Document Type
Article
Publication Date
6-1-2017
Abstract
Cryopreservation has become an important and accepted tool for long-term germplasm conservation of animals and plants. To protect genetic resources, repositories have been developed with national and international cooperation. For a repository to be effective, the genetic material submitted must be of good quality and comparable to other submissions. However, due to a variety of reasons, including constraints in knowledge and available resources, cryopreservation methods for aquatic species vary widely across user groups which reduces reproducibility and weakens quality control. Herein we describe a standardizable freezing device produced using 3-dimensional (3-D) printing and introduce the concept of network sharing to achieve aggregate high-throughput cryopreservation for aquatic species. The objectives were to: 1) adapt widely available polystyrene foam products that would be inexpensive, portable, and provide adequate work space; 2) develop a design suitable for 3-D printing that could provide multiple configurations, be inexpensive, and easy to use, and 3) evaluate various configurations to attain freezing rates suitable for various common cryopreservation containers. Through this approach, identical components can be accessed globally, and we demonstrated that 3-D printers can be used to fabricate parts for standardizable freezing devices yielding relevant and reproducible cooling rates across users. With standardized devices for freezing, methods and samples can harmonize into an aggregated high-throughput pathway not currently available for aquatic species repository development.
Publication Source (Journal or Book title)
Cryobiology
First Page
34
Last Page
40
Recommended Citation
Hu, E., Childress, W., & Tiersch, T. (2017). 3-D printing provides a novel approach for standardization and reproducibility of freezing devices. Cryobiology, 76, 34-40. https://doi.org/10.1016/j.cryobiol.2017.03.010