mares received EP51389 at 10 μg/kg BW; five received TRH (10 μg/kg BW), GnRH (1 μg/kg BW), and sulpiride (100 μg/kg BW) immediately before EP51389, and five received saline. The mixture of TRH, GnRH, and sulpiride reduced (P = 0.0034) the GH response to EP51389, confirming the inhibitory effects. Experiment 2 tested the hypothesis that sulpiride, a dopamine antagonist, was the inhibitory agent. Twelve mares received EP51389 as in Exp. 1; six received sulpiride before EP51389 and six received saline. The GH responses in the two groups were similar (P > 0.1), indicating that sulpiride was not the inhibitory factor. Experiment 3 tested the effects of TRH and(or) GnRH in a 2 x 2 factorial arrangement of treatments. Three mares each received saline, TRH, GnRH, or the combination before EP51389 injection. There was a reduction (P < 0.0001) in GH response in mares receiving TRH, whereas GnRH had no effect (P > 0.1). Given those results, Exp. 4 was conducted to confirm that TRH was inhibitory in vivo as opposed to some unknown chemical interaction of the two compounds in the injection solution. Twenty mares received TRH or saline and(or) EP51389 or saline in a 2 x 2 factorial arrangement of treatments. Injections were given separately so that the two secretagogues never came in contact before injection. Again, TRH reduced (P < 0.0001) the GH response to EP51389. In addition, TRH and EP51389 each resulted in a temporary increase in cortisol concentrations. Experiment 5 tested whether TRH would alter the GH response to GHRH itself. Twelve mares received porcine GHRH at 0.4 μg/kg BW; six received TRH prior to GHRH and six received saline. After adjustment for pretreatment differences between groups, the GHRH-induced GH response was completely inhibited (P = 0.068) by TRH. Exp. 6 was a repeat of Exp. 5, except geldings were used (five per group). Again, pretreatment with TRH inhibited (P < 0.0001) the GH response to GHRH. In conclusion, TRH inhibits the GH response not only to EP51389 but also to GHRH in horses, and in addition to its known secretagogue action on prolactin and TSH it may also stimulate ACTH at the dosage used in these experiments. ©2002 American Society of Animal Science. All rights reserved.

Publication Source (Journal or Book title)

Journal of Animal Science

First Page

744

Last Page

750

This document is currently not available here.

Share

COinS